num_workers=args.num_workers, pin_memory=True, collate_fn=my_collate) test_loader = DataLoader(test_data, batch_size=32, collate_fn=my_collate) print('Real: {0} \t Render: {1} \t Test: {2}'.format(len(real_loader), len(render_loader), len(test_loader))) if np.isinf(args.max_iterations): max_iterations = min(len(real_loader), len(render_loader)) else: max_iterations = args.max_iterations # my_model if not args.multires: model = OneBinDeltaModel(args.feature_network, num_classes, num_clusters, args.N0, args.N1, args.N2, ndim) else: model = ProbabilisticOneDeltaPerBinModel(args.feature_network, num_classes, num_clusters, args.N0, args.N1, args.N2, args.N3, ndim) # print(model) # loss and optimizer optimizer = optim.Adam(model.parameters(), lr=args.init_lr) scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.1) # store stuff writer = SummaryWriter(log_dir) count = 0 val_loss = []
collate_fn=my_collate) render_loader = DataLoader(render_data, batch_size=args.num_workers, shuffle=True, num_workers=args.num_workers, pin_memory=True, collate_fn=my_collate) test_loader = DataLoader(test_data, batch_size=32) print('Real: {0} \t Render: {1} \t Test: {2}'.format(len(real_loader), len(render_loader), len(test_loader))) max_iterations = min(len(real_loader), len(render_loader)) # my_model if not args.multires: orig_model = OneBinDeltaModel(args.feature_network, num_classes, num_clusters, N0, N1, N2, ndim) else: orig_model = OneDeltaPerBinModel(args.feature_network, num_classes, num_clusters, N0, N1, N2, N3, ndim) class JointCatPoseModel(nn.Module): def __init__(self, oracle_model): super().__init__() # old stuff self.num_classes = oracle_model.num_classes self.num_clusters = oracle_model.num_clusters self.ndim = oracle_model.ndim self.feature_model = oracle_model.feature_model self.bin_models = oracle_model.bin_models self.res_models = oracle_model.res_models