コード例 #1
0
def person_cosponsors(request, pk):
    # Load the cosponsors.
    from bill.models import Cosponsor
    person = get_object_or_404(Person, pk=pk)
    cosponsors = Cosponsor.objects.filter(bill__sponsor=person, withdrawn=None)\
       .prefetch_related("bill", "bill__terms", "person", "person__roles")

    # Pre-fetch all of the top-terms.
    from bill.models import BillTerm
    top_terms = set(BillTerm.get_top_term_ids())

    # Aggregate.
    total = 0
    from collections import defaultdict
    ret = defaultdict(lambda: {
        "total": 0,
        "by_issue": defaultdict(lambda: 0),
    })
    for cosp in cosponsors:
        total += 1
        ret[cosp.person]["total"] += 1
        for t in cosp.bill.terms.all():
            if t.id in top_terms:
                ret[cosp.person]["by_issue"][t] += 1
        if "first_date" not in ret[
                cosp.person] or cosp.joined < ret[cosp.person]["first_date"]:
            ret[cosp.person]["first_date"] = cosp.joined
        if "last_date" not in ret[
                cosp.person] or cosp.joined > ret[cosp.person]["last_date"]:
            ret[cosp.person]["last_date"] = cosp.joined

    # Sort.
    for info in ret.values():
        info['by_issue'] = sorted(info['by_issue'].items(),
                                  key=lambda kv: kv[1],
                                  reverse=True)
    ret = sorted(ret.items(),
                 key=lambda kv:
                 (kv[1]['total'], kv[1]['last_date'], kv[0].sortname),
                 reverse=True)

    # Total bills, date range.
    from bill.models import Bill
    total_bills = Bill.objects.filter(sponsor=person).count()
    date_range = (None, None)
    if len(ret) > 0:
        date_range = (min(r["first_date"] for p, r in ret),
                      max(r["last_date"] for p, r in ret))

    return {
        "person": person,
        "cosponsors": ret,
        "total": total,
        "total_bills": total_bills,
        "date_range": date_range,
    }
コード例 #2
0
ファイル: views.py プロジェクト: govtrack/govtrack.us-web
def person_cosponsors(request, pk):
    # Load the cosponsors.
    from bill.models import Cosponsor
    person = get_object_or_404(Person, pk=pk)
    cosponsors = Cosponsor.objects.filter(bill__sponsor=person, withdrawn=None)\
       .prefetch_related("bill", "bill__terms", "person", "person__roles")

    # Pre-fetch all of the top-terms.
    from bill.models import BillTerm
    top_terms = set(BillTerm.get_top_term_ids())

    # Aggregate.
    total = 0
    from collections import defaultdict
    ret = defaultdict(lambda : {
        "total": 0,
        "by_issue": defaultdict(lambda : 0),
    })
    for cosp in cosponsors:
        total += 1
        ret[cosp.person]["total"] += 1
        for t in cosp.bill.terms.all():
           if t.id in top_terms:
               ret[cosp.person]["by_issue"][t] += 1
        if "first_date" not in ret[cosp.person] or cosp.joined < ret[cosp.person]["first_date"]: ret[cosp.person]["first_date"] = cosp.joined
        if "last_date" not in ret[cosp.person] or cosp.joined > ret[cosp.person]["last_date"]: ret[cosp.person]["last_date"] = cosp.joined

    # Sort.
    for info in ret.values():
        info['by_issue'] = sorted(info['by_issue'].items(), key = lambda kv : kv[1], reverse=True)
    ret = sorted(ret.items(), key = lambda kv : (kv[1]['total'], kv[1]['last_date'], kv[0].sortname), reverse=True)

    # Total bills, date range.
    from bill.models import Bill
    total_bills = Bill.objects.filter(sponsor=person).count()
    date_range = (None, None)
    if len(ret) > 0:
        date_range = (min(r["first_date"] for p, r in ret), max(r["last_date"] for p, r in ret))

    return {
        "person": person,
        "cosponsors": ret,
        "total": total,
        "total_bills": total_bills,
        "date_range": date_range,
    }
コード例 #3
0
    def build_info():
        global pronunciation_guide

        if re.match(r"\d", pk):
            person = get_object_or_404(Person, pk=pk)
        else:
            # support bioguide IDs for me
            person = get_object_or_404(Person, bioguideid=pk)

        # current role
        role = person.get_current_role()
        if role:
            active_role = True
        else:
            active_role = False
            try:
                role = person.roles.order_by('-enddate')[0]
            except IndexError:
                role = None

        # photo
        photo_url, photo_credit = person.get_photo()

        # analysis
        analysis_data = analysis.load_data(person)
        try:
            # Get session stats for the previous year.
            has_session_stats = person.get_session_stats(
                str(datetime.now().year - 1))
        except:
            # Not everyone has current stats, obviously. They may have stats
            # corresponding to their most recent role. Since stats are a
            # session behind, even-year stats might not correspond to
            # a legislator's most recent role, which is why I hard-coded
            # the current session stats above.
            has_session_stats = False
            if role:
                try:
                    has_session_stats = role.get_most_recent_session_stats()
                except:
                    pass

        links = []
        if role.current:
            if role.website:
                links.append(("%s's Official Website" % person.lastname,
                              role.website, "fa fa-external-link"))
            if person.twitterid:
                links.append(("@" + person.twitterid,
                              "http://twitter.com/" + person.twitterid,
                              "fa fa-twitter"))
        if person.osid:
            links.append(
                ("OpenSecrets",
                 "http://www.opensecrets.org/politicians/summary.php?cid=" +
                 person.osid, "fa fa-money"))
        if person.pvsid:
            links.append(
                ("VoteSmart", "http://votesmart.org/candidate/" + person.pvsid,
                 "fa fa-th-list"))
        if person.bioguideid:
            links.append(
                ("Bioguide",
                 "http://bioguide.congress.gov/scripts/biodisplay.pl?index=" +
                 person.bioguideid, "fa fa-user"))
        if person.cspanid:
            links.append(("C-SPAN", "http://www.c-spanvideo.org/person/" +
                          str(person.cspanid), "fa fa-youtube-play"))

        # Get a break down of the top terms this person's sponsored bills fall into,
        # looking only at the most recent five years of bills.
        from bill.models import BillTerm
        most_recent_bill = person.sponsored_bills.order_by(
            "-introduced_date").first()
        bills_by_subject_counts = list(person.sponsored_bills.filter(
            terms__id__in=BillTerm.get_top_term_ids(),
            introduced_date__gt=(most_recent_bill.introduced_date if most_recent_bill else datetime.now())-timedelta(days=5*365.25))\
            .values("terms")\
            .annotate(count=Count('id')).order_by('-count')\
            .filter(count__gt=1)\
            [0:8])
        terms = BillTerm.objects.in_bulk(item["terms"]
                                         for item in bills_by_subject_counts)
        total_count = sum(item["count"] for item in bills_by_subject_counts)
        while len(bills_by_subject_counts) > 2 and bills_by_subject_counts[-1][
                "count"] < bills_by_subject_counts[0]["count"] / 8:
            bills_by_subject_counts.pop(-1)
        for item in bills_by_subject_counts:
            item["term"] = terms[item["terms"]]
            item["pct"] = int(round(float(item["count"]) / total_count * 100))
            del item["terms"]

        # Missed vote explanations from ProPublica
        try:
            vote_explanations = http_rest_json(
                "https://projects.propublica.org/explanations/api/members/%s.json"
                % person.bioguideid)
        except:
            # squash all errors
            vote_explanations = {}

        # Misconduct - load and filter this person's entries, keeping original order.
        # Choose 'Alleged misconduct', 'Misconduct', 'Misconduct/alleged misconduct' as appropriate.
        from website.views import load_misconduct_data
        misconduct = [
            m for m in load_misconduct_data() if m["person"] == person
        ]
        misconduct_any_alleged = (len([m for m in misconduct if m["alleged"]])
                                  > 0)
        misconduct_any_not_alleged = (len(
            [m for m in misconduct if not m["alleged"]]) > 0)

        # Load pronunciation from guide. Turn into a mapping from GovTrack IDs to data.
        if pronunciation_guide is None:
            import rtyaml
            if not hasattr(settings, 'PRONUNCIATION_DATABASE_PATH'):
                # debugging
                pronunciation_guide = {}
            else:
                pronunciation_guide = {
                    p["id"]["govtrack"]: p
                    for p in rtyaml.load(
                        open(settings.PRONUNCIATION_DATABASE_PATH))
                }

        # Get this person's entry.
        pronunciation = pronunciation_guide.get(person.id)
        # TODO: Validate that the 'name' in the guide matches the name we're actually displaying.
        if pronunciation and not pronunciation.get("key"):
            # Show a key to the letters used in the pronunciation guide. Break apart the name
            # into words which we'll show in columns.
            pronunciation["key"] = []
            for namepart in pronunciation["respell"].split(" // "):
                for nameword in namepart.split(" "):
                    # Parse out the symbols actually used in the guide. Sweep from left to right chopping
                    # off valid respelling letter combinations, chopping off the longest one where possible.
                    pronunciation["key"].append([])
                    i = 0
                    while i < len(nameword):
                        for s in sorted(pronunciation_guide_key,
                                        key=lambda s: -len(s)):
                            if nameword[i:i + len(s)] in (s, s.upper()):
                                pronunciation["key"][-1].append(
                                    (nameword[i:i + len(s)],
                                     pronunciation_guide_key[s]))
                                i += len(s)
                                break
                        else:
                            # respelling did not match any valid symbol, should be an error but we don't
                            # want to issue an Oops! for this
                            break

        # Get their enacted bills.
        enacted_bills_src_qs = person.sponsored_bills.exclude(
            original_intent_replaced=True).order_by('-current_status_date')

        return {
            'person':
            person,
            'role':
            role,
            'active_role':
            active_role,
            'active_congressional_role':
            active_role
            and role.role_type in (RoleType.senator, RoleType.representative),
            'pronunciation':
            pronunciation,
            'photo':
            photo_url,
            'photo_credit':
            photo_credit,
            'links':
            links,
            'analysis_data':
            analysis_data,
            'enacted_bills': [
                b for b in enacted_bills_src_qs if b.was_enacted_ex(
                    cache_related_bills_qs=enacted_bills_src_qs)
            ],
            'recent_bills':
            person.sponsored_bills.all().order_by('-introduced_date')[0:7],
            'committeeassignments':
            get_committee_assignments(person),
            'feed':
            person.get_feed(),
            'has_session_stats':
            has_session_stats,
            'bill_subject_areas':
            bills_by_subject_counts,
            'vote_explanations':
            vote_explanations,
            'key_votes':
            load_key_votes(person),
            'misconduct':
            misconduct,
            'misconduct_any_alleged':
            misconduct_any_alleged,
            'misconduct_any_not_alleged':
            misconduct_any_not_alleged,
        }
コード例 #4
0
    def build_info():
        if re.match(r"\d", pk):
            person = get_object_or_404(Person, pk=pk)
        else:
            # support bioguide IDs for me
            person = get_object_or_404(Person, bioguideid=pk)
        
        # current role
        role = person.get_current_role()
        if role:
            active_role = True
        else:
            active_role = False
            try:
                role = person.roles.order_by('-enddate')[0]
            except IndexError:
                role = None
    
        # photo
        photo_url, photo_credit = person.get_photo()
    
        # analysis
        analysis_data = analysis.load_data(person)
        try:
            has_session_stats = person.get_session_stats('2016')
        except:
            # Not everyone has current stats, obviously. They may have stats
            # corresponding to their most recent role. Since stats are a
            # session behind, even-year stats might not correspond to
            # a legislator's most recent role, which is why I hard-coded
            # the current session stats above.
            has_session_stats = False
            if role:
                try:
                    has_session_stats = role.get_most_recent_session_stats()
                except:
                    pass
        
        links = []
        if role.current:
            if role.website: links.append(("%s's Official Website" % person.lastname, role.website, "fa  fa-external-link"))
            if person.twitterid: links.append(("@" + person.twitterid, "http://twitter.com/" + person.twitterid, "fa fa-twitter"))
        if person.osid: links.append(("OpenSecrets", "http://www.opensecrets.org/politicians/summary.php?cid=" + person.osid, "fa fa-money"))
        if person.pvsid: links.append(("VoteSmart", "http://votesmart.org/candidate/" + person.pvsid, "fa fa-th-list"))
        if person.bioguideid: links.append(("Bioguide", "http://bioguide.congress.gov/scripts/biodisplay.pl?index=" + person.bioguideid, "fa fa-user"))
        if person.cspanid: links.append(("C-SPAN", "http://www.c-spanvideo.org/person/" + str(person.cspanid), "fa fa-youtube-play"))

        # Get a break down of the top terms this person's sponsored bills fall into,
        # looking only at the most recent five years of bills.
        from bill.models import BillTerm
        from datetime import datetime, timedelta
        most_recent_bill = person.sponsored_bills.order_by("-introduced_date").first()
        bills_by_subject_counts = list(person.sponsored_bills.filter(
            terms__id__in=BillTerm.get_top_term_ids(),
            introduced_date__gt=(most_recent_bill.introduced_date if most_recent_bill else datetime.now())-timedelta(days=5*365.25))\
            .values("terms")\
            .annotate(count=Count('id')).order_by('-count')\
            .filter(count__gt=1)\
            [0:8])
        terms = BillTerm.objects.in_bulk(item["terms"] for item in bills_by_subject_counts)
        total_count = sum(item["count"] for item in bills_by_subject_counts)
        while len(bills_by_subject_counts) > 2 and bills_by_subject_counts[-1]["count"] < bills_by_subject_counts[0]["count"]/8: bills_by_subject_counts.pop(-1)
        for item in bills_by_subject_counts:
            item["term"] = terms[item["terms"]]
            item["pct"] = int(round(float(item["count"]) / total_count * 100))
            del item["terms"]

        # Missed vote explanations from ProPublica
        try:
            vote_explanations = http_rest_json("https://projects.propublica.org/explanations/api/members/%s.json" % person.bioguideid)
        except: 
            # squash all errors
            vote_explanations = { }

        return {'person': person,
                'role': role,
                'active_role': active_role,
                'active_congressional_role': active_role and role.role_type in (RoleType.senator, RoleType.representative),
                'photo': photo_url,
                'photo_credit': photo_credit,
                'links': links,
                'analysis_data': analysis_data,
                'enacted_bills': [b for b in person.sponsored_bills.order_by('-current_status_date') if b.was_enacted_ex()],
                'recent_bills': person.sponsored_bills.all().order_by('-introduced_date')[0:7],
                'committeeassignments': get_committee_assignments(person),
                'feed': person.get_feed(),
                'has_session_stats': has_session_stats,
                'bill_subject_areas': bills_by_subject_counts,
                'vote_explanations': vote_explanations,
                'key_votes': load_key_votes(person),
                }
コード例 #5
0
    def build_info():
        if re.match(r"\d", pk):
            person = get_object_or_404(Person, pk=pk)
        else:
            # support bioguide IDs for me
            person = get_object_or_404(Person, bioguideid=pk)
        
        # current role
        role = person.get_current_role()
        if role:
            active_role = True
        else:
            active_role = False
            try:
                role = person.roles.order_by('-enddate')[0]
            except IndexError:
                role = None
    
        # photo
        photo_url, photo_credit = person.get_photo()
    
        # analysis
        analysis_data = analysis.load_data(person)
        try:
            has_session_stats = person.get_session_stats('2015')
        except:
            # Not everyone has 2014 stats, obviously. They may have stats
            # corresponding to their most recent role. Since stats are a
            # session behind, even-year stats might not correspond to
            # a legislator's most recent role, which is why I hard-coded
            # the current session stats above.
            has_session_stats = False
            if role:
                try:
                    has_session_stats = role.get_most_recent_session_stats()
                except:
                    pass
        
        links = []
        if role.current:
            if role.website: links.append(("%s's Official Website" % person.lastname, role.website, "fa  fa-external-link"))
            if person.twitterid: links.append(("@" + person.twitterid, "http://twitter.com/" + person.twitterid, "fa fa-twitter"))
        if person.osid: links.append(("OpenSecrets", "http://www.opensecrets.org/politicians/summary.php?cid=" + person.osid, "fa fa-money"))
        if person.pvsid: links.append(("VoteSmart", "http://votesmart.org/candidate/" + person.pvsid, "fa fa-th-list"))
        if person.bioguideid: links.append(("Bioguide", "http://bioguide.congress.gov/scripts/biodisplay.pl?index=" + person.bioguideid, "fa fa-user"))
        if person.cspanid: links.append(("C-SPAN", "http://www.c-spanvideo.org/person/" + str(person.cspanid), "fa fa-youtube-play"))

        # Get a break down of the top terms this person's sponsored bills fall into,
        # looking only at the most recent five years of bills.
        from bill.models import BillTerm
        from datetime import datetime, timedelta
        most_recent_bill = person.sponsored_bills.order_by("-introduced_date").first()
        bills_by_subject_counts = list(person.sponsored_bills.filter(
            terms__id__in=BillTerm.get_top_term_ids(),
            introduced_date__gt=(most_recent_bill.introduced_date if most_recent_bill else datetime.now())-timedelta(days=5*365.25))\
            .values("terms")\
            .annotate(count=Count('id')).order_by('-count')\
            .filter(count__gt=1)\
            [0:8])
        terms = BillTerm.objects.in_bulk(item["terms"] for item in bills_by_subject_counts)
        total_count = sum(item["count"] for item in bills_by_subject_counts)
        while len(bills_by_subject_counts) > 2 and bills_by_subject_counts[-1]["count"] < bills_by_subject_counts[0]["count"]/8: bills_by_subject_counts.pop(-1)
        for item in bills_by_subject_counts:
            item["term"] = terms[item["terms"]]
            item["pct"] = int(round(float(item["count"]) / total_count * 100))
            del item["terms"]

        # Missed vote explanations from ProPublica
        try:
            vote_explanations = http_rest_json("https://projects.propublica.org/explanations/api/members/%s.json" % person.bioguideid)
        except: 
            # squash all errors
            vote_explanations = { }

        return {'person': person,
                'role': role,
                'active_role': active_role,
                'active_congressional_role': active_role and role.role_type in (RoleType.senator, RoleType.representative),
                'photo': photo_url,
                'photo_credit': photo_credit,
                'links': links,
                'analysis_data': analysis_data,
                'recent_bills': person.sponsored_bills.all().order_by('-introduced_date')[0:7],
                'committeeassignments': get_committee_assignments(person),
                'feed': person.get_feed(),
                'cities': get_district_cities("%s-%02d" % (role.state.lower(), role.district)) if role and role.district else None,
                'has_session_stats': has_session_stats,
                'bill_subject_areas': bills_by_subject_counts,
                'vote_explanations': vote_explanations,
                }
コード例 #6
0
ファイル: views.py プロジェクト: govtrack/govtrack.us-web
    def build_info():
        global pronunciation_guide

        if re.match(r"\d", pk):
            person = get_object_or_404(Person, pk=pk)
        else:
            # support bioguide IDs for me
            person = get_object_or_404(Person, bioguideid=pk)
        
        # current role
        role = person.get_current_role()
        if role:
            active_role = True
        else:
            active_role = False
            try:
                role = person.roles.order_by('-enddate')[0]
            except IndexError:
                role = None
    
        # photo
        photo_url, photo_credit = person.get_photo()
    
        # analysis
        analysis_data = analysis.load_data(person)
        try:
            # Get session stats for the previous year.
            has_session_stats = person.get_session_stats(str(datetime.now().year-1))
        except:
            # Not everyone has current stats, obviously. They may have stats
            # corresponding to their most recent role. Since stats are a
            # session behind, even-year stats might not correspond to
            # a legislator's most recent role, which is why I hard-coded
            # the current session stats above.
            has_session_stats = False
            if role:
                try:
                    has_session_stats = role.get_most_recent_session_stats()
                except:
                    pass
        
        links = []
        if role.current:
            if role.website: links.append(("%s's Official Website" % person.lastname, role.website, "fa fa-external-link"))
            if person.twitterid: links.append(("@" + person.twitterid, "http://twitter.com/" + person.twitterid, "fa fa-twitter"))
        if person.osid: links.append(("OpenSecrets", "http://www.opensecrets.org/politicians/summary.php?cid=" + person.osid, "fa fa-money"))
        if person.pvsid: links.append(("VoteSmart", "http://votesmart.org/candidate/" + person.pvsid, "fa fa-th-list"))
        if person.bioguideid: links.append(("Bioguide", "http://bioguide.congress.gov/scripts/biodisplay.pl?index=" + person.bioguideid, "fa fa-user"))
        if person.cspanid: links.append(("C-SPAN", "http://www.c-spanvideo.org/person/" + str(person.cspanid), "fa fa-youtube-play"))

        # Get a break down of the top terms this person's sponsored bills fall into,
        # looking only at the most recent five years of bills.
        from bill.models import BillTerm
        most_recent_bill = person.sponsored_bills.order_by("-introduced_date").first()
        bills_by_subject_counts = list(person.sponsored_bills.filter(
            terms__id__in=BillTerm.get_top_term_ids(),
            introduced_date__gt=(most_recent_bill.introduced_date if most_recent_bill else datetime.now())-timedelta(days=5*365.25))\
            .values("terms")\
            .annotate(count=Count('id')).order_by('-count')\
            .filter(count__gt=1)\
            [0:8])
        terms = BillTerm.objects.in_bulk(item["terms"] for item in bills_by_subject_counts)
        total_count = sum(item["count"] for item in bills_by_subject_counts)
        while len(bills_by_subject_counts) > 2 and bills_by_subject_counts[-1]["count"] < bills_by_subject_counts[0]["count"]/8: bills_by_subject_counts.pop(-1)
        for item in bills_by_subject_counts:
            item["term"] = terms[item["terms"]]
            item["pct"] = int(round(float(item["count"]) / total_count * 100))
            del item["terms"]

        # Missed vote explanations from ProPublica
        try:
            vote_explanations = http_rest_json("https://projects.propublica.org/explanations/api/members/%s.json" % person.bioguideid)
        except: 
            # squash all errors
            vote_explanations = { }

        # Misconduct - load and filter this person's entries, keeping original order.
        # Choose 'Alleged misconduct', 'Misconduct', 'Misconduct/alleged misconduct' as appropriate.
        from website.views import load_misconduct_data
        misconduct = [m for m in load_misconduct_data() if m["person"] == person ]
        misconduct_any_alleged = (len([ m for m in misconduct if m["alleged"]  ]) > 0)
        misconduct_any_not_alleged = (len([ m for m in misconduct if not m["alleged"]  ]) > 0)

        # Load pronunciation from guide. Turn into a mapping from GovTrack IDs to data.
        if pronunciation_guide is None:
            import rtyaml
            if not hasattr(settings, 'PRONUNCIATION_DATABASE_PATH'):
                # debugging
                pronunciation_guide = { }
            else:
                pronunciation_guide = { p["id"]["govtrack"]: p for p in rtyaml.load(open(settings.PRONUNCIATION_DATABASE_PATH)) }

        # Get this person's entry.
        pronunciation = pronunciation_guide.get(person.id)
        # TODO: Validate that the 'name' in the guide matches the name we're actually displaying.
        if pronunciation and not pronunciation.get("key"):
          # Show a key to the letters used in the pronunciation guide. Break apart the name
          # into words which we'll show in columns.
          pronunciation["key"] = []
          for namepart in pronunciation["respell"].split(" // "):
            for nameword in namepart.split(" "):
                # Parse out the symbols actually used in the guide. Sweep from left to right chopping
                # off valid respelling letter combinations, chopping off the longest one where possible.
                pronunciation["key"].append([])
                i = 0
                while i < len(nameword):
                  for s in sorted(pronunciation_guide_key, key = lambda s : -len(s)):
                    if nameword[i:i+len(s)] in (s, s.upper()):
                      pronunciation["key"][-1].append( (nameword[i:i+len(s)], pronunciation_guide_key[s]) )
                      i += len(s)
                      break
                  else:
                    # respelling did not match any valid symbol, should be an error but we don't
                    # want to issue an Oops! for this
                    break

        # Get their enacted bills.
        enacted_bills_src_qs = person.sponsored_bills.exclude(original_intent_replaced=True).order_by('-current_status_date')

        return {'person': person,
                'role': role,
                'active_role': active_role,
                'active_congressional_role': active_role and role.role_type in (RoleType.senator, RoleType.representative),
                'pronunciation': pronunciation,
                'photo': photo_url,
                'photo_credit': photo_credit,
                'links': links,
                'analysis_data': analysis_data,
                'enacted_bills': [b for b in enacted_bills_src_qs if b.was_enacted_ex(cache_related_bills_qs=enacted_bills_src_qs)],
                'recent_bills': person.sponsored_bills.all().order_by('-introduced_date')[0:7],
                'committeeassignments': get_committee_assignments(person),
                'feed': person.get_feed(),
                'has_session_stats': has_session_stats,
                'bill_subject_areas': bills_by_subject_counts,
                'vote_explanations': vote_explanations,
                'key_votes': load_key_votes(person),
                'misconduct': misconduct,
                'misconduct_any_alleged': misconduct_any_alleged,
                'misconduct_any_not_alleged': misconduct_any_not_alleged,
                }