def main(unused_args): require_flag('billboard_path') feature_type = FLAGS.feature_type cache_filename = '../billboard-datasets-%s.cpkl' % feature_type if os.path.exists(cache_filename): datasets = load_datasets(cache_filename) else: datasets = billboard.read_billboard_datasets(FLAGS.billboard_path, feature_type=FLAGS.feature_type) dump_datasets(datasets, cache_filename) # grid = { # 'n_hidden': [300, 800, 1300, 1800, 2300, 2800, 3300], # 'n_steps': [200], # 'spectral_radius': [1.], # 'connectivity': [.01, .0001], # 'max_leakage': [.99], # 'min_leakage': [.3], # 'ridge_beta': [0, .5], # 'input_scaling': [.2], # 'input_shift': [0], # } grid = { 'n_hidden': [2000], 'n_steps': [200], 'spectral_radius': [1.], 'connectivity': [.01], 'max_leakage': [.99], 'min_leakage': [.3], 'ridge_beta': [.5], 'input_scaling': [.2], 'input_shift': [0], } grid_product = list(dict_product(grid)) #random.shuffle(grid_product) for config in grid_product: config['n_inputs'] = datasets.train.feature_reader.num_features config['n_outputs'] = datasets.train.label_reader.num_labels print '\n%s' % config if FLAGS.backend == 'numpy': numpy_eval(datasets, config) elif FLAGS.backend == 'tensorflow': tensorflow_eval(datasets, config) else: print 'unknown backend'