コード例 #1
0
 def _is_frozen(self, brain_or_object, *frozen_transitions):
     """Check if the passed in object is frozen: the object is cancelled,
     inactive or has been verified at some point
     :param brain_or_object: Analysis or AR Brain/Object
     :param frozen_transitions: additional transitions that freeze the object
     :returns: True if the object is frozen
     """
     if not api.is_active(brain_or_object):
         return True
     object = api.get_object(brain_or_object)
     frozen_trans = set(frozen_transitions)
     frozen_trans.add('verify')
     performed_transitions = set(getReviewHistoryActionsList(object))
     if frozen_trans.intersection(performed_transitions):
         return True
     return False
コード例 #2
0
 def _is_frozen(self, brain_or_object):
     """Check if the passed in object is frozen: the object is cancelled,
     inactive or has been verified at some point
     :param brain_or_object: Analysis or AR Brain/Object
     :returns: True if the object is frozen
     """
     if not api.is_active(brain_or_object):
         return True
     if api.get_workflow_status_of(brain_or_object) in FROZEN_STATES:
         return True
     # Check the review history if one of the frozen transitions was done
     object = api.get_object(brain_or_object)
     performed_transitions = set(getReviewHistoryActionsList(object))
     if set(FROZEN_TRANSITIONS).intersection(performed_transitions):
         return True
     return False
コード例 #3
0
ファイル: create.py プロジェクト: xispa/bika.lims
    def _create_ar(self, context, request):
        """Creates AnalysisRequest object, with supporting Sample, Partition
        and Analysis objects.  The client is retrieved from the obj_path
        key in the request.

        Required request parameters:

            - Contact: One client contact Fullname.  The contact must exist
              in the specified client.  The first Contact with the specified
              value in it's Fullname field will be used.

            - SampleType_<index> - Must be an existing sample type.

        Optional request parameters:

        - CCContacts: A list of contact Fullnames, which will be copied on
          all messages related to this AR and it's sample or results.

        - CCEmails: A list of email addresses to include as above.

        - Sample_id: Create a secondary AR with an existing sample.  If
          unspecified, a new sample is created.

        - Specification: a lookup to set Analysis specs default values
          for all analyses

        - Analysis_Specification: specs (or overrides) per analysis, using
          a special lookup format.

            &Analysis_Specification:list=<Keyword>:min:max:error&...


        """

        wftool = getToolByName(context, 'portal_workflow')
        bc = getToolByName(context, 'bika_catalog')
        bsc = getToolByName(context, 'bika_setup_catalog')
        pc = getToolByName(context, 'portal_catalog')
        ret = {
            "url": router.url_for("create", force_external=True),
            "success": True,
            "error": False,
        }
        SamplingWorkflowEnabled = context.bika_setup.getSamplingWorkflowEnabled()
        for field in [
            'Client',
            'SampleType',
            'Contact',
            'SamplingDate',
            'Services']:
            self.require(field)
            self.used(field)

        try:
            client = resolve_request_lookup(context, request, 'Client')[0].getObject()
        except IndexError:
            raise Exception("Client not found")

        secondary = False
        sample = None
        # Sample_id
        if 'Sample' in request:
            # Secondary AR
            try:
                sample = resolve_request_lookup(context, request, 'Sample')[0].getObject()
            except IndexError:
                raise Exception("Sample not found")
            secondary = True
        else:
            # Primary AR
            sample = _createObjectByType("Sample", client, tmpID())
            sample.unmarkCreationFlag()
            fields = set_fields_from_request(sample, request)
            for field in fields:
                self.used(field)
            sample._renameAfterCreation()
            sample.setSampleID(sample.getId())
            sample.setSamplingWorkflowEnabled(SamplingWorkflowEnabled)
            event.notify(ObjectInitializedEvent(sample))
            sample.at_post_create_script()

        ret['sample_id'] = sample.getId()

        parts = [{'services': [],
                  'container': [],
                  'preservation': '',
                  'separate': False}]

        specs = self.get_specs_from_request()
        ar = _createObjectByType("AnalysisRequest", client, tmpID())
        ar.unmarkCreationFlag()
        fields = set_fields_from_request(ar, request)
        for field in fields:
            self.used(field)
        ar.setSample(sample)
        ar._renameAfterCreation()
        ret['ar_id'] = ar.getId()

        brains = resolve_request_lookup(context, request, 'Services')
        service_uids = [p.UID for p in brains]
        # If there is a profile, add its services' UIDs
        brains = resolve_request_lookup(context, request, 'Profiles')
        profiles_uids = [p.UID for p in brains]
        profiles_uids = ','.join(profiles_uids)
        profiles_dict = {'Profiles': profiles_uids}
        service_uids = get_services_uids(
            context=context, analyses_serv=service_uids, values=profiles_dict)
        ar.setAnalyses(service_uids, specs=specs)
        new_analyses = ar.getAnalyses(full_objects=True)
        ar.reindexObject()
        event.notify(ObjectInitializedEvent(ar))
        ar.at_post_create_script()

        # Create sample partitions
        parts_and_services = {}
        for _i in range(len(parts)):
            p = parts[_i]
            part_prefix = sample.getId() + "-P"
            if '%s%s' % (part_prefix, _i + 1) in sample.objectIds():
                parts[_i]['object'] = sample['%s%s' % (part_prefix, _i + 1)]
                parts_and_services['%s%s' % (part_prefix, _i + 1)] = p['services']
                part = parts[_i]['object']
            else:
                part = _createObjectByType("SamplePartition", sample, tmpID())
                parts[_i]['object'] = part
                container = None
                preservation = p['preservation']
                parts[_i]['prepreserved'] = False
                part.edit(
                    Container=container,
                    Preservation=preservation,
                )
                part.processForm()
                parts_and_services[part.id] = p['services']

        # Add analyses to sample partitions
        # XXX jsonapi create AR: right now, all new analyses are linked to the first samplepartition
        if new_analyses:
            analyses = list(part.getAnalyses())
            analyses.extend(new_analyses)
            for analysis in new_analyses:
                analysis.setSamplePartition(part)
            part.setAnalyses(analyses)

        action = 'no_sampling_workflow'
        if SamplingWorkflowEnabled:
            action = 'sampling_workflow'
        wftool.doActionFor(ar, action)

        if secondary:
            # If secondary AR, then we need to manually transition the AR (and its
            # children) to fit with the Sample Partition's current state
            sampleactions = getReviewHistoryActionsList(sample)
            doActionsFor(ar, sampleactions)

        else:
            # If Preservation is required for some partitions,
            # and the SamplingWorkflow is disabled, we need
            # to transition to to_be_preserved manually.
            if not SamplingWorkflowEnabled:
                to_be_preserved = []
                sample_due = []
                lowest_state = 'sample_due'
                for p in sample.objectValues('SamplePartition'):
                    if p.getPreservation():
                        lowest_state = 'to_be_preserved'
                        to_be_preserved.append(p)
                    else:
                        sample_due.append(p)
                for p in to_be_preserved:
                    doActionFor(p, 'to_be_preserved')
                for p in sample_due:
                    doActionFor(p, 'sample_due')
                doActionFor(sample, lowest_state)

            # Transition pre-preserved partitions
            for p in parts:
                if 'prepreserved' in p and p['prepreserved']:
                    part = p['object']
                    state = workflow.getInfoFor(part, 'review_state')
                    if state == 'to_be_preserved':
                        doActionFor(part, 'preserve')

        if self.unused:
            raise BadRequest("The following request fields were not used: %s.  Request aborted." % self.unused)

        return ret
コード例 #4
0
def create_analysisrequest(client, request, values, analyses=None,
                           partitions=None, specifications=None, prices=None):
    """This is meant for general use and should do everything necessary to
    create and initialise an AR and any other required auxilliary objects
    (Sample, SamplePartition, Analysis...)

    :param client:
        The container (Client) in which the ARs will be created.
    :param request:
        The current Request object.
    :param values:
        a dict, where keys are AR|Sample schema field names.
    :param analyses:
        Analysis services list.  If specified, augments the values in
        values['Analyses']. May consist of service objects, UIDs, or Keywords.
    :param partitions:
        A list of dictionaries, if specific partitions are required.  If not
        specified, AR's sample is created with a single partition.
    :param specifications:
        These values augment those found in values['Specifications']
    :param prices:
        Allow different prices to be set for analyses.  If not set, prices
        are read from the associated analysis service.
    """
    # Don't pollute the dict param passed in
    values = deepcopy(values)

    # Create new sample or locate the existing for secondary AR
    secondary = False
    sample = None
    if not values.get('Sample', False):
        sample = create_sample(client, request, values)
    else:
        sample = get_sample_from_values(client, values)
        secondary = True

    # Create the Analysis Request
    ar = _createObjectByType('AnalysisRequest', client, tmpID())

    # Set some required fields manually before processForm is called
    ar.setSample(sample)
    values['Sample'] = sample
    ar.processForm(REQUEST=request, values=values)
    ar.edit(RequestID=ar.getId())

    # Set analysis request analyses. 'Analyses' param are analyses services
    analyses = analyses if analyses else []
    service_uids = get_services_uids(
        context=client, analyses_serv=analyses, values=values)
    # processForm already has created the analyses, but here we create the
    # analyses with specs and prices. This function, even it is called 'set',
    # deletes the old analyses, so eventually we obtain the desired analyses.
    ar.setAnalyses(service_uids, prices=prices, specs=specifications)
    analyses = ar.getAnalyses(full_objects=True)

    # Create sample partitions
    if not partitions:
        partitions = values.get('Partitions',
                                [{'services': service_uids}])

    part_num = 0
    prefix = sample.getId() + "-P"
    if secondary:
        # Always create new partitions if is a Secondary AR, cause it does
        # not make sense to reuse the partitions used in a previous AR!
        sparts = sample.getSamplePartitions()
        for spart in sparts:
            spartnum = int(spart.getId().split(prefix)[1])
            if spartnum > part_num:
                part_num = spartnum

    for n, partition in enumerate(partitions):
        # Calculate partition id
        partition_id = '%s%s' % (prefix, part_num + 1)
        partition['part_id'] = partition_id
        # Point to or create sample partition
        if partition_id in sample.objectIds():
            partition['object'] = sample[partition_id]
        else:
            partition['object'] = create_samplepartition(
                sample,
                partition,
                analyses
            )
        part_num += 1

    # At this point, we have a fully created AR, with a Sample, Partitions and
    # Analyses, but the state of all them is the initial ("sample_registered").
    # We can now transition the whole thing (instead of doing it manually for
    # each object we created). After and Before transitions will take care of
    # cascading and promoting the transitions in all the objects "associated"
    # to this Analysis Request.
    sampling_workflow_enabled = sample.getSamplingWorkflowEnabled()
    action = 'no_sampling_workflow'
    if sampling_workflow_enabled:
        action = 'sampling_workflow'
    # Transition the Analysis Request and related objects to "sampled" (if
    # sampling workflow not enabled) or to "to_be_sampled" statuses.
    doActionFor(ar, action)

    if secondary:
        # If secondary AR, then we need to manually transition the AR (and its
        # children) to fit with the Sample Partition's current state
        sampleactions = getReviewHistoryActionsList(sample)
        doActionsFor(ar, sampleactions)
        # We need a workaround here in order to transition partitions.
        # auto_no_preservation_required and auto_preservation_required are
        # auto transitions applied to analysis requests, but partitions don't
        # have them, so we need to replace them by the sample_workflow
        # equivalent.
        if 'auto_no_preservation_required' in sampleactions:
            index = sampleactions.index('auto_no_preservation_required')
            sampleactions[index] = 'sample_due'
        elif 'auto_preservation_required' in sampleactions:
            index = sampleactions.index('auto_preservation_required')
            sampleactions[index] = 'to_be_preserved'
        # We need to transition the partition manually
        # Transition pre-preserved partitions
        for partition in partitions:
            part = partition['object']
            doActionsFor(part, sampleactions)

    # Transition pre-preserved partitions
    for p in partitions:
        if 'prepreserved' in p and p['prepreserved']:
            part = p['object']
            doActionFor(part, 'preserve')

    # Once the ar is fully created, check if there are rejection reasons
    reject_field = values.get('RejectionReasons', '')
    if reject_field and reject_field.get('checkbox', False):
        doActionFor(ar, 'reject')

    return ar
コード例 #5
0
ファイル: create.py プロジェクト: xispa/senaite.core
    def _create_ar(self, context, request):
        """Creates AnalysisRequest object, with supporting Sample, Partition
        and Analysis objects.  The client is retrieved from the obj_path
        key in the request.

        Required request parameters:

            - Contact: One client contact Fullname.  The contact must exist
              in the specified client.  The first Contact with the specified
              value in it's Fullname field will be used.

            - SampleType_<index> - Must be an existing sample type.

        Optional request parameters:

        - CCContacts: A list of contact Fullnames, which will be copied on
          all messages related to this AR and it's sample or results.

        - CCEmails: A list of email addresses to include as above.

        - Sample_id: Create a secondary AR with an existing sample.  If
          unspecified, a new sample is created.

        - Specification: a lookup to set Analysis specs default values
          for all analyses

        - Analysis_Specification: specs (or overrides) per analysis, using
          a special lookup format.

            &Analysis_Specification:list=<Keyword>:min:max:error&...


        """

        wftool = getToolByName(context, 'portal_workflow')
        bc = getToolByName(context, 'bika_catalog')
        bsc = getToolByName(context, 'bika_setup_catalog')
        pc = getToolByName(context, 'portal_catalog')
        ret = {
            "url": router.url_for("create", force_external=True),
            "success": True,
            "error": False,
        }
        SamplingWorkflowEnabled = context.bika_setup.getSamplingWorkflowEnabled(
        )
        for field in [
                'Client', 'SampleType', 'Contact', 'SamplingDate', 'Services'
        ]:
            self.require(field)
            self.used(field)

        try:
            client = resolve_request_lookup(context, request,
                                            'Client')[0].getObject()
        except IndexError:
            raise Exception("Client not found")

        secondary = False
        sample = None
        # Sample_id
        if 'Sample' in request:
            # Secondary AR
            try:
                sample = resolve_request_lookup(context, request,
                                                'Sample')[0].getObject()
            except IndexError:
                raise Exception("Sample not found")
            secondary = True
        else:
            # Primary AR
            sample = _createObjectByType("Sample", client, tmpID())
            sample.unmarkCreationFlag()
            fields = set_fields_from_request(sample, request)
            for field in fields:
                self.used(field)
            sample._renameAfterCreation()
            sample.setSampleID(sample.getId())
            sample.setSamplingWorkflowEnabled(SamplingWorkflowEnabled)
            event.notify(ObjectInitializedEvent(sample))
            sample.at_post_create_script()

        ret['sample_id'] = sample.getId()

        parts = [{
            'services': [],
            'container': [],
            'preservation': '',
            'separate': False
        }]

        specs = self.get_specs_from_request()
        ar = _createObjectByType("AnalysisRequest", client, tmpID())
        ar.unmarkCreationFlag()
        fields = set_fields_from_request(ar, request)
        for field in fields:
            self.used(field)
        ar.setSample(sample)
        ar._renameAfterCreation()
        ret['ar_id'] = ar.getId()

        brains = resolve_request_lookup(context, request, 'Services')
        service_uids = [p.UID for p in brains]
        # If there is a profile, add its services' UIDs
        brains = resolve_request_lookup(context, request, 'Profiles')
        profiles_uids = [p.UID for p in brains]
        profiles_uids = ','.join(profiles_uids)
        profiles_dict = {'Profiles': profiles_uids}
        service_uids = get_services_uids(context=context,
                                         analyses_serv=service_uids,
                                         values=profiles_dict)
        ar.setAnalyses(service_uids, specs=specs)
        new_analyses = ar.getAnalyses(full_objects=True)
        ar.reindexObject()
        event.notify(ObjectInitializedEvent(ar))
        ar.at_post_create_script()

        # Create sample partitions
        parts_and_services = {}
        for _i in range(len(parts)):
            p = parts[_i]
            part_prefix = sample.getId() + "-P"
            if '%s%s' % (part_prefix, _i + 1) in sample.objectIds():
                parts[_i]['object'] = sample['%s%s' % (part_prefix, _i + 1)]
                parts_and_services['%s%s' %
                                   (part_prefix, _i + 1)] = p['services']
                part = parts[_i]['object']
            else:
                part = _createObjectByType("SamplePartition", sample, tmpID())
                parts[_i]['object'] = part
                container = None
                preservation = p['preservation']
                parts[_i]['prepreserved'] = False
                part.edit(
                    Container=container,
                    Preservation=preservation,
                )
                part.processForm()
                parts_and_services[part.id] = p['services']

        # Add analyses to sample partitions
        # XXX jsonapi create AR: right now, all new analyses are linked to the first samplepartition
        if new_analyses:
            analyses = list(part.getAnalyses())
            analyses.extend(new_analyses)
            for analysis in new_analyses:
                analysis.setSamplePartition(part)
            part.setAnalyses(analyses)

        action = 'no_sampling_workflow'
        if SamplingWorkflowEnabled:
            action = 'sampling_workflow'
        wftool.doActionFor(ar, action)

        if secondary:
            # If secondary AR, then we need to manually transition the AR (and its
            # children) to fit with the Sample Partition's current state
            sampleactions = getReviewHistoryActionsList(sample)
            doActionsFor(ar, sampleactions)

        else:
            # If Preservation is required for some partitions,
            # and the SamplingWorkflow is disabled, we need
            # to transition to to_be_preserved manually.
            if not SamplingWorkflowEnabled:
                to_be_preserved = []
                sample_due = []
                lowest_state = 'sample_due'
                for p in sample.objectValues('SamplePartition'):
                    if p.getPreservation():
                        lowest_state = 'to_be_preserved'
                        to_be_preserved.append(p)
                    else:
                        sample_due.append(p)
                for p in to_be_preserved:
                    doActionFor(p, 'to_be_preserved')
                for p in sample_due:
                    doActionFor(p, 'sample_due')
                doActionFor(sample, lowest_state)

            # Transition pre-preserved partitions
            for p in parts:
                if 'prepreserved' in p and p['prepreserved']:
                    part = p['object']
                    state = workflow.getInfoFor(part, 'review_state')
                    if state == 'to_be_preserved':
                        doActionFor(part, 'preserve')

        if self.unused:
            raise BadRequest(
                "The following request fields were not used: %s.  Request aborted."
                % self.unused)

        return ret