コード例 #1
0
                best_accuracy = max([x[-1] for x in curves.values()])

            # Assign labels to excitatory layer neurons.
            assignments, proportions, rates = assign_labels(
                spike_record, current_labels, n_classes, rates)

            # Compute ngram scores.
            ngram_scores = update_ngram_scores(spike_record, current_labels,
                                               n_classes, 2, ngram_scores)

        print()

    # Get next input sample.
    image = images[i]
    sample = bernoulli(datum=image, time=time, dt=dt,
                       max_prob=0.5).unsqueeze(1).unsqueeze(1)
    inpts = {'X': sample}

    # Run the network on the input.
    network.run(inpts=inpts, time=time)

    retries = 0
    while spikes['Y_'].get('s').sum() < 5 and retries < 3:
        retries += 1
        sample = bernoulli(datum=image,
                           time=time,
                           dt=dt,
                           max_prob=0.5 +
                           retries * 0.15).unsqueeze(1).unsqueeze(1)
        inpts = {'X': sample}
        network.run(inpts=inpts, time=time)
コード例 #2
0
def main(seed=0,
         n_train=60000,
         n_test=10000,
         kernel_size=(16, ),
         stride=(4, ),
         n_filters=25,
         padding=0,
         inhib=100,
         time=25,
         lr=1e-3,
         lr_decay=0.99,
         dt=1,
         intensity=1,
         progress_interval=10,
         update_interval=250,
         plot=False,
         train=True,
         gpu=False):

    assert n_train % update_interval == 0 and n_test % update_interval == 0, \
        'No. examples must be divisible by update_interval'

    params = [
        seed, n_train, kernel_size, stride, n_filters, padding, inhib, time,
        lr, lr_decay, dt, intensity, update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    if not train:
        test_params = [
            seed, n_train, n_test, kernel_size, stride, n_filters, padding,
            inhib, time, lr, lr_decay, dt, intensity, update_interval
        ]

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    n_examples = n_train if train else n_test
    input_shape = [20, 20]

    if kernel_size == input_shape:
        conv_size = [1, 1]
    else:
        conv_size = (int((input_shape[0] - kernel_size[0]) / stride[0]) + 1,
                     int((input_shape[1] - kernel_size[1]) / stride[1]) + 1)

    n_classes = 10
    n_neurons = n_filters * np.prod(conv_size)
    total_kernel_size = int(np.prod(kernel_size))
    total_conv_size = int(np.prod(conv_size))

    # Build network.
    if train:
        network = Network()
        input_layer = Input(n=400, shape=(1, 1, 20, 20), traces=True)
        conv_layer = DiehlAndCookNodes(n=n_filters * total_conv_size,
                                       shape=(1, n_filters, *conv_size),
                                       thresh=-64.0,
                                       traces=True,
                                       theta_plus=0.05 * (kernel_size[0] / 20),
                                       refrac=0)
        conv_layer2 = LIFNodes(n=n_filters * total_conv_size,
                               shape=(1, n_filters, *conv_size),
                               refrac=0)
        conv_conn = Conv2dConnection(input_layer,
                                     conv_layer,
                                     kernel_size=kernel_size,
                                     stride=stride,
                                     update_rule=WeightDependentPostPre,
                                     norm=0.05 * total_kernel_size,
                                     nu=[0, lr],
                                     wmin=0,
                                     wmax=0.25)
        conv_conn2 = Conv2dConnection(input_layer,
                                      conv_layer2,
                                      w=conv_conn.w,
                                      kernel_size=kernel_size,
                                      stride=stride,
                                      update_rule=None,
                                      wmax=0.25)

        w = -inhib * torch.ones(n_filters, conv_size[0], conv_size[1],
                                n_filters, conv_size[0], conv_size[1])
        for f in range(n_filters):
            for f2 in range(n_filters):
                if f != f2:
                    w[f, :, :f2, :, :] = 0

        w = w.view(n_filters * conv_size[0] * conv_size[1],
                   n_filters * conv_size[0] * conv_size[1])
        recurrent_conn = Connection(conv_layer, conv_layer, w=w)

        network.add_layer(input_layer, name='X')
        network.add_layer(conv_layer, name='Y')
        network.add_layer(conv_layer2, name='Y_')
        network.add_connection(conv_conn, source='X', target='Y')
        network.add_connection(conv_conn2, source='X', target='Y_')
        network.add_connection(recurrent_conn, source='Y', target='Y')

        # Voltage recording for excitatory and inhibitory layers.
        voltage_monitor = Monitor(network.layers['Y'], ['v'], time=time)
        network.add_monitor(voltage_monitor, name='output_voltage')
    else:
        network = load_network(os.path.join(params_path, model_name + '.pt'))
        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'],
            nu=network.connections['X', 'Y'].nu)
        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0

    # Load MNIST data.
    dataset = MNIST(data_path, download=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    images *= intensity
    images = images[:, 4:-4, 4:-4].contiguous()

    # Record spikes during the simulation.
    spike_record = torch.zeros(update_interval, time, n_neurons)
    full_spike_record = torch.zeros(n_examples, n_neurons)

    # Neuron assignments and spike proportions.
    if train:
        logreg_model = LogisticRegression(warm_start=True,
                                          n_jobs=-1,
                                          solver='lbfgs',
                                          max_iter=1000,
                                          multi_class='multinomial')
        logreg_model.coef_ = np.zeros([n_classes, n_neurons])
        logreg_model.intercept_ = np.zeros(n_classes)
        logreg_model.classes_ = np.arange(n_classes)
    else:
        path = os.path.join(params_path,
                            '_'.join(['auxiliary', model_name]) + '.pt')
        logreg_coef, logreg_intercept = torch.load(open(path, 'rb'))
        logreg_model = LogisticRegression(warm_start=True,
                                          n_jobs=-1,
                                          solver='lbfgs',
                                          max_iter=1000,
                                          multi_class='multinomial')
        logreg_model.coef_ = logreg_coef
        logreg_model.intercept_ = logreg_intercept
        logreg_model.classes_ = np.arange(n_classes)

    # Sequence of accuracy estimates.
    curves = {'logreg': []}
    predictions = {scheme: torch.Tensor().long() for scheme in curves.keys()}

    if train:
        best_accuracy = 0

    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=['s'],
                                time=time)
        network.add_monitor(spikes[layer], name='%s_spikes' % layer)

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    inpt_ims = None
    inpt_axes = None
    spike_ims = None
    spike_axes = None
    weights_im = None

    plot_update_interval = 100

    start = t()
    for i in range(n_examples):
        if i % progress_interval == 0:
            print('Progress: %d / %d (%.4f seconds)' %
                  (i, n_examples, t() - start))
            start = t()

        if i % update_interval == 0 and i > 0:
            if train:
                network.connections['X', 'Y'].update_rule.nu[1] *= lr_decay

            if i % len(labels) == 0:
                current_labels = labels[-update_interval:]
                current_record = full_spike_record[-update_interval:]
            else:
                current_labels = labels[i % len(labels) - update_interval:i %
                                        len(labels)]
                current_record = full_spike_record[i % len(labels) -
                                                   update_interval:i %
                                                   len(labels)]

            # Update and print accuracy evaluations.
            curves, preds = update_curves(curves,
                                          current_labels,
                                          n_classes,
                                          full_spike_record=current_record,
                                          logreg=logreg_model)
            print_results(curves)

            for scheme in preds:
                predictions[scheme] = torch.cat(
                    [predictions[scheme], preds[scheme]], -1)

            # Save accuracy curves to disk.
            to_write = ['train'] + params if train else ['test'] + params
            f = '_'.join([str(x) for x in to_write]) + '.pt'
            torch.save((curves, update_interval, n_examples),
                       open(os.path.join(curves_path, f), 'wb'))

            if train:
                if any([x[-1] > best_accuracy for x in curves.values()]):
                    print(
                        'New best accuracy! Saving network parameters to disk.'
                    )

                    # Save network to disk.
                    network.save(os.path.join(params_path, model_name + '.pt'))
                    path = os.path.join(
                        params_path,
                        '_'.join(['auxiliary', model_name]) + '.pt')
                    torch.save((logreg_model.coef_, logreg_model.intercept_),
                               open(path, 'wb'))
                    best_accuracy = max([x[-1] for x in curves.values()])

                # Refit logistic regression model.
                logreg_model = logreg_fit(full_spike_record[:i], labels[:i],
                                          logreg_model)

            print()

        # Get next input sample.
        image = images[i % len(images)]
        sample = bernoulli(datum=image, time=time, dt=dt,
                           max_prob=1).unsqueeze(1).unsqueeze(1)
        inpts = {'X': sample}

        # Run the network on the input.
        network.run(inpts=inpts, time=time)

        network.connections['X', 'Y_'].w = network.connections['X', 'Y'].w

        # Add to spikes recording.
        spike_record[i % update_interval] = spikes['Y_'].get('s').view(
            time, -1)
        full_spike_record[i] = spikes['Y_'].get('s').view(time, -1).sum(0)

        # Optionally plot various simulation information.
        if plot and i % plot_update_interval == 0:
            _input = inpts['X'].view(time, 400).sum(0).view(20, 20)
            w = network.connections['X', 'Y'].w

            _spikes = {
                'X': spikes['X'].get('s').view(400, time),
                'Y': spikes['Y'].get('s').view(n_filters * total_conv_size,
                                               time),
                'Y_': spikes['Y_'].get('s').view(n_filters * total_conv_size,
                                                 time)
            }

            inpt_axes, inpt_ims = plot_input(image.view(20, 20),
                                             _input,
                                             label=labels[i % len(labels)],
                                             ims=inpt_ims,
                                             axes=inpt_axes)
            spike_ims, spike_axes = plot_spikes(spikes=_spikes,
                                                ims=spike_ims,
                                                axes=spike_axes)
            weights_im = plot_conv2d_weights(
                w, im=weights_im, wmax=network.connections['X', 'Y'].wmax)

            plt.pause(1e-2)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    i += 1

    if i % len(labels) == 0:
        current_labels = labels[-update_interval:]
        current_record = full_spike_record[-update_interval:]
    else:
        current_labels = labels[i % len(labels) - update_interval:i %
                                len(labels)]
        current_record = full_spike_record[i % len(labels) -
                                           update_interval:i % len(labels)]

    # Update and print accuracy evaluations.
    curves, preds = update_curves(curves,
                                  current_labels,
                                  n_classes,
                                  full_spike_record=current_record,
                                  logreg=logreg_model)
    print_results(curves)

    for scheme in preds:
        predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]],
                                        -1)

    if train:
        if any([x[-1] > best_accuracy for x in curves.values()]):
            print('New best accuracy! Saving network parameters to disk.')

            # Save network to disk.
            network.save(os.path.join(params_path, model_name + '.pt'))
            path = os.path.join(params_path,
                                '_'.join(['auxiliary', model_name]) + '.pt')
            torch.save((logreg_model.coef_, logreg_model.intercept_),
                       open(path, 'wb'))

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    print('Average accuracies:\n')
    for scheme in curves.keys():
        print('\t%s: %.2f' % (scheme, float(np.mean(curves[scheme]))))

    # Save accuracy curves to disk.
    to_write = ['train'] + params if train else ['test'] + params
    to_write = [str(x) for x in to_write]
    f = '_'.join(to_write) + '.pt'
    torch.save((curves, update_interval, n_examples),
               open(os.path.join(curves_path, f), 'wb'))

    # Save results to disk.
    results = [np.mean(curves['logreg']), np.std(curves['logreg'])]

    to_write = params + results if train else test_params + results
    to_write = [str(x) for x in to_write]
    name = 'train.csv' if train else 'test.csv'

    if not os.path.isfile(os.path.join(results_path, name)):
        with open(os.path.join(results_path, name), 'w') as f:
            if train:
                columns = [
                    'seed', 'n_train', 'kernel_size', 'stride', 'n_filters',
                    'padding', 'inhib', 'time', 'lr', 'lr_decay', 'dt',
                    'intensity', 'update_interval', 'mean_logreg', 'std_logreg'
                ]

                header = ','.join(columns) + '\n'
                f.write(header)
            else:
                columns = [
                    'seed', 'n_train', 'n_test', 'kernel_size', 'stride',
                    'n_filters', 'padding', 'inhib', 'time', 'lr', 'lr_decay',
                    'dt', 'intensity', 'update_interval', 'mean_logreg',
                    'std_logreg'
                ]

                header = ','.join(columns) + '\n'
                f.write(header)

    with open(os.path.join(results_path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')

    if labels.numel() > n_examples:
        labels = labels[:n_examples]
    else:
        while labels.numel() < n_examples:
            if 2 * labels.numel() > n_examples:
                labels = torch.cat(
                    [labels, labels[:n_examples - labels.numel()]])
            else:
                labels = torch.cat([labels, labels])

    # Compute confusion matrices and save them to disk.
    confusions = {}
    for scheme in predictions:
        confusions[scheme] = confusion_matrix(labels, predictions[scheme])

    to_write = ['train'] + params if train else ['test'] + test_params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save(confusions, os.path.join(confusion_path, f))
コード例 #3
0
def main(seed=0,
         n_train=60000,
         n_test=10000,
         inhib=250,
         kernel_size=(16, ),
         stride=(2, ),
         time=100,
         n_filters=25,
         crop=0,
         lr=1e-2,
         lr_decay=0.99,
         dt=1,
         theta_plus=0.05,
         theta_decay=1e-7,
         intensity=5,
         norm=0.2,
         progress_interval=10,
         update_interval=250,
         train=True,
         plot=False,
         gpu=False):

    assert n_train % update_interval == 0 and n_test % update_interval == 0, \
        'No. examples must be divisible by update_interval'

    params = [
        seed, kernel_size, stride, n_filters, crop, lr, lr_decay, n_train,
        inhib, time, dt, theta_plus, theta_decay, intensity, norm,
        progress_interval, update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    if not train:
        test_params = [
            seed, kernel_size, stride, n_filters, crop, lr, lr_decay, n_train,
            n_test, inhib, time, dt, theta_plus, theta_decay, intensity, norm,
            progress_interval, update_interval
        ]

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    side_length = 28 - crop * 2
    n_inpt = side_length**2
    n_examples = n_train if train else n_test
    n_classes = 10

    # Build network.
    if train:
        network = LocallyConnectedNetwork(
            n_inpt=n_inpt,
            input_shape=[side_length, side_length],
            kernel_size=kernel_size,
            stride=stride,
            n_filters=n_filters,
            inh=inhib,
            dt=dt,
            nu=[0, lr],
            theta_plus=theta_plus,
            theta_decay=theta_decay,
            wmin=0.0,
            wmax=1.0,
            norm=norm)

    else:
        network = load_network(os.path.join(params_path, model_name + '.pt'))
        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'],
            nu=network.connections['X', 'Y'].nu)
        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0

    conv_size = network.connections['X', 'Y'].conv_size
    locations = network.connections['X', 'Y'].locations
    conv_prod = int(np.prod(conv_size))
    n_neurons = n_filters * conv_prod

    # Voltage recording for excitatory and inhibitory layers.
    voltage_monitor = Monitor(network.layers['Y'], ['v'], time=time)
    network.add_monitor(voltage_monitor, name='output_voltage')

    # Load MNIST data.
    dataset = MNIST(path=data_path, download=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    images *= intensity
    images = images[:, crop:-crop, crop:-crop]

    # Record spikes during the simulation.
    spike_record = torch.zeros(update_interval, time, n_neurons)
    full_spike_record = torch.zeros(n_examples, n_neurons)

    # Neuron assignments and spike proportions.
    if train:
        logreg_model = LogisticRegression(warm_start=True,
                                          n_jobs=-1,
                                          solver='lbfgs',
                                          max_iter=1000,
                                          multi_class='multinomial')
        logreg_model.coef_ = np.zeros([n_classes, n_neurons])
        logreg_model.intercept_ = np.zeros(n_classes)
        logreg_model.classes_ = np.arange(n_classes)
    else:
        path = os.path.join(params_path,
                            '_'.join(['auxiliary', model_name]) + '.pt')
        logreg_coef, logreg_intercept = torch.load(open(path, 'rb'))
        logreg_model = LogisticRegression(warm_start=True,
                                          n_jobs=-1,
                                          solver='lbfgs',
                                          max_iter=1000,
                                          multi_class='multinomial')
        logreg_model.coef_ = logreg_coef
        logreg_model.intercept_ = logreg_intercept
        logreg_model.classes_ = np.arange(n_classes)

    if train:
        best_accuracy = 0

    # Sequence of accuracy estimates.
    curves = {'logreg': []}
    predictions = {scheme: torch.Tensor().long() for scheme in curves.keys()}

    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=['s'],
                                time=time)
        network.add_monitor(spikes[layer], name=f'{layer}_spikes')

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    spike_ims = None
    spike_axes = None
    weights_im = None
    weights2_im = None

    start = t()
    for i in range(n_examples):
        if i % progress_interval == 0:
            print(f'Progress: {i} / {n_examples} ({t() - start:.4f} seconds)')
            start = t()

        if i % update_interval == 0 and i > 0:
            if i % len(labels) == 0:
                current_labels = labels[-update_interval:]
                current_record = full_spike_record[-update_interval:]
            else:
                current_labels = labels[i % len(labels) - update_interval:i %
                                        len(labels)]
                current_record = full_spike_record[i % len(labels) -
                                                   update_interval:i %
                                                   len(labels)]

            # Update and print accuracy evaluations.
            curves, preds = update_curves(curves,
                                          current_labels,
                                          n_classes,
                                          full_spike_record=current_record,
                                          logreg=logreg_model)
            print_results(curves)

            for scheme in preds:
                predictions[scheme] = torch.cat(
                    [predictions[scheme], preds[scheme]], -1)

            # Save accuracy curves to disk.
            to_write = ['train'] + params if train else ['test'] + params
            f = '_'.join([str(x) for x in to_write]) + '.pt'
            torch.save((curves, update_interval, n_examples),
                       open(os.path.join(curves_path, f), 'wb'))

            if train:
                if any([x[-1] > best_accuracy for x in curves.values()]):
                    print(
                        'New best accuracy! Saving network parameters to disk.'
                    )

                    # Save network to disk.
                    network.save(os.path.join(params_path, model_name + '.pt'))
                    path = os.path.join(
                        params_path,
                        '_'.join(['auxiliary', model_name]) + '.pt')
                    torch.save((logreg_model.coef_, logreg_model.intercept_),
                               open(path, 'wb'))
                    best_accuracy = max([x[-1] for x in curves.values()])

                # Refit logistic regression model.
                logreg_model = logreg_fit(full_spike_record[:i], labels[:i],
                                          logreg_model)

            print()

        # Get next input sample.
        image = images[i % len(images)].contiguous().view(-1)
        sample = bernoulli(datum=image, time=time, dt=dt)
        inpts = {'X': sample}

        # Run the network on the input.
        network.run(inpts=inpts, time=time)

        retries = 0
        while spikes['Y'].get('s').sum() < 5 and retries < 3:
            retries += 1
            image *= 2
            sample = bernoulli(datum=image, time=time, dt=dt)
            inpts = {'X': sample}
            network.run(inpts=inpts, time=time)

        # Add to spikes recording.
        spike_record[i % update_interval] = spikes['Y'].get('s').view(time, -1)
        full_spike_record[i] = spikes['Y'].get('s').view(time, -1).sum(0)

        if plot:
            # Optionally plot various simulation information.
            _spikes = {
                'X': spikes['X'].get('s').view(side_length**2, time),
                'Y': spikes['Y'].get('s').view(n_filters * conv_prod, time)
            }

            spike_ims, spike_axes = plot_spikes(spikes=_spikes,
                                                ims=spike_ims,
                                                axes=spike_axes)
            weights_im = plot_locally_connected_weights(
                network.connections[('X', 'Y')].w,
                n_filters,
                kernel_size,
                conv_size,
                locations,
                side_length,
                im=weights_im)
            weights2_im = plot_weights(logreg_model.coef_, im=weights2_im)

            plt.pause(1e-8)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    i += 1

    if i % len(labels) == 0:
        current_labels = labels[-update_interval:]
        current_record = full_spike_record[-update_interval:]
    else:
        current_labels = labels[i % len(labels) - update_interval:i %
                                len(labels)]
        current_record = full_spike_record[i % len(labels) -
                                           update_interval:i % len(labels)]

    # Update and print accuracy evaluations.
    curves, preds = update_curves(curves,
                                  current_labels,
                                  n_classes,
                                  full_spike_record=current_record,
                                  logreg=logreg_model)
    print_results(curves)

    for scheme in preds:
        predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]],
                                        -1)

    if train:
        if any([x[-1] > best_accuracy for x in curves.values()]):
            print('New best accuracy! Saving network parameters to disk.')

            # Save network to disk.
            network.save(os.path.join(params_path, model_name + '.pt'))
            path = os.path.join(params_path,
                                '_'.join(['auxiliary', model_name]) + '.pt')
            torch.save((logreg_model.coef_, logreg_model.intercept_),
                       open(path, 'wb'))

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    print('Average accuracies:\n')
    for scheme in curves.keys():
        print('\t%s: %.2f' % (scheme, float(np.mean(curves[scheme]))))

    # Save accuracy curves to disk.
    if train:
        to_write = ['train'] + params
        f = '_'.join([str(x) for x in to_write]) + '.pt'
        torch.save((curves, update_interval, n_examples),
                   open(os.path.join(curves_path, f), 'wb'))

    # Save results to disk.
    results = [np.mean(curves['logreg']), np.std(curves['logreg'])]

    to_write = params + results if train else test_params + results
    to_write = [str(x) for x in to_write]

    if train:
        name = 'train.csv'
    else:
        name = 'test.csv'

    if not os.path.isfile(os.path.join(results_path, name)):
        with open(os.path.join(results_path, name), 'w') as f:
            if train:
                f.write(
                    'random_seed,kernel_size,stride,n_filters,crop,lr,lr_decay,n_train,inhib,time,timestep,theta_plus,'
                    'theta_decay,intensity,norm,progress_interval,update_interval,mean_logreg,std_logreg\n'
                )
            else:
                f.write(
                    'random_seed,kernel_size,stride,n_filters,crop,lr,lr_decay,n_train,n_test,inhib,time,timestep,'
                    'theta_plus,theta_decay,intensity,norm,progress_interval,update_interval,mean_logreg,std_logreg\n'
                )

    with open(os.path.join(results_path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')

    if labels.numel() > n_examples:
        labels = labels[:n_examples]
    else:
        while labels.numel() < n_examples:
            if 2 * labels.numel() > n_examples:
                labels = torch.cat(
                    [labels, labels[:n_examples - labels.numel()]])
            else:
                labels = torch.cat([labels, labels])

    # Compute confusion matrices and save them to disk.
    confusions = {}
    for scheme in predictions:
        confusions[scheme] = confusion_matrix(labels, predictions[scheme])

    to_write = ['train'] + params if train else ['test'] + test_params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save(confusions, os.path.join(confusion_path, f))
コード例 #4
0
def main(seed=0,
         n_neurons=100,
         n_train=60000,
         n_test=10000,
         inhib=250,
         lr=1e-2,
         lr_decay=1,
         time=100,
         dt=1,
         theta_plus=0.05,
         theta_decay=1e-7,
         intensity=1,
         progress_interval=10,
         update_interval=100,
         plot=False,
         train=True,
         gpu=False,
         no_inhib=False,
         no_theta=False):

    assert n_train % update_interval == 0, 'No. examples must be divisible by update_interval'

    params = [
        seed, n_neurons, n_train, inhib, lr, lr_decay, time, dt, theta_plus,
        theta_decay, intensity, progress_interval, update_interval
    ]

    test_params = [
        seed, n_neurons, n_train, n_test, inhib, lr, lr_decay, time, dt,
        theta_plus, theta_decay, intensity, progress_interval, update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    n_examples = n_train if train else n_test
    n_sqrt = int(np.ceil(np.sqrt(n_neurons)))
    n_classes = 10
    per_class = int(n_neurons / n_classes)

    # Build network.
    if train:
        network = Network()

        input_layer = Input(n=784, traces=True, trace_tc=5e-2)
        network.add_layer(input_layer, name='X')

        output_layer = DiehlAndCookNodes(n=n_neurons,
                                         traces=True,
                                         rest=0,
                                         reset=0,
                                         thresh=5,
                                         refrac=0,
                                         decay=1e-2,
                                         trace_tc=5e-2,
                                         theta_plus=theta_plus,
                                         theta_decay=theta_decay)
        network.add_layer(output_layer, name='Y')

        w = 0.3 * torch.rand(784, n_neurons)
        input_connection = Connection(source=network.layers['X'],
                                      target=network.layers['Y'],
                                      w=w,
                                      update_rule=WeightDependentPostPre,
                                      nu=[0, lr],
                                      wmin=0,
                                      wmax=1,
                                      norm=78.4)
        network.add_connection(input_connection, source='X', target='Y')

    else:
        network = load_network(os.path.join(params_path, model_name + '.pt'))
        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'],
            nu=network.connections['X', 'Y'].nu)
        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0

        if no_inhib:
            del network.connections['Y', 'Y']

        if no_theta:
            network.layers['Y'].theta = 0

    # Load MNIST data.
    dataset = MNIST(path=data_path, download=True, shuffle=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    images = images.view(-1, 784)
    images *= intensity
    labels = labels.long()

    monitors = {}
    for layer in set(network.layers):
        if 'v' in network.layers[layer].__dict__:
            monitors[layer] = Monitor(network.layers[layer],
                                      state_vars=['s', 'v'],
                                      time=time)
        else:
            monitors[layer] = Monitor(network.layers[layer],
                                      state_vars=['s'],
                                      time=time)

        network.add_monitor(monitors[layer], name=layer)

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    inpt_axes = None
    inpt_ims = None
    spike_ims = None
    spike_axes = None
    voltage_ims = None
    voltage_axes = None
    weights_im = None
    theta_im = None

    unclamps = {}
    for label in range(n_classes):
        unclamp = torch.ones(n_neurons).byte()
        unclamp[label * per_class:(label + 1) * per_class] = 0
        unclamps[label] = unclamp

    predictions = torch.zeros(n_examples)
    corrects = torch.zeros(n_examples)
    spike_record = torch.zeros(n_examples, n_neurons)

    flag = False

    start = t()
    for i in range(n_examples):
        if i % progress_interval == 0:
            print(f'Progress: {i} / {n_examples} ({t() - start:.4f} seconds)')
            start = t()

        if i % update_interval == 0 and i > 0 and train:
            network.save(os.path.join(params_path, model_name + '.pt'))
            network.connections['X', 'Y'].update_rule.nu[1] *= lr_decay

            if not flag:
                w = -inhib * (torch.ones(n_neurons, n_neurons) -
                              torch.diag(torch.ones(n_neurons)))
                recurrent_connection = Connection(source=network.layers['Y'],
                                                  target=network.layers['Y'],
                                                  w=w,
                                                  wmin=-inhib,
                                                  wmax=0)
                network.add_connection(recurrent_connection,
                                       source='Y',
                                       target='Y')

            flag = True

        # Get next input sample.
        image = images[i % len(images)]
        label = labels[i % len(images)].item()
        sample = bernoulli(datum=image, time=time, dt=dt, max_prob=1)
        inpts = {'X': sample}

        # Run the network on the input.
        if train:
            network.run(inpts=inpts, time=time, unclamp={'Y': unclamps[label]})
        else:
            network.run(inpts=inpts, time=time)

        output = monitors['Y'].get('s')
        summed_neurons = output.sum(dim=1).view(n_classes, per_class)
        summed_classes = summed_neurons.sum(dim=1).long()
        prediction = torch.argmax(summed_classes).item()
        correct = prediction == label

        predictions[i] = prediction
        corrects[i] = int(correct)

        spike_record[i] = output.float().sum(dim=1)

        # Optionally plot various simulation information.
        if plot and i % update_interval == 0:
            # _input = image.view(28, 28)
            # reconstruction = inpts['X'].view(time, 784).sum(0).view(28, 28)
            # v = {'Y': monitors['Y'].get('v')}

            s = {layer: monitors[layer].get('s') for layer in monitors}
            input_exc_weights = network.connections['X', 'Y'].w
            square_weights = get_square_weights(
                input_exc_weights.view(784, n_neurons), n_sqrt, 28)
            theta = network.layers['Y'].theta.view(per_class, per_class)

            # inpt_axes, inpt_ims = plot_input(_input, reconstruction, label=labels[i], axes=inpt_axes, ims=inpt_ims)
            # voltage_ims, voltage_axes = plot_voltages(v, ims=voltage_ims, axes=voltage_axes)

            spike_ims, spike_axes = plot_spikes(s,
                                                ims=spike_ims,
                                                axes=spike_axes)
            weights_im = plot_weights(square_weights, im=weights_im)

            # if theta_im is None:
            #     theta_im = plt.matshow(theta)
            #     cax = plt.colorbar()
            # else:
            #     theta_im.set_data(theta)
            #     cax.set_clim(theta.min(), theta.max())

            plt.pause(1e-1)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    if train:
        network.save(os.path.join(params_path, model_name + '.pt'))

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    accuracy = torch.mean(corrects).item() * 100

    print(f'\nAccuracy: {accuracy}\n')

    to_write = params + [accuracy] if train else test_params + [accuracy]
    to_write = [str(x) for x in to_write]
    name = 'train.csv' if train else 'test.csv'

    if not os.path.isfile(os.path.join(results_path, name)):
        with open(os.path.join(results_path, name), 'w') as f:
            if train:
                f.write(
                    'random_seed,n_neurons,n_train,inhib,lr,lr_decay,time,timestep,theta_plus,'
                    'theta_decay,intensity,progress_interval,update_interval,accuracy\n'
                )
            else:
                f.write(
                    'random_seed,n_neurons,n_train,n_test,inhib,lr,lr_decay,time,timestep,'
                    'theta_plus,theta_decay,intensity,progress_interval,update_interval,accuracy\n'
                )

    with open(os.path.join(results_path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')

    if labels.numel() > n_examples:
        labels = labels[:n_examples]
    else:
        while labels.numel() < n_examples:
            if 2 * labels.numel() > n_examples:
                labels = torch.cat(
                    [labels, labels[:n_examples - labels.numel()]])
            else:
                labels = torch.cat([labels, labels])

    # Compute confusion matrices and save them to disk.
    confusion = confusion_matrix(labels, predictions)

    if plot:
        plt.ioff()
        plt.matshow(confusion)
        plt.show()

    to_write = ['train'] + params if train else ['test'] + test_params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save(confusion, os.path.join(confusion_path, f))
コード例 #5
0
                path = os.path.join(params_path, '_'.join(['auxiliary', model_name]) + '.pt')
                torch.save((assignments, proportions, rates, ngram_scores), open(path, 'wb'))

                best_accuracy = max([x[-1] for x in curves.values()])

            # Assign labels to excitatory layer neurons.
            assignments, proportions, rates = assign_labels(spike_record, current_labels, n_classes, rates)

            # Compute ngram scores.
            ngram_scores = update_ngram_scores(spike_record, current_labels, n_classes, 2, ngram_scores)

        print()

    # Get next input sample.
    image = images[i % len(images)]
    sample = bernoulli(datum=image, time=time, dt=dt)
    inpts = {'X': sample}

    # Run the network on the input.
    network.run(inpts=inpts, time=time)

    retries = 0
    while spikes['Y'].get('s').sum() < 5 and retries < 3:
        retries += 1
        image *= 2
        sample = bernoulli(datum=image, time=time, dt=dt)
        inpts = {'X': sample}
        network.run(inpts=inpts, time=time)

    # Add to spikes recording.
    spike_record[i % update_interval] = spikes['Y'].get('s').t()
コード例 #6
0
                best_accuracy = max([x[-1] for x in curves.values()])

            # Assign labels to excitatory layer neurons.
            assignments, proportions, rates = assign_labels(
                spike_record, current_labels, n_classes, rates)

            # Compute ngram scores.
            ngram_scores = update_ngram_scores(spike_record, current_labels,
                                               n_classes, 2, ngram_scores)

        print()

    # Get next input sample.
    image = images[i].permute(2, 0, 1)
    sample = bernoulli(datum=image, time=time, dt=dt,
                       max_prob=1.0).unsqueeze(1)
    inpts = {'X': sample}

    # Run the network on the input.
    network.run(inpts=inpts, time=time)

    retries = 0
    while spikes['Y_'].get('s').sum() < 5 and retries < 3:
        retries += 1
        sample = bernoulli(datum=image, time=time, dt=dt,
                           max_prob=1.0).unsqueeze(1)
        inpts = {'X': sample}
        network.run(inpts=inpts, time=time)

    # Add to spikes recording.
    spike_record[i % update_interval] = spikes['Y_'].get('s').view(time, -1)
コード例 #7
0
def main(seed=0, n_train=60000, n_test=10000, inhib=250, kernel_size=(16,), stride=(2,), n_filters=25, n_output=100,
         time=100, crop=0, lr=1e-2, lr_decay=0.99, dt=1, theta_plus=0.05, theta_decay=1e-7, intensity=1, norm=0.2,
         progress_interval=10, update_interval=250, train=True, plot=False, gpu=False):

    assert n_train % update_interval == 0, 'No. examples must be divisible by update_interval'

    params = [
        seed, kernel_size, stride, n_filters, crop, lr, lr_decay, n_train, inhib, time, dt,
        theta_plus, theta_decay, intensity, norm, progress_interval, update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    if not train:
        test_params = [
            seed, kernel_size, stride, n_filters, crop, lr, lr_decay, n_train, n_test, inhib, time, dt,
            theta_plus, theta_decay, intensity, norm, progress_interval, update_interval
        ]

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    side_length = 28 - crop * 2
    n_inpt = side_length ** 2
    n_examples = n_train if train else n_test
    n_classes = 10

    # Build network.
    if train:
        network = Network()

        conv_size = (
            int((side_length - kernel_size) / stride) + 1,
            int((side_length - kernel_size) / stride) + 1
        )

        input_layer = Input(n=n_inpt, traces=True, trace_tc=5e-2)

        output_layer = DiehlAndCookNodes(
            n=n_filters * conv_size[0] * conv_size[1], traces=True, rest=0, reset=0,
            thresh=1, refrac=0, decay=1e-2, trace_tc=5e-2, theta_plus=theta_plus,
            theta_decay=theta_decay
        )
        input_output_conn = LocallyConnectedConnection(
            input_layer, output_layer, kernel_size=kernel_size, stride=stride, n_filters=n_filters,
            nu=[0, lr], update_rule=WeightDependentPostPre, wmin=0, wmax=1,
            norm=norm, input_shape=(side_length, side_length)
        )

        w = torch.zeros(n_filters, *conv_size, n_filters, *conv_size)
        for fltr1 in range(n_filters):
            for fltr2 in range(n_filters):
                if fltr1 != fltr2:
                    for i in range(conv_size[0]):
                        for j in range(conv_size[1]):
                            w[fltr1, i, j, fltr2, i, j] = -inhib

        w = w.view(n_filters * conv_size[0] * conv_size[1], n_filters * conv_size[0] * conv_size[1])
        recurrent_conn = Connection(output_layer, output_layer, w=w)

        network.add_layer(input_layer, name='X')
        network.add_layer(output_layer, name='Y')
        network.add_connection(input_output_conn, source='X', target='Y')
        network.add_connection(recurrent_conn, source='Y', target='Y')

        output_layer = LIFNodes(
            n=n_output, traces=True, rest=0, reset=0, thresh=1, refrac=0, decay=1e-2, trace_tc=5e-2
        )

        hidden_output_connection = Connection(
            network.layers['Y'], output_layer, nu=[0, 5 * lr],
            update_rule=WeightDependentPostPre, wmin=0,
            wmax=1, norm=norm * n_output
        )

        w = -inhib * (torch.ones(n_output, n_output) - torch.diag(torch.ones(n_output)))
        output_recurrent_connection = Connection(
            output_layer, output_layer, w=w, update_rule=NoOp, wmin=-inhib, wmax=0
        )

        network.add_layer(output_layer, name='Z')
        network.add_connection(hidden_output_connection, source='Y', target='Z')
        network.add_connection(output_recurrent_connection, source='Z', target='Z')
    else:
        network = load_network(os.path.join(params_path, model_name + '.pt'))

        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'], nu=network.connections['X', 'Y'].nu
        )

        network.layers['Y'].theta = 0
        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0

        # del network.connections['Y', 'Y']

        network.connections['Y', 'Z'].update_rule = NoOp(
            connection=network.connections['Y', 'Z'], nu=0
        )

        # network.layers['Z'].theta = 0
        # network.layers['Z'].theta_decay = 0
        # network.layers['Z'].theta_plus = 0

        # del network.connections['Z', 'Z']

    conv_size = network.connections['X', 'Y'].conv_size
    locations = network.connections['X', 'Y'].locations
    conv_prod = int(np.prod(conv_size))
    n_neurons = n_filters * conv_prod

    # Voltage recording for excitatory and inhibitory layers.
    voltage_monitor = Monitor(network.layers['Y'], ['v'], time=time)
    network.add_monitor(voltage_monitor, name='output_voltage')

    # Load MNIST data.
    dataset = MNIST(path=data_path, download=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    images *= intensity
    images = images[:, crop:-crop, crop:-crop].contiguous().view(-1, side_length ** 2)

    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer], state_vars=['s'], time=time)
        network.add_monitor(spikes[layer], name=f'{layer}_spikes')

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    spike_ims = None
    spike_axes = None
    weights_im = None
    weights2_im = None

    unclamps = {}
    per_class = int(n_output / n_classes)
    for label in range(n_classes):
        unclamp = torch.ones(n_output).byte()
        unclamp[label * per_class: (label + 1) * per_class] = 0
        unclamps[label] = unclamp

    predictions = torch.zeros(n_examples)
    corrects = torch.zeros(n_examples)

    start = t()
    for i in range(n_examples):
        if i % progress_interval == 0:
            print(f'Progress: {i} / {n_examples} ({t() - start:.4f} seconds)')
            start = t()

        if i % update_interval == 0 and i > 0:
            if train:
                network.save(os.path.join(params_path, model_name + '.pt'))
                network.connections['X', 'Y'].update_rule.nu[1] *= lr_decay

        # Get next input sample.
        image = images[i % len(images)]
        label = labels[i % len(images)].item()
        sample = bernoulli(datum=image, time=time, dt=dt, max_prob=0.7)
        inpts = {'X': sample}

        # Run the network on the input.
        if train:
            network.run(inpts=inpts, time=time, unclamp={'Z': unclamps[label]})
        else:
            network.run(inpts=inpts, time=time)

        if not train:
            retries = 0
            while spikes['Z'].get('s').sum() < 5 and retries < 3:
                retries += 1
                sample = bernoulli(datum=image, time=time, dt=dt, max_prob=0.7 + 0.1 * retries)
                inpts = {'X': sample}

                if train:
                    network.run(inpts=inpts, time=time, unclamp={'Z': unclamps[label]})
                else:
                    network.run(inpts=inpts, time=time)

        output = spikes['Z'].get('s')
        summed_neurons = output.sum(dim=1).view(per_class, n_classes)
        summed_classes = summed_neurons.sum(dim=1)
        prediction = torch.argmax(summed_classes).item()
        correct = prediction == label

        predictions[i] = prediction
        corrects[i] = int(correct)

        # Optionally plot various simulation information.
        if plot:
            _spikes = {
                'X': spikes['X'].get('s').view(side_length ** 2, time),
                'Y': spikes['Y'].get('s').view(n_neurons, time),
                'Z': spikes['Z'].get('s').view(n_output, time)
            }

            spike_ims, spike_axes = plot_spikes(spikes=_spikes, ims=spike_ims, axes=spike_axes)
            weights_im = plot_locally_connected_weights(
                network.connections['X', 'Y'].w, n_filters, kernel_size,
                conv_size, locations, side_length, im=weights_im
            )

            n_sqrt = int(np.ceil(np.sqrt(n_output)))
            side = int(np.ceil(np.sqrt(network.layers['Y'].n)))
            w = network.connections['Y', 'Z'].w
            w = get_square_weights(w, n_sqrt=n_sqrt, side=side)

            weights2_im = plot_weights(
                w, im=weights2_im, wmax=1
            )

            plt.pause(1e-8)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    if train:
        network.save(os.path.join(params_path, model_name + '.pt'))

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    accuracy = torch.mean(corrects).item() * 100

    print(f'\nAccuracy: {accuracy}\n')

    to_write = params + [accuracy] if train else test_params + [accuracy]
    to_write = [str(x) for x in to_write]
    name = 'train.csv' if train else 'test.csv'

    if not os.path.isfile(os.path.join(results_path, name)):
        with open(os.path.join(results_path, name), 'w') as f:
            if train:
                f.write(
                    'random_seed,kernel_size,stride,n_filters,crop,lr,lr_decay,n_train,inhib,time,timestep,theta_plus,'
                    'theta_decay,intensity,norm,progress_interval,accuracy\n'
                )
            else:
                f.write(
                    'random_seed,kernel_size,stride,n_filters,crop,lr,lr_decay,n_train,n_test,inhib,time,timestep,'
                    'theta_plus,theta_decay,intensity,norm,progress_interval,update_interval,accuracy\n'
                )

    with open(os.path.join(results_path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')

    if labels.numel() > n_examples:
        labels = labels[:n_examples]
    else:
        while labels.numel() < n_examples:
            if 2 * labels.numel() > n_examples:
                labels = torch.cat([labels, labels[:n_examples - labels.numel()]])
            else:
                labels = torch.cat([labels, labels])

    # Compute confusion matrices and save them to disk.
    confusion = confusion_matrix(labels, predictions)

    to_write = ['train'] + params if train else ['test'] + test_params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save(confusion, os.path.join(confusion_path, f))