コード例 #1
0
ファイル: test_environment.py プロジェクト: vhcg77/bindsnet
	def test_gym_environment(self):
		for name in ['AirRaid-v0', 'Amidar-v0', 'Asteroids-v0']:
			env = GymEnvironment(name)
			assert env.name == name
			
			env.reset(); env.step(0); env.close()
			
コード例 #2
0
ファイル: SNN.py プロジェクト: Dongyeongkim/SWANN-Bindsnet
def return_score(network_list, k):
    def run_pipeline(pipeline, episode_count):
        for i in range(episode_count):
            total_reward = 0
            pipeline.reset_state_variables()
            is_done = False
            while not is_done:
                result = pipeline.env_step()
                result = (result[0].cuda(), *result[1:])
                pipeline.step(result)
                reward = result[1]
                total_reward += reward

                is_done = result[2]
        print(f"Episode {i} total reward:{total_reward}")
        return total_reward

    score_list = []
    for i, network in enumerate(network_list):
        score_sum = 0
        if torch.cuda.is_available():
            network = network.to('cuda:0')
        else:
            pass
        environment = GymEnvironment('BreakoutDeterministic-v4')
        environment.reset()
        # Build pipeline from specified components.
        environment_pipeline = EnvironmentPipeline(
            network,
            environment,
            encoding=bernoulli,
            action_function=select_softmax,
            output="Output Layer",
            time=100,
            history_length=1,
            delta=1,
            plot_interval=1,
        )
        environment_pipeline.network.learning = False

        print("Testing: ")
        score_sum += run_pipeline(environment_pipeline, episode_count=2)
        score_list.append(score_sum / 2)
        torch.cuda.empty_cache()
    f = open('Score/' + str(k) + '.txt', 'w')
    f.write(str(score_list))
    f.close()

    return score_list
コード例 #3
0
# Add all layers and connections to the network.
for layer in layers:
    network.add_layer(layers[layer], name=layer)

network.add_connection(input_exc_conn, source='X', target='E')
network.add_connection(exc_readout_conn, source='E', target='R')

# Add all monitors to the network.
for layer in layers:
    network.add_monitor(spikes[layer], name='%s_spikes' % layer)
    
    if layer in voltages:
        network.add_monitor(voltages[layer], name='%s_voltages' % layer)

# Load SpaceInvaders environment.
environment = GymEnvironment('Asteroids-v0')
environment.reset()

pipeline = Pipeline(network, environment, encoding=bernoulli, time=1, history=5, delta=10, plot_interval=plot_interval,
                    print_interval=print_interval, render_interval=render_interval, action_function=select_multinomial,
                    output='R')

total = 0
rewards = []
avg_rewards = []
lengths = []
avg_lengths = []

i = 0
try:
    while i < n:
コード例 #4
0
middle_out = Connection(source=middle,
                        target=out,
                        wmax=0.5,
                        update_rule=m_stdp_et,
                        nu=2e-2,
                        norm=0.15 * middle.n)

# Add all layers and connections to the network.
network.add_layer(inpt, name='X')
network.add_layer(middle, name='Y')
network.add_layer(out, name='Z')
network.add_connection(inpt_middle, source='X', target='Y')
network.add_connection(middle_out, source='Y', target='Z')

# Load SpaceInvaders environment.
environment = GymEnvironment('SpaceInvaders-v0')
environment.reset()

# Build pipeline from specified components.
pipeline = Pipeline(network,
                    environment,
                    encoding=bernoulli,
                    feedback=select_multinomial,
                    output='Z',
                    time=1,
                    history_length=2,
                    delta=4,
                    plot_interval=100,
                    render_interval=5)

# Run environment simulation and network training.
コード例 #5
0
ファイル: ttt.py プロジェクト: hansolsuh/drstdp
    wmin=0,
    wmax=1,
    update_rule=MSTDP,
    nu=1e-1,
    norm=0.5 * middle.n,
)

# Add all layers and connections to the network.
network.add_layer(inpt, name="Input Layer")
network.add_layer(middle, name="Hidden Layer")
network.add_layer(out, name="Output Layer")
network.add_connection(inpt_middle, source="Input Layer", target="Hidden Layer")
network.add_connection(middle_out, source="Hidden Layer", target="Output Layer")

# Load the Breakout environment.
environment = GymEnvironment("tictac-v0")
environment.reset()

# Build pipeline from specified components.
environment_pipeline = EnvironmentPipeline(
    network,
    environment,
    encoding=bernoulli,
    action_function=select_softmax,
    output="Output Layer",
    time=100,
    history_length=1,
    delta=1,
    plot_interval=1,
    render_interval=1,
)
コード例 #6
0
from bindsnet.environment import GymEnvironment
from bindsnet.datasets.spike_encoders import NullEncoder

parser = argparse.ArgumentParser()
parser.add_argument("-n", type=int, default=1000000)
parser.add_argument("--render", dest="render", action="store_true")
parser.set_defaults(render=False)

args = parser.parse_args()

n = args.n
render = args.render

# Load SpaceInvaders environment.
env = GymEnvironment("SpaceInvaders-v0", NullEncoder())
env.reset()

total = 0
rewards = []
avg_rewards = []
lengths = []
avg_lengths = []

i, j, k = 0, 0, 0
while i < n:
    if render:
        env.render()

    # Select random action.
    a = np.random.choice(6)
コード例 #7
0
# Add all layers and connections to the network.
for layer in layers:
    network.add_layer(layers[layer], name=layer)

network.add_connection(input_exc_conn, source="X", target="E")
network.add_connection(exc_readout_conn, source="E", target="R")

# Add all monitors to the network.
for layer in layers:
    network.add_monitor(spikes[layer], name="%s_spikes" % layer)

    if layer in voltages:
        network.add_monitor(voltages[layer], name="%s_voltages" % layer)

# Load SpaceInvaders environment.
environment = GymEnvironment("Asteroids-v0")
environment.reset()

pipeline = Pipeline(
    network,
    environment,
    encoding=bernoulli,
    time=1,
    history=5,
    delta=10,
    plot_interval=plot_interval,
    print_interval=print_interval,
    render_interval=render_interval,
    action_function=select_multinomial,
    output="R",
)
コード例 #8
0
ファイル: cartpole.py プロジェクト: atenagm1375/cartpole
        Update internal attributes.

        Keyword Arguments
        -----------------
        accumulated_reward : float
            The value of accumulated reward in the episode.

        """
        accumulated_reward = kwargs.get("accumulated_reward")
        self.accumulated_rewards.append(accumulated_reward)
        if np.mean(self.accumulated_rewards[-10:]) >= 195:
            self.alpha *= 0.1


# Define the environment
environment = GymEnvironment('CartPole-v0')

# Define observer agent, acting on first spike
observer = CartPoleObserverAgent(environment,
                                 dt=1.0,
                                 method='first_spike',
                                 reward_fn=CartPoleReward)

# Define expert agent acting on pretrained weights (weight is multiplied by
# observation vector)
expert = ExpertAgent(environment,
                     method='from_weight',
                     noise_policy=_noise_policy)

# Define the pipeline by which the agents interact
pipeline = ToMPipeline(observer_agent=observer,
コード例 #9
0
        The action to be taken.

    """
    if pipeline.network.monitors[output].recording['s'] != []:
        spikes = (pipeline.network.monitors[output].get("s").float())
        spikes = spikes.squeeze().squeeze().nonzero()

        if spikes.shape[0] == 0:
            return pipeline.env.action_space.sample()
        else:
            return spikes[0, 1]
    return pipeline.env.action_space.sample()


# Define the environment
environment = GymEnvironment('Riverraid-ram-v0')

# Define observer agent, acting on first spike
observer = RiverraidAgent(environment,
                          dt=1.0,
                          method='first_spike',
                          reward_fn=RiverraidReward)
observer.build_network()

pipeline = EnvironmentPipeline(
    network=observer.network,
    environment=environment,
    action_function=select_action,
    encoding=ram_observation_encoder,
    device=observer.device,
    output="PM",
コード例 #10
0
import numpy as np

from bindsnet.environment import GymEnvironment

parser = argparse.ArgumentParser()
parser.add_argument("-n", type=int, default=1000000)
parser.add_argument("--render", dest="render", action="store_true")
parser.set_defaults(render=False)

args = parser.parse_args()

n = args.n
render = args.render

# Load Breakout environment.
env = GymEnvironment("BreakoutDeterministic-v4")
env.reset()

total = 0
rewards = []
avg_rewards = []
lengths = []
avg_lengths = []

i, j, k = 0, 0, 0
while i < n:
    if render:
        env.render()

    # Select random action.
    a = np.random.choice(4)
コード例 #11
0
def main(seed=0, n_episodes=25, epsilon=0.05):

    np.random.seed(seed)

    if torch.cuda.is_available():
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    print()
    print('Loading the trained ANN...')
    print()

    # Create and train an ANN on the MNIST dataset.
    ANN = Network()
    ANN.load_state_dict(
        torch.load(
            os.path.join(ROOT_DIR, 'params', 'converted_dqn_time_difference_grayscale.pt')
        )
    )

    environment = GymEnvironment('BreakoutDeterministic-v4')

    print('Gathering observation data...')
    print()

    episode_rewards = np.zeros(n_episodes)
    noop_counter = 0
    total_t = 0
    states = []
    new_life = True
    prev_life = 5

    for i in range(n_episodes):
        obs = environment.reset().to(device)
        state = torch.stack([obs] * 4, dim=2)

        for t in itertools.count():
            encoded = torch.tensor([0.25, 0.5, 0.75, 1]) * state
            encoded = torch.sum(encoded, dim=2)

            states.append(encoded)

            q_values = ANN(encoded.view([1, -1]))[0]
            probs, best_action = policy(q_values, epsilon)
            action = np.random.choice(np.arange(len(probs)), p=probs)

            if action == 0:
                noop_counter += 1
            else:
                noop_counter = 0

            if noop_counter >= 20:
                action = np.random.choice([0, 1, 2, 3])
                noop_counter = 0

            if new_life:
                action = 1

            next_obs, reward, done, info = environment.step(action)
            next_obs = next_obs.to(device)

            if prev_life - info["ale.lives"] != 0:
                new_life = True
            else:
                new_life = False

            prev_life = info["ale.lives"]

            next_state = torch.clamp(next_obs - obs, min=0)
            next_state = torch.cat(
                (state[:, :, 1:], next_state.view(
                    [next_state.shape[0], next_state.shape[1], 1]
                )), dim=2
            )

            episode_rewards[i] += reward
            total_t += 1

            if done:
                print(f'Step {t} ({total_t}) @ Episode {i + 1} / {n_episodes}')
                print(f'Episode Reward: {episode_rewards[i]}')

                break

            state = next_state
            obs = next_obs

    model_name = '_'.join([str(x) for x in [seed, n_episodes, epsilon]])
    columns = [
        'seed', 'n_episodes', 'epsilon', 'avg. reward', 'std. reward'
    ]
    data = [[
        seed, n_episodes, epsilon, np.mean(episode_rewards), np.std(episode_rewards)
    ]]

    path = os.path.join(results_path, 'results.csv')
    if not os.path.isfile(path):
        df = pd.DataFrame(data=data, index=[model_name], columns=columns)
    else:
        df = pd.read_csv(path, index_col=0)

        if model_name not in df.index:
            df = df.append(pd.DataFrame(data=data, index=[model_name], columns=columns))
        else:
            df.loc[model_name] = data[0]

    df.to_csv(path, index=True)

    torch.save(episode_rewards, os.path.join(results_path, f'{model_name}_episode_rewards.pt'))
コード例 #12
0
import pickle as p

from bindsnet.environment import GymEnvironment

parser = argparse.ArgumentParser()
parser.add_argument('-n', type=int, default=1000000)
parser.add_argument('--render', dest='render', action='store_true')
parser.set_defaults(render=False)

args = parser.parse_args()

n = args.n
render = args.render

# Load SpaceInvaders environment.
env = GymEnvironment('SpaceInvaders-v0')
env.reset()

total = 0
rewards = []
avg_rewards = []
lengths = []
avg_lengths = []

i, j, k = 0, 0, 0
while i < n:
    if render:
        env.render()

    # Select random action.
    a = np.random.choice(6)
コード例 #13
0
ファイル: c4.py プロジェクト: hansolsuh/drstdp
    wmin=0,
    wmax=1,
    update_rule=MSTDP,
    nu=1e-1,
    norm=0.5 * middle.n,
)

# Add all layers and connections to the network.
network.add_layer(inpt, name="Input Layer")
network.add_layer(middle, name="Hidden Layer")
network.add_layer(out, name="Output Layer")
network.add_connection(inpt_middle, source="Input Layer", target="Hidden Layer")
network.add_connection(middle_out, source="Hidden Layer", target="Output Layer")

# Load the Breakout environment.
environment = GymEnvironment("ConnectFour-v0")
environment.reset()

# Build pipeline from specified components.
environment_pipeline = EnvironmentPipeline(
    network,
    environment,
    encoding=bernoulli,
    action_function=select_softmax,
    output="Output Layer",
    time=100,
    history_length=1,
    delta=1,
    plot_interval=1,
    render_interval=1,
)
コード例 #14
0
    def test_gym_pipeline(self):
        # Build network.
        network = Network(dt=1.0)

        # Layers of neurons.
        inpt = Input(n=6552, traces=True)
        middle = LIFNodes(n=225, traces=True, thresh=-52.0 + torch.randn(225))
        out = LIFNodes(n=60, refrac=0, traces=True, thresh=-40.0)

        # Connections between layers.
        inpt_middle = Connection(source=inpt, target=middle, wmax=1e-2)
        middle_out = Connection(source=middle,
                                target=out,
                                wmax=0.5,
                                update_rule=m_stdp_et,
                                nu=2e-2,
                                norm=0.15 * middle.n)

        # Add all layers and connections to the network.
        network.add_layer(inpt, name='X')
        network.add_layer(middle, name='Y')
        network.add_layer(out, name='Z')
        network.add_connection(inpt_middle, source='X', target='Y')
        network.add_connection(middle_out, source='Y', target='Z')

        # Load SpaceInvaders environment.
        environment = GymEnvironment('SpaceInvaders-v0')
        environment.reset()

        # Build pipeline from specified components.
        for history_length in [3, 4, 5, 6]:
            for delta in [2, 3, 4]:
                p = Pipeline(network,
                             environment,
                             encoding=bernoulli,
                             action_function=select_multinomial,
                             output='Z',
                             time=1,
                             history_length=history_length,
                             delta=delta)

                assert p.action_function == select_multinomial
                assert p.history_length == history_length
                assert p.delta == delta

        # Checking assertion errors
        for time in [0, -1]:
            try:
                p = Pipeline(network,
                             environment,
                             encoding=bernoulli,
                             action_function=select_multinomial,
                             output='Z',
                             time=time,
                             history_length=2,
                             delta=4)
            except ValueError:
                pass

        for delta in [0, -1]:
            try:
                p = Pipeline(network,
                             environment,
                             encoding=bernoulli,
                             action_function=select_multinomial,
                             output='Z',
                             time=time,
                             history_length=2,
                             delta=delta)
            except ValueError:
                pass

        for output in ['K']:
            try:
                p = Pipeline(network,
                             environment,
                             encoding=bernoulli,
                             action_function=select_multinomial,
                             output=output,
                             time=time,
                             history_length=2,
                             delta=4)
            except ValueError:
                pass

        p = Pipeline(network,
                     environment,
                     encoding=bernoulli,
                     action_function=select_random,
                     output='Z',
                     time=1,
                     history_length=2,
                     delta=4,
                     save_interval=50,
                     render_interval=5)

        assert p.action_function == select_random
        assert p.encoding == bernoulli
        assert p.save_interval == 50
        assert p.render_interval == 5
        assert p.time == 1
コード例 #15
0
    wmin=0,
    wmax=1,
    update_rule=MSTDP,
    nu=1e-1,
    norm=0.5 * middle.n,
)

# Add all layers and connections to the network.
network.add_layer(inpt, name="Input Layer")
network.add_layer(middle, name="Hidden Layer")
network.add_layer(out, name="Output Layer")
network.add_connection(inpt_middle, source="Input Layer", target="Hidden Layer")
network.add_connection(middle_out, source="Hidden Layer", target="Output Layer")

# Load the Breakout environment.
environment = GymEnvironment("BreakoutDeterministic-v4")
environment.reset()

# Build pipeline from specified components.
environment_pipeline = EnvironmentPipeline(
    network,
    environment,
    encoding=bernoulli,
    action_function=select_softmax,
    output="Output Layer",
    time=100,
    history_length=1,
    delta=1,
    plot_interval=1,
    render_interval=1,
)
コード例 #16
0
    update_rule=MSTDPET,
    nu=2e-2,
    norm=0.15 * middle.n,
)

# Add all layers and connections to the network.
network.add_layer(inpt, name="X")
network.add_layer(middle, name="Y")
network.add_layer(out, name="Z")
network.add_connection(inpt_middle, source="X", target="Y")
network.add_connection(middle_out, source="Y", target="Z")

# Load SpaceInvaders environment.
environment = GymEnvironment(
    "SpaceInvaders-v0",
    BernoulliEncoder(time=int(network.dt), dt=network.dt),
    history_length=2,
    delta=4,
)
environment.reset()

# Plotting configuration.
plot_config = {
    "data_step": 1,
    "data_length": 10,
    "reward_eps": 1,
    "reward_window": 10,
    "volts_type": "line"
}

# Build pipeline from specified components.
pipeline = EnvironmentPipeline(
コード例 #17
0
def main(seed=0, time=50, n_episodes=25, percentile=99.9, plot=False):

    np.random.seed(seed)

    if torch.cuda.is_available():
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    epsilon = 0

    print()
    print('Loading the trained ANN...')
    print()

    # Create and train an ANN on the MNIST dataset.
    ANN = Network()
    ANN.load_state_dict(
        torch.load('../../params/converted_dqn_time_difference_grayscale.pt'))

    environment = GymEnvironment('BreakoutDeterministic-v4')

    f = f'{seed}_{n_episodes}_states.pt'
    if os.path.isfile(os.path.join(params_path, f)):
        print('Loading pre-gathered observation data...')

        states = torch.load(os.path.join(params_path, f))
    else:
        print('Gathering observation data...')
        print()

        episode_rewards = np.zeros(n_episodes)
        noop_counter = 0
        total_t = 0
        states = []

        for i in range(n_episodes):
            obs = environment.reset().to(device)
            state = torch.stack([obs] * 4, dim=2)

            for t in itertools.count():
                encoded = torch.tensor([0.25, 0.5, 0.75, 1]) * state
                encoded = torch.sum(encoded, dim=2)

                states.append(encoded)

                q_values = ANN(encoded.view([1, -1]))[0]
                probs, best_action = policy(q_values, epsilon)
                action = np.random.choice(np.arange(len(probs)), p=probs)

                if action == 0:
                    noop_counter += 1
                else:
                    noop_counter = 0

                if noop_counter >= 20:
                    action = np.random.choice([0, 1, 2, 3])
                    noop_counter = 0

                next_obs, reward, done, _ = environment.step(action)
                next_obs = next_obs.to(device)

                next_state = torch.clamp(next_obs - obs, min=0)
                next_state = torch.cat(
                    (state[:, :, 1:],
                     next_state.view(
                         [next_state.shape[0], next_state.shape[1], 1])),
                    dim=2)

                episode_rewards[i] += reward
                total_t += 1

                if done:
                    print(
                        f'Step {t} ({total_t}) @ Episode {i + 1} / {n_episodes}'
                    )
                    print(f'Episode Reward: {episode_rewards[i]}')

                    break

                state = next_state
                obs = next_obs

        states = torch.stack(states).view(-1, 6400)

        torch.save(states, os.path.join(params_path, f))

    print()
    print(f'Collected {states.size(0)} Atari game frames.')
    print()
    print('Converting ANN to SNN...')

    # Do ANN to SNN conversion.
    SNN = ann_to_snn(ANN,
                     input_shape=(6400, ),
                     data=states,
                     percentile=percentile)

    for l in SNN.layers:
        if l != 'Input':
            SNN.add_monitor(Monitor(SNN.layers[l],
                                    state_vars=['s', 'v'],
                                    time=time),
                            name=l)

    spike_ims = None
    spike_axes = None
    inpt_ims = None
    inpt_axes = None

    new_life = True
    total_t = 0
    noop_counter = 0

    print()
    print('Testing SNN on Atari Breakout game...')
    print()

    # Test SNN on Atari Breakout.
    obs = environment.reset().to(device)
    state = torch.stack([obs] * 4, dim=2)
    prev_life = 5
    total_reward = 0

    for t in itertools.count():
        sys.stdout.flush()

        encoded_state = torch.tensor([0.25, 0.5, 0.75, 1]) * state
        encoded_state = torch.sum(encoded_state, dim=2)
        encoded_state = encoded_state.view([1, -1]).repeat(time, 1)

        inpts = {'Input': encoded_state}
        SNN.run(inpts=inpts, time=time)

        spikes = {
            layer: SNN.monitors[layer].get('s')
            for layer in SNN.monitors
        }
        voltages = {
            layer: SNN.monitors[layer].get('v')
            for layer in SNN.monitors
        }
        action = torch.softmax(voltages['3'].sum(1), 0).argmax()

        if action == 0:
            noop_counter += 1
        else:
            noop_counter = 0

        if noop_counter >= 20:
            action = np.random.choice([0, 1, 2, 3])
            noop_counter = 0

        if new_life:
            action = 1

        next_obs, reward, done, info = environment.step(action)
        next_obs = next_obs.to(device)

        if prev_life - info["ale.lives"] != 0:
            new_life = True
        else:
            new_life = False

        prev_life = info["ale.lives"]

        next_state = torch.clamp(next_obs - obs, min=0)
        next_state = torch.cat(
            (state[:, :, 1:],
             next_state.view([next_state.shape[0], next_state.shape[1], 1])),
            dim=2)

        total_reward += reward
        total_t += 1

        SNN.reset_()

        if plot:
            # Get voltage recording.
            inpt = encoded_state.view(time, 6400).sum(0).view(80, 80)
            spike_ims, spike_axes = plot_spikes(
                {layer: spikes[layer]
                 for layer in spikes},
                ims=spike_ims,
                axes=spike_axes)
            inpt_axes, inpt_ims = plot_input(state,
                                             inpt,
                                             ims=inpt_ims,
                                             axes=inpt_axes)
            plt.pause(1e-8)

        if done:
            print(f'Episode Reward: {total_reward}')
            print()

            break

        state = next_state
        obs = next_obs

    model_name = '_'.join(
        [str(x) for x in [seed, time, n_episodes, percentile]])
    columns = ['seed', 'time', 'n_episodes', 'percentile', 'reward']
    data = [[seed, time, n_episodes, percentile, total_reward]]

    path = os.path.join(results_path, 'results.csv')
    if not os.path.isfile(path):
        df = pd.DataFrame(data=data, index=[model_name], columns=columns)
    else:
        df = pd.read_csv(path, index_col=0)

        if model_name not in df.index:
            df = df.append(
                pd.DataFrame(data=data, index=[model_name], columns=columns))
        else:
            df.loc[model_name] = data[0]

    df.to_csv(path, index=True)