コード例 #1
0
def alexa_search():

    data = request.get_json()
    intent = data["intent"]
    intent_variable = data["intentVariable"]
    intent_variable_value = data[data["intentVariable"]][data["intentVariable"]
                                                         + "Value"]
    #TODO: boolean method for intentVariable
    #TODO: delete intentVariable with its Value
    del data[intent_variable][intent_variable + "Value"]

    data[intent_variable].update({
        "intent": intent,
        "value": intent_variable_value
    })

    data[intent_variable]["weight"] = 5

    del data["intent"]
    del data["intentVariable"]

    clean_data = Backend_Helper.clean_frontend_json(data)
    bin_obj = binary_search.BinarySearch()
    query = bin_obj.createBinarySearchQuery(clean_data)
    res = es.search(index="amazon", body=query)

    print(query)

    return jsonify(Backend_Helper.refineResult(res))
コード例 #2
0
def searchBinary():
    data = request.get_json()
    clean_data = Backend_Helper.clean_frontend_json(data)

    bin_obj = binary_search.BinarySearch()

    query = bin_obj.createBinarySearchQuery(clean_data)
    res = es.search(index="amazon", body=query)

    final_result = [Backend_Helper.refineResult(res), data]

    return jsonify(final_result)
コード例 #3
0
def get_vague_and_binary_lists(clean_data1):
  # create binary clean data if weighting is equal to 5
  binary_clean_data = {}
  clean_data = {}
  # bool_search_default = False #If no weighting = 5 for any value, do not caculate boolean search below
  for field in clean_data1.keys():
    if clean_data1[field]['weight'] == 5:
      # bool_search_default = True
      binary_clean_data[field] = clean_data1[field]  # weigth doesn't matter for boolean search
    else:
      clean_data[field] = clean_data1[field]
      # binary_clean data has to also contain the empty/meaningless fields  because this is the format needed for BinarySearch() method
      # This doesn't matter though because weight has no meaning for boolean search and is not used in the calculation for the result set
      binary_clean_data[field] = {'weight': 1}
  # print("print binary_clean_data: ", binary_clean_data)
  # print("print clean_data: ", clean_data)
  # Compute boolean/binary search for items with weighting = 5
  bin_obj = binary_search.BinarySearch()
  query = bin_obj.createBinarySearchQuery(binary_clean_data)
  res = es.search(index="amazon", body=query)
  output_binary = Backend_Helper.refineResult(res)
  return clean_data, output_binary
コード例 #4
0
def do_query(data):

  with open(allDocs_path, 'rb') as input:
    allDocs = pickle.load(input)


  data = Backend_Helper.clean_frontend_json(data)


  #create binary clean data if weighting is equal to 5
  binary_clean_data = {}
  clean_data = {}
  alexa_clean_data = {}
  output_binary = list()
  #bool_search_default = False #If no weighting = 5 for any value, do not caculate boolean search below

  for field in data.keys():
    if data[field]['weight'] == 5:
      #bool_search_default = True
      binary_clean_data[field] = data[field] #weigth doesn't matter for boolean search
    elif data[field]["weight"] == 6: #This is for alexa_search, will be used at the end
      alexa_clean_data[field] = data[field]
      pass
    else:
      clean_data[field] = data[field]

  #Compute boolean/binary search for items with weighting = 5
  bin_obj = binary_search.BinarySearch()
  alexa_searcher = alexa_functions.AlexaSearch(es)

  if len(binary_clean_data) > 0:
      query = bin_obj.createBinarySearchQuery(binary_clean_data)

      res = es.search(index="amazon", body=query)



      output_binary = Backend_Helper.refineResult(res)


  if len(alexa_clean_data) > 0 :

  #Add alexa search results to output_binary, same mechanism and logic for both.
      alexa_result = get_alexa_search_result(allDocs, alexa_clean_data, alexa_searcher)
      output_binary += alexa_result

  res_search = list()

  # if(len(output_binary)) > 0:
  #     allDocs = [item for item in allDocs if item['asin']  in output_binary]

  # field_value_dict has the form:
  # {'binary' : { 'brandName': ['acer', 'hp'], 'weight':1}, ...}, 'vague' : {....},
  field_value_dict = extract_fields_and_values(clean_data)
  # print(field_value_dict)


  #Get total cumulative weight weight_sum (for example for all attributes weights were 7) and dividue each score by this weight_sum
  #For normalization

  weight_sum = 0
  for field_type in field_value_dict.keys():
    for field_name in field_value_dict[field_type]:
      field_weight = field_value_dict[field_type][field_name]["weight"]
      if field_weight != 5: ##Shouldn't happen though because they have already been removed from clean_data
        weight_sum += field_weight

  # --------------------------------------------------------------------#
  # Objects for each class to use the vague searching functions
  range_searcher = vague_search_range.VagueSearchRange(es)

  binary_searcher = binary_search_text.BinarySearchText(es)

  harddrive_searcher = vague_search_harddrive.VagueHardDrive(es)

  value_searcher = vague_search_value.VagueSearchValue(es)

  ######################################################################## NEW #########################################
  #Function call in ColorInformation to extract searched values.
  #function extractKeyValuePairs() will do that.
  c_i_helper = ColorInformation()
  price_searcher = vague_search_price.VagueSearchPrice(es)
  ######################################################################## NEW #########################################



  # --------------------------------------------------------------------#
  # # Special case to handle hardDriveSize, length is >1 if it has values other than weight
  if 'hardDriveSize' in clean_data and len(clean_data["hardDriveSize"]) > 1:
    # res_search += vague_search_harddrive.computeVagueHardDrive_alternative(allDocs, clean_data,
    #                                                                                       harddrive_searcher,
    #                                                                                       res_search)
    res_search = harddrive_searcher.computeVagueHardDrive_alternative(allDocs, field_value_dict,
                                                                           harddrive_searcher,
                                                                           res_search)
  #  --------------------------------------------------------------------#
  # Special case to handle price
  if 'price' in clean_data and len(clean_data["price"]) > 1:
    ##NEW##########
    #res_search += vague_search_price.VagueSearchPrice.computeVaguePrice_alternative(allDocs, clean_data, price_searcher, res_search, searchedValues)
    res_search = price_searcher.computeVaguePrice_alternative(allDocs, field_value_dict, price_searcher, res_search)

  # --------------------------------------------------------------------#
  # Gets scores for all other attributes
  res_search += call_responsible_methods(allDocs, field_value_dict, range_searcher, binary_searcher, value_searcher,
                                         alexa_searcher)



  # --------------------------------------------------------------------#
  resList = [dict(x) for x in res_search]

  # Counter objects count the occurrences of objects in the list...
  count_dict = Counter()
  for tmp in resList:
    count_dict += Counter(tmp)

  result = dict(count_dict)
  sortedDict = collections.OrderedDict(sorted(result.items(), key=lambda x: x[1], reverse=True))
  asinKeys = list(result.keys())

  # call the search function
  outputProducts = getElementsByAsin(asinKeys) #calls helper class method refineResuls

  # Compare outputProducts and output_binary to select only items that also occur in boolean search
  outputProducts, output_binary = filter_from_boolean(outputProducts, output_binary)

  # add a vagueness score to the returned objects and normalize
  for item in outputProducts:
    # Normalize the scores so that for each score x,  0< x <=1
    item['vaguenessScore'] = result[item['asin']]/weight_sum


  outputProducts = sorted(outputProducts, key=lambda x: x["vaguenessScore"], reverse=True)

  for item in output_binary: #binary search results that did not meet other vague requirements
    item['vaguenessScore'] = None

  # concatenate with products with weighting 5 ***
  outputProducts = outputProducts + output_binary
  # products with same vagueness score should be listed according to price descending

  #searchedValues = c_i.extractKeyValuePairs()
  #c_i.prozessDataBinary(searchedValues)

  # If possible, apply sorting before weigthing, so it does not interfere with the list sorted by weighting
  s_p = SortByPrice()


  # #DELETE all products with vagueness_score = 0
  outputProducts_vaguenessGreaterZero = list()

  for laptop in outputProducts:
    if laptop["vaguenessScore"] != 0:
      outputProducts_vaguenessGreaterZero.append(laptop)
  outputProducts_vaguenessGreaterZero = s_p.sort_by_price(outputProducts_vaguenessGreaterZero)

  #outputProducts_vaguenessGreaterZero , output_binary = filter_from_boolean(outputProducts_vaguenessGreaterZero, output_binary)

  #outputProducts_vaguenessGreaterZero = outputProducts_vaguenessGreaterZero[:1000]
  c_i_helper.add_matched_information(data,outputProducts_vaguenessGreaterZero,allDocs)

  #Needed in frontend

  outputProducts_vaguenessGreaterZero_with_original_query = [outputProducts_vaguenessGreaterZero,data]

  return outputProducts_vaguenessGreaterZero_with_original_query