コード例 #1
0
    def test_add_objects(self):
        network = Network(dt=1.0, learning=False)

        inpt = Input(100)
        network.add_layer(inpt, name='X')
        lif = LIFNodes(50)
        network.add_layer(lif, name='Y')

        assert inpt == network.layers['X']
        assert lif == network.layers['Y']

        conn = Connection(inpt, lif)
        network.add_connection(conn, source='X', target='Y')

        assert conn == network.connections[('X', 'Y')]

        monitor = Monitor(lif, state_vars=['s', 'v'])
        network.add_monitor(monitor, 'Y')

        assert monitor == network.monitors['Y']

        network.save('net.pt')
        _network = load_network('net.pt', learning=True)
        assert _network.learning
        assert 'X' in _network.layers
        assert 'Y' in _network.layers
        assert ('X', 'Y') in _network.connections
        assert 'Y' in _network.monitors
        del _network

        os.remove('net.pt')
コード例 #2
0
ファイル: test_network.py プロジェクト: vhcg77/bindsnet
	def test_empty(self):
		for dt in [0.1, 1.0, 5.0]:
			network = Network(dt=dt)
			assert network.dt == dt
			
			network.run(inpts={}, time=1000)
			
			network.save('net.p')
			_network = load_network('net.p')
			assert _network.dt == dt
			
			os.remove('net.p')
コード例 #3
0
    def test_empty(self):
        for dt in [0.1, 1.0, 5.0]:
            network = Network(dt=dt)
            assert network.dt == dt

            network.run(inpts={}, time=1000)

            network.save('net.pt')
            _network = load_network('net.pt')
            assert _network.dt == dt
            assert _network.learning
            del _network

            _network = load_network('net.pt', learning=True)
            assert _network.dt == dt
            assert _network.learning
            del _network

            _network = load_network('net.pt', learning=False)
            assert _network.dt == dt
            assert not _network.learning
            del _network

            os.remove('net.pt')
コード例 #4
0
def main(seed=0,
         n_neurons=100,
         n_train=60000,
         n_test=10000,
         inhib=250,
         time=50,
         lr=1e-2,
         lr_decay=0.99,
         dt=1,
         theta_plus=0.05,
         theta_decay=1e-7,
         progress_interval=10,
         update_interval=250,
         train=True,
         plot=False,
         gpu=False):

    assert n_train % update_interval == 0 and n_test % update_interval == 0, \
                            'No. examples must be divisible by update_interval'

    params = [
        seed, n_neurons, n_train, inhib, time, lr, lr_decay, theta_plus,
        theta_decay, progress_interval, update_interval
    ]

    test_params = [
        seed, n_neurons, n_train, n_test, inhib, time, lr, lr_decay,
        theta_plus, theta_decay, progress_interval, update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    if train:
        n_examples = n_train
    else:
        n_examples = n_test

    n_sqrt = int(np.ceil(np.sqrt(n_neurons)))
    n_classes = 10

    # Build network.
    if train:
        network = Network(dt=dt)

        input_layer = Input(n=784, traces=True, trace_tc=5e-2)
        network.add_layer(input_layer, name='X')

        output_layer = DiehlAndCookNodes(n=n_neurons,
                                         traces=True,
                                         rest=0,
                                         reset=0,
                                         thresh=1,
                                         refrac=0,
                                         decay=1e-2,
                                         trace_tc=5e-2,
                                         theta_plus=theta_plus,
                                         theta_decay=theta_decay)
        network.add_layer(output_layer, name='Y')

        w = 0.3 * torch.rand(784, n_neurons)
        input_connection = Connection(source=network.layers['X'],
                                      target=network.layers['Y'],
                                      w=w,
                                      update_rule=PostPre,
                                      nu=[0, lr],
                                      wmin=0,
                                      wmax=1,
                                      norm=78.4)
        network.add_connection(input_connection, source='X', target='Y')

        w = -inhib * (torch.ones(n_neurons, n_neurons) -
                      torch.diag(torch.ones(n_neurons)))
        recurrent_connection = Connection(source=network.layers['Y'],
                                          target=network.layers['Y'],
                                          w=w,
                                          wmin=-inhib,
                                          wmax=0)
        network.add_connection(recurrent_connection, source='Y', target='Y')

    else:
        path = os.path.join('..', '..', 'params', data, model)
        network = load_network(os.path.join(path, model_name + '.pt'))
        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'],
            nu=network.connections['X', 'Y'].nu)
        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0

    # Load Fashion-MNIST data.
    dataset = FashionMNIST(path=os.path.join('..', '..', 'data',
                                             'FashionMNIST'),
                           download=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    images = images.view(-1, 784)
    images = images / 255

    # if train:
    #     for i in range(n_neurons):
    #         network.connections['X', 'Y'].w[:, i] = images[i] + images[i].mean() * torch.randn(784)

    # Record spikes during the simulation.
    spike_record = torch.zeros(update_interval, time, n_neurons)

    # Neuron assignments and spike proportions.
    if train:
        assignments = -torch.ones_like(torch.Tensor(n_neurons))
        proportions = torch.zeros_like(torch.Tensor(n_neurons, n_classes))
        rates = torch.zeros_like(torch.Tensor(n_neurons, n_classes))
        ngram_scores = {}
    else:
        path = os.path.join('..', '..', 'params', data, model)
        path = os.path.join(path, '_'.join(['auxiliary', model_name]) + '.pt')
        assignments, proportions, rates, ngram_scores = torch.load(
            open(path, 'rb'))

    # Sequence of accuracy estimates.
    curves = {'all': [], 'proportion': [], 'ngram': []}

    if train:
        best_accuracy = 0

    spikes = {}

    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=['s'],
                                time=time)
        network.add_monitor(spikes[layer], name='%s_spikes' % layer)

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    inpt_axes = None
    inpt_ims = None
    spike_ims = None
    spike_axes = None
    weights_im = None
    assigns_im = None
    perf_ax = None

    start = t()
    for i in range(n_examples):
        if i % progress_interval == 0 and train:
            network.connections['X', 'Y'].update_rule.nu[1] *= lr_decay

        if i % progress_interval == 0:
            print(f'Progress: {i} / {n_examples} ({t() - start:.4f} seconds)')
            start = t()

        if i % update_interval == 0 and i > 0:
            if i % len(labels) == 0:
                current_labels = labels[-update_interval:]
            else:
                current_labels = labels[i % len(images) - update_interval:i %
                                        len(images)]

            # Update and print accuracy evaluations.
            curves, predictions = update_curves(curves,
                                                current_labels,
                                                n_classes,
                                                spike_record=spike_record,
                                                assignments=assignments,
                                                proportions=proportions,
                                                ngram_scores=ngram_scores,
                                                n=2)
            print_results(curves)

            if train:
                if any([x[-1] > best_accuracy for x in curves.values()]):
                    print(
                        'New best accuracy! Saving network parameters to disk.'
                    )

                    # Save network to disk.
                    path = os.path.join('..', '..', 'params', data, model)
                    if not os.path.isdir(path):
                        os.makedirs(path)

                    network.save(os.path.join(path, model_name + '.pt'))
                    path = os.path.join(
                        path, '_'.join(['auxiliary', model_name]) + '.pt')
                    torch.save((assignments, proportions, rates, ngram_scores),
                               open(path, 'wb'))

                    best_accuracy = max([x[-1] for x in curves.values()])

                # Assign labels to excitatory layer neurons.
                assignments, proportions, rates = assign_labels(
                    spike_record, current_labels, n_classes, rates)

                # Compute ngram scores.
                ngram_scores = update_ngram_scores(spike_record,
                                                   current_labels, n_classes,
                                                   2, ngram_scores)

            print()

        # Get next input sample.
        image = images[i % n_examples]
        sample = rank_order(datum=image, time=time, dt=dt)
        inpts = {'X': sample}

        # Run the network on the input.
        network.run(inpts=inpts, time=time)

        retries = 0
        while spikes['Y'].get('s').sum() < 5 and retries < 3:
            retries += 1
            image *= 2
            sample = rank_order(datum=image, time=time, dt=dt)
            inpts = {'X': sample}
            network.run(inpts=inpts, time=time)

        # Add to spikes recording.
        spike_record[i % update_interval] = spikes['Y'].get('s').t()

        # Optionally plot various simulation information.
        if plot:
            _input = images[i % n_examples].view(28, 28)
            reconstruction = inpts['X'].view(time, 784).sum(0).view(28, 28)
            _spikes = {layer: spikes[layer].get('s') for layer in spikes}
            input_exc_weights = network.connections['X', 'Y'].w
            square_weights = get_square_weights(
                input_exc_weights.view(784, n_neurons), n_sqrt, 28)
            square_assignments = get_square_assignments(assignments, n_sqrt)

            # inpt_axes, inpt_ims = plot_input(_input, reconstruction, label=labels[i], axes=inpt_axes, ims=inpt_ims)
            spike_ims, spike_axes = plot_spikes(_spikes,
                                                ims=spike_ims,
                                                axes=spike_axes)
            weights_im = plot_weights(square_weights, im=weights_im, wmax=0.25)
            # assigns_im = plot_assignments(square_assignments, im=assigns_im)
            # perf_ax = plot_performance(curves, ax=perf_ax)

            plt.pause(1e-8)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    i += 1

    if i % len(labels) == 0:
        current_labels = labels[-update_interval:]
    else:
        current_labels = labels[i % len(images) - update_interval:i %
                                len(images)]

    # Update and print accuracy evaluations.
    curves, predictions = update_curves(curves,
                                        current_labels,
                                        n_classes,
                                        spike_record=spike_record,
                                        assignments=assignments,
                                        proportions=proportions,
                                        ngram_scores=ngram_scores,
                                        n=2)
    print_results(curves)

    if train:
        if any([x[-1] > best_accuracy for x in curves.values()]):
            print('New best accuracy! Saving network parameters to disk.')

            # Save network to disk.
            if train:
                path = os.path.join('..', '..', 'params', data, model)
                if not os.path.isdir(path):
                    os.makedirs(path)

                network.save(os.path.join(path, model_name + '.pt'))
                path = os.path.join(
                    path, '_'.join(['auxiliary', model_name]) + '.pt')
                torch.save((assignments, proportions, rates, ngram_scores),
                           open(path, 'wb'))

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    print('Average accuracies:\n')
    for scheme in curves.keys():
        print('\t%s: %.2f' % (scheme, float(np.mean(curves[scheme]))))

    # Save accuracy curves to disk.
    path = os.path.join('..', '..', 'curves', data, model)
    if not os.path.isdir(path):
        os.makedirs(path)

    if train:
        to_write = ['train'] + params
    else:
        to_write = ['test'] + params

    to_write = [str(x) for x in to_write]
    f = '_'.join(to_write) + '.pt'

    torch.save((curves, update_interval, n_examples),
               open(os.path.join(path, f), 'wb'))

    # Save results to disk.
    path = os.path.join('..', '..', 'results', data, model)
    if not os.path.isdir(path):
        os.makedirs(path)

    results = [
        np.mean(curves['all']),
        np.mean(curves['proportion']),
        np.mean(curves['ngram']),
        np.max(curves['all']),
        np.max(curves['proportion']),
        np.max(curves['ngram'])
    ]

    if train:
        to_write = params + results
    else:
        to_write = test_params + results

    to_write = [str(x) for x in to_write]

    if train:
        name = 'train.csv'
    else:
        name = 'test.csv'

    if not os.path.isfile(os.path.join(path, name)):
        with open(os.path.join(path, name), 'w') as f:
            if train:
                f.write(
                    'random_seed,n_neurons,n_train,inhib,time,lr,lr_decay,theta_plus,theta_decay,'
                    'progress_interval,update_interval,mean_all_activity,mean_proportion_weighting,'
                    'mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )
            else:
                f.write(
                    'random_seed,n_neurons,n_train,n_test,inhib,time,lr,lr_decay,theta_plus,theta_decay,'
                    'progress_interval,update_interval,mean_all_activity,mean_proportion_weighting,'
                    'mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )

    with open(os.path.join(path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')
コード例 #5
0
def main(seed=0,
         n_neurons=100,
         n_train=60000,
         n_test=10000,
         inhib=250,
         lr=1e-2,
         lr_decay=1,
         time=100,
         dt=1,
         theta_plus=0.05,
         theta_decay=1e-7,
         intensity=1,
         progress_interval=10,
         update_interval=100,
         plot=False,
         train=True,
         gpu=False,
         no_inhib=False,
         no_theta=False):

    assert n_train % update_interval == 0 and n_test % update_interval == 0, \
                            'No. examples must be divisible by update_interval'

    params = [
        seed, n_neurons, n_train, inhib, lr, lr_decay, time, dt, theta_plus,
        theta_decay, intensity, progress_interval, update_interval
    ]

    test_params = [
        seed, n_neurons, n_train, n_test, inhib, lr, lr_decay, time, dt,
        theta_plus, theta_decay, intensity, progress_interval, update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    n_examples = n_train if train else n_test
    n_sqrt = int(np.ceil(np.sqrt(n_neurons)))
    n_classes = 10

    # Build network.
    if train:
        network = Network()

        input_layer = Input(n=784, traces=True, trace_tc=5e-2)
        network.add_layer(input_layer, name='X')

        output_layer = DiehlAndCookNodes(n=n_neurons,
                                         traces=True,
                                         rest=0,
                                         reset=0,
                                         thresh=5,
                                         refrac=0,
                                         decay=1e-2,
                                         trace_tc=5e-2,
                                         theta_plus=theta_plus,
                                         theta_decay=theta_decay)
        network.add_layer(output_layer, name='Y')

        w = 0.3 * torch.rand(784, n_neurons)
        input_connection = Connection(source=network.layers['X'],
                                      target=network.layers['Y'],
                                      w=w,
                                      update_rule=WeightDependentPostPre,
                                      nu=[0, lr],
                                      wmin=0,
                                      wmax=1,
                                      norm=78.4)
        network.add_connection(input_connection, source='X', target='Y')

        w = -inhib * (torch.ones(n_neurons, n_neurons) -
                      torch.diag(torch.ones(n_neurons)))
        recurrent_connection = Connection(source=network.layers['Y'],
                                          target=network.layers['Y'],
                                          w=w,
                                          wmin=-inhib,
                                          wmax=0,
                                          update_rule=WeightDependentPostPre,
                                          nu=[0, -100 * lr],
                                          norm=inhib / 2 * n_neurons)
        network.add_connection(recurrent_connection, source='Y', target='Y')

        mask = network.connections['Y', 'Y'].w == 0
        masks = {('Y', 'Y'): mask}

    else:
        network = load_network(os.path.join(params_path, model_name + '.pt'))
        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'],
            nu=network.connections['X', 'Y'].nu)
        network.connections['Y', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'],
            nu=network.connections['X', 'Y'].nu)
        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0

        if no_inhib:
            del network.connections['Y', 'Y']

        if no_theta:
            network.layers['Y'].theta = 0

    # Load MNIST data.
    dataset = MNIST(path=data_path, download=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    images = images.view(-1, 784)
    images *= intensity
    labels = labels.long()

    monitors = {}
    for layer in set(network.layers):
        if 'v' in network.layers[layer].__dict__:
            monitors[layer] = Monitor(network.layers[layer],
                                      state_vars=['s', 'v'],
                                      time=time)
        else:
            monitors[layer] = Monitor(network.layers[layer],
                                      state_vars=['s'],
                                      time=time)

        network.add_monitor(monitors[layer], name=layer)

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    inpt_axes = None
    inpt_ims = None
    spike_ims = None
    spike_axes = None
    voltage_ims = None
    voltage_axes = None
    weights_im = None
    weights2_im = None

    unclamps = {}
    per_class = int(n_neurons / n_classes)
    for label in range(n_classes):
        unclamp = torch.ones(n_neurons).byte()
        unclamp[label * per_class:(label + 1) * per_class] = 0
        unclamps[label] = unclamp

    predictions = torch.zeros(n_examples)
    corrects = torch.zeros(n_examples)

    start = t()
    for i in range(n_examples):
        if i % progress_interval == 0:
            print(f'Progress: {i} / {n_examples} ({t() - start:.4f} seconds)')
            start = t()

        if i % update_interval == 0 and i > 0 and train:
            network.save(os.path.join(params_path, model_name + '.pt'))
            network.connections['X', 'Y'].update_rule.nu[1] *= lr_decay

        # Get next input sample.
        image = images[i % len(images)]
        label = labels[i % len(images)].item()
        sample = poisson(datum=image, time=time, dt=dt)
        inpts = {'X': sample}

        # Run the network on the input.
        if train:
            network.run(inpts=inpts,
                        time=time,
                        unclamp={'Y': unclamps[label]},
                        masks=masks)
        else:
            network.run(inpts=inpts, time=time)

        if not train:
            retries = 0
            while monitors['Y'].get('s').sum() == 0 and retries < 3:
                retries += 1
                image *= 1.5
                sample = poisson(datum=image, time=time, dt=dt)
                inpts = {'X': sample}

                if train:
                    network.run(inpts=inpts,
                                time=time,
                                unclamp={'Y': unclamps[label]},
                                masks=masks)
                else:
                    network.run(inpts=inpts, time=time)

        output = monitors['Y'].get('s')
        summed_neurons = output.sum(dim=1).view(n_classes, per_class)
        summed_classes = summed_neurons.sum(dim=1)
        prediction = torch.argmax(summed_classes).item()
        correct = prediction == label

        predictions[i] = prediction
        corrects[i] = int(correct)

        # Optionally plot various simulation information.
        if plot:
            # _input = image.view(28, 28)
            # reconstruction = inpts['X'].view(time, 784).sum(0).view(28, 28)
            # v = {'Y': monitors['Y'].get('v')}

            s = {layer: monitors[layer].get('s') for layer in monitors}
            input_exc_weights = network.connections['X', 'Y'].w
            square_weights = get_square_weights(
                input_exc_weights.view(784, n_neurons), n_sqrt, 28)
            recurrent_weights = network.connections['Y', 'Y'].w

            # inpt_axes, inpt_ims = plot_input(_input, reconstruction, label=labels[i], axes=inpt_axes, ims=inpt_ims)
            # voltage_ims, voltage_axes = plot_voltages(v, ims=voltage_ims, axes=voltage_axes)

            spike_ims, spike_axes = plot_spikes(s,
                                                ims=spike_ims,
                                                axes=spike_axes)
            weights_im = plot_weights(square_weights, im=weights_im)
            weights2_im = plot_weights(recurrent_weights,
                                       im=weights2_im,
                                       wmin=-inhib,
                                       wmax=0)

            plt.pause(1e-8)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    if train:
        network.save(os.path.join(params_path, model_name + '.pt'))

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    accuracy = torch.mean(corrects).item() * 100

    print(f'\nAccuracy: {accuracy}\n')

    to_write = params + [accuracy] if train else test_params + [accuracy]
    to_write = [str(x) for x in to_write]
    name = 'train.csv' if train else 'test.csv'

    if not os.path.isfile(os.path.join(results_path, name)):
        with open(os.path.join(results_path, name), 'w') as f:
            if train:
                f.write(
                    'random_seed,n_neurons,n_train,inhib,lr,lr_decay,time,timestep,theta_plus,'
                    'theta_decay,intensity,progress_interval,update_interval,accuracy\n'
                )
            else:
                f.write(
                    'random_seed,n_neurons,n_train,n_test,inhib,lr,lr_decay,time,timestep,'
                    'theta_plus,theta_decay,intensity,progress_interval,update_interval,accuracy\n'
                )

    with open(os.path.join(results_path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')

    if labels.numel() > n_examples:
        labels = labels[:n_examples]
    else:
        while labels.numel() < n_examples:
            if 2 * labels.numel() > n_examples:
                labels = torch.cat(
                    [labels, labels[:n_examples - labels.numel()]])
            else:
                labels = torch.cat([labels, labels])

    # Compute confusion matrices and save them to disk.
    confusion = confusion_matrix(labels, predictions)

    to_write = ['train'] + params if train else ['test'] + test_params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save(confusion, os.path.join(confusion_path, f))
コード例 #6
0
def main(seed=0, n_examples=100, gpu=False, plot=False):

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    model_name = '0_12_4_150_4_0.01_0.99_60000_250.0_250_1.0_0.05_1e-07_0.5_0.2_10_250'

    network = load_network(os.path.join(params_path, f'{model_name}.pt'))

    for l in network.layers:
        network.layers[l].dt = network.dt

    for c in network.connections:
        network.connections[c].dt = network.dt

    network.layers['Y'].one_spike = True
    network.layers['Y'].lbound = None

    kernel_size = 12
    side_length = 20
    n_filters = 150
    time = 250
    intensity = 0.5
    crop = 4
    conv_size = network.connections['X', 'Y'].conv_size
    locations = network.connections['X', 'Y'].locations
    conv_prod = int(np.prod(conv_size))
    n_neurons = n_filters * conv_prod
    n_classes = 10

    # Voltage recording for excitatory and inhibitory layers.
    voltage_monitor = Monitor(network.layers['Y'], ['v'], time=time)
    network.add_monitor(voltage_monitor, name='output_voltage')

    # Load MNIST data.
    dataset = MNIST(path=data_path, download=True)

    images, labels = dataset.get_test()
    images *= intensity
    images = images[:, crop:-crop, crop:-crop]

    # Neuron assignments and spike proportions.
    path = os.path.join(params_path,
                        '_'.join(['auxiliary', model_name]) + '.pt')
    assignments, proportions, rates, ngram_scores = torch.load(open(
        path, 'rb'))

    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=['s'],
                                time=time)
        network.add_monitor(spikes[layer], name=f'{layer}_spikes')

    # Train the network.
    print('\nBegin black box adversarial attack.\n')

    spike_ims = None
    spike_axes = None
    weights_im = None
    inpt_ims = None
    inpt_axes = None

    max_iters = 25
    delta = 0.1
    epsilon = 0.1

    for i in range(n_examples):
        # Get next input sample.
        original = images[i % len(images)].contiguous().view(-1)
        label = labels[i % len(images)]

        # Check if the image is correctly classified.
        sample = poisson(datum=original, time=time)
        inpts = {'X': sample}

        # Run the network on the input.
        network.run(inpts=inpts, time=time)

        # Check for incorrect classification.
        s = spikes['Y'].get('s').view(1, n_neurons, time)
        prediction = ngram(spikes=s,
                           ngram_scores=ngram_scores,
                           n_labels=10,
                           n=2).item()

        if prediction != label:
            continue

        # Create adversarial example.
        adversarial = False
        while not adversarial:
            adv_example = 255 * torch.rand(original.size())
            sample = poisson(datum=adv_example, time=time)
            inpts = {'X': sample}

            # Run the network on the input.
            network.run(inpts=inpts, time=time)

            # Check for incorrect classification.
            s = spikes['Y'].get('s').view(1, n_neurons, time)
            prediction = ngram(spikes=s,
                               ngram_scores=ngram_scores,
                               n_labels=n_classes,
                               n=2).item()

            if prediction == label:
                adversarial = True

        j = 0
        current = original.clone()
        while j < max_iters:
            # Orthogonal perturbation.
            # perturb = orthogonal_perturbation(delta=delta, image=adv_example, target=original)
            # temp = adv_example + perturb

            # # Forward perturbation.
            # temp = temp.clone() + forward_perturbation(epsilon * get_diff(temp, original), temp, adv_example)

            # print(temp)

            perturbation = torch.randn(original.size())

            unnormed_source_direction = original - perturbation
            source_norm = torch.norm(unnormed_source_direction)
            source_direction = unnormed_source_direction / source_norm

            dot = torch.dot(perturbation, source_direction)
            perturbation -= dot * source_direction
            perturbation *= epsilon * source_norm / torch.norm(perturbation)

            D = 1 / np.sqrt(epsilon**2 + 1)
            direction = perturbation - unnormed_source_direction
            spherical_candidate = current + D * direction

            spherical_candidate = torch.clamp(spherical_candidate, 0, 255)

            new_source_direction = original - spherical_candidate
            new_source_direction_norm = torch.norm(new_source_direction)

            # length if spherical_candidate would be exactly on the sphere
            length = delta * source_norm

            # length including correction for deviation from sphere
            deviation = new_source_direction_norm - source_norm
            length += deviation

            # make sure the step size is positive
            length = max(0, length)

            # normalize the length
            length = length / new_source_direction_norm

            candidate = spherical_candidate + length * new_source_direction
            candidate = torch.clamp(candidate, 0, 255)

            sample = poisson(datum=candidate, time=time)
            inpts = {'X': sample}

            # Run the network on the input.
            network.run(inpts=inpts, time=time)

            # Check for incorrect classification.
            s = spikes['Y'].get('s').view(1, n_neurons, time)
            prediction = ngram(spikes=s,
                               ngram_scores=ngram_scores,
                               n_labels=10,
                               n=2).item()

            # Optionally plot various simulation information.
            if plot:
                _input = original.view(side_length, side_length)
                reconstruction = candidate.view(side_length, side_length)
                _spikes = {
                    'X': spikes['X'].get('s').view(side_length**2, time),
                    'Y': spikes['Y'].get('s').view(n_neurons, time)
                }
                w = network.connections['X', 'Y'].w

                spike_ims, spike_axes = plot_spikes(spikes=_spikes,
                                                    ims=spike_ims,
                                                    axes=spike_axes)
                weights_im = plot_locally_connected_weights(w,
                                                            n_filters,
                                                            kernel_size,
                                                            conv_size,
                                                            locations,
                                                            side_length,
                                                            im=weights_im)
                inpt_axes, inpt_ims = plot_input(_input,
                                                 reconstruction,
                                                 label=labels[i],
                                                 ims=inpt_ims,
                                                 axes=inpt_axes)

                plt.pause(1e-8)

            if prediction == label:
                print('Attack failed.')
            else:
                print('Attack succeeded.')
                adv_example = candidate

            j += 1

        network.reset_()  # Reset state variables.

    print('\nAdversarial attack complete.\n')
コード例 #7
0
def main(seed=0,
         n_neurons=100,
         n_train=60000,
         n_test=10000,
         inhib=100,
         lr=0.01,
         lr_decay=1,
         time=350,
         dt=1,
         theta_plus=0.05,
         theta_decay=1e-7,
         progress_interval=10,
         update_interval=250,
         plot=False,
         train=True,
         gpu=False):

    assert n_train % update_interval == 0 and n_test % update_interval == 0, \
                            'No. examples must be divisible by update_interval'

    params = [
        seed, n_neurons, n_train, inhib, lr_decay, time, dt, theta_plus,
        theta_decay, progress_interval, update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    n_examples = n_train if train else n_test
    n_classes = 10

    # Build network.
    if train:
        network = Network(dt=dt)

        input_layer = RealInput(n=784, traces=True, trace_tc=5e-2)
        network.add_layer(input_layer, name='X')

        output_layer = DiehlAndCookNodes(n=n_classes,
                                         rest=0,
                                         reset=1,
                                         thresh=1,
                                         decay=1e-2,
                                         theta_plus=theta_plus,
                                         theta_decay=theta_decay,
                                         traces=True,
                                         trace_tc=5e-2)
        network.add_layer(output_layer, name='Y')

        w = torch.rand(784, n_classes)
        input_connection = Connection(source=input_layer,
                                      target=output_layer,
                                      w=w,
                                      update_rule=MSTDPET,
                                      nu=lr,
                                      wmin=0,
                                      wmax=1,
                                      norm=78.4,
                                      tc_e_trace=0.1)
        network.add_connection(input_connection, source='X', target='Y')

    else:
        network = load_network(os.path.join(params_path, model_name + '.pt'))
        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'],
            nu=network.connections['X', 'Y'].nu)
        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0

    # Load MNIST data.
    environment = MNISTEnvironment(dataset=MNIST(path=data_path,
                                                 download=True),
                                   train=train,
                                   time=time)

    # Create pipeline.
    pipeline = Pipeline(network=network,
                        environment=environment,
                        encoding=repeat,
                        action_function=select_spiked,
                        output='Y',
                        reward_delay=None)

    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=('s', ),
                                time=time)
        network.add_monitor(spikes[layer], name='%s_spikes' % layer)

    network.add_monitor(
        Monitor(network.connections['X', 'Y'].update_rule,
                state_vars=('e_trace', ),
                time=time), 'X_Y_e_trace')

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    spike_ims = None
    spike_axes = None
    weights_im = None
    elig_axes = None
    elig_ims = None

    start = t()
    for i in range(n_examples):
        if i % progress_interval == 0:
            print(f'Progress: {i} / {n_examples} ({t() - start:.4f} seconds)')
            start = t()

            if i > 0 and train:
                network.connections['X', 'Y'].update_rule.nu[1] *= lr_decay

        # Run the network on the input.
        for j in range(time):
            pipeline.step(a_plus=1, a_minus=0)

        if plot:
            _spikes = {layer: spikes[layer].get('s') for layer in spikes}
            w = network.connections['X', 'Y'].w
            square_weights = get_square_weights(w.view(784, n_classes), 4, 28)

            spike_ims, spike_axes = plot_spikes(_spikes,
                                                ims=spike_ims,
                                                axes=spike_axes)
            weights_im = plot_weights(square_weights, im=weights_im)
            elig_ims, elig_axes = plot_voltages(
                {
                    'Y':
                    network.monitors['X_Y_e_trace'].get('e_trace').view(
                        -1, time)[1500:2000]
                },
                plot_type='line',
                ims=elig_ims,
                axes=elig_axes)

            plt.pause(1e-8)

        pipeline.reset_()  # Reset state variables.
        network.connections['X', 'Y'].update_rule.e_trace = torch.zeros(
            784, n_classes)

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')
コード例 #8
0
def main(seed=0,
         n_train=60000,
         n_test=10000,
         inhib=250,
         kernel_size=(16, ),
         stride=(2, ),
         time=50,
         n_filters=25,
         crop=0,
         lr=1e-2,
         lr_decay=0.99,
         dt=1,
         theta_plus=0.05,
         theta_decay=1e-7,
         norm=0.2,
         progress_interval=10,
         update_interval=250,
         train=True,
         relabel=False,
         plot=False,
         gpu=False):

    assert n_train % update_interval == 0 and n_test % update_interval == 0 or relabel, \
        'No. examples must be divisible by update_interval'

    params = [
        seed, kernel_size, stride, n_filters, crop, lr, lr_decay, n_train,
        inhib, time, dt, theta_plus, theta_decay, norm, progress_interval,
        update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    if not train:
        test_params = [
            seed, kernel_size, stride, n_filters, crop, lr, lr_decay, n_train,
            n_test, inhib, time, dt, theta_plus, theta_decay, norm,
            progress_interval, update_interval
        ]

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    side_length = 28 - crop * 2
    n_inpt = side_length**2
    n_examples = n_train if train else n_test
    n_classes = 10

    # Build network.
    if train:
        network = LocallyConnectedNetwork(
            n_inpt=n_inpt,
            input_shape=[side_length, side_length],
            kernel_size=kernel_size,
            stride=stride,
            n_filters=n_filters,
            inh=inhib,
            dt=dt,
            nu=[.1 * lr, lr],
            theta_plus=theta_plus,
            theta_decay=theta_decay,
            wmin=0,
            wmax=1.0,
            norm=norm)
        network.layers['Y'].thresh = 1
        network.layers['Y'].reset = 0
        network.layers['Y'].rest = 0

    else:
        network = load_network(os.path.join(params_path, model_name + '.pt'))
        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'],
            nu=network.connections['X', 'Y'].nu)
        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0

    conv_size = network.connections['X', 'Y'].conv_size
    locations = network.connections['X', 'Y'].locations
    conv_prod = int(np.prod(conv_size))
    n_neurons = n_filters * conv_prod

    # Voltage recording for excitatory and inhibitory layers.
    voltage_monitor = Monitor(network.layers['Y'], ['v'], time=time)
    network.add_monitor(voltage_monitor, name='output_voltage')

    # Load Fashion-MNIST data.
    dataset = FashionMNIST(path=data_path, download=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    if crop != 0:
        images = images[:, crop:-crop, crop:-crop]

    # Record spikes during the simulation.
    if not train:
        update_interval = n_examples

    spike_record = torch.zeros(update_interval, time, n_neurons)

    # Neuron assignments and spike proportions.
    if train:
        assignments = -torch.ones_like(torch.Tensor(n_neurons))
        proportions = torch.zeros_like(torch.Tensor(n_neurons, 10))
        rates = torch.zeros_like(torch.Tensor(n_neurons, 10))
        ngram_scores = {}
    else:
        path = os.path.join(params_path,
                            '_'.join(['auxiliary', model_name]) + '.pt')
        assignments, proportions, rates, ngram_scores = torch.load(
            open(path, 'rb'))

    if train:
        best_accuracy = 0

    # Sequence of accuracy estimates.
    curves = {'all': [], 'proportion': [], 'ngram': []}
    predictions = {scheme: torch.Tensor().long() for scheme in curves.keys()}

    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=['s'],
                                time=time)
        network.add_monitor(spikes[layer], name=f'{layer}_spikes')

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    spike_ims = None
    spike_axes = None
    weights_im = None

    start = t()
    for i in range(n_examples):
        if i % progress_interval == 0 and train:
            network.connections['X', 'Y'].update_rule.nu[1] *= lr_decay

        if i % progress_interval == 0:
            print(f'Progress: {i} / {n_examples} ({t() - start:.4f} seconds)')
            start = t()

        if i % update_interval == 0 and i > 0:
            if i % len(labels) == 0:
                current_labels = labels[-update_interval:]
            else:
                current_labels = labels[i % len(images) - update_interval:i %
                                        len(images)]

            # Update and print accuracy evaluations.
            curves, preds = update_curves(curves,
                                          current_labels,
                                          n_classes,
                                          spike_record=spike_record,
                                          assignments=assignments,
                                          proportions=proportions,
                                          ngram_scores=ngram_scores,
                                          n=2)
            print_results(curves)

            for scheme in preds:
                predictions[scheme] = torch.cat(
                    [predictions[scheme], preds[scheme]], -1)

            # Save accuracy curves to disk.
            to_write = ['train'] + params if train else ['test'] + params
            f = '_'.join([str(x) for x in to_write]) + '.pt'
            torch.save((curves, update_interval, n_examples),
                       open(os.path.join(curves_path, f), 'wb'))

            if train:
                if any([x[-1] > best_accuracy for x in curves.values()]):
                    print(
                        'New best accuracy! Saving network parameters to disk.'
                    )

                    # Save network to disk.
                    network.save(os.path.join(params_path, model_name + '.pt'))
                    path = os.path.join(
                        params_path,
                        '_'.join(['auxiliary', model_name]) + '.pt')
                    torch.save((assignments, proportions, rates, ngram_scores),
                               open(path, 'wb'))

                    best_accuracy = max([x[-1] for x in curves.values()])

                # Assign labels to excitatory layer neurons.
                assignments, proportions, rates = assign_labels(
                    spike_record, current_labels, n_classes, rates)

                # Compute ngram scores.
                ngram_scores = update_ngram_scores(spike_record,
                                                   current_labels, n_classes,
                                                   2, ngram_scores)

            print()

        # Get next input sample.
        image = images[i % len(images)].contiguous().view(-1)
        sample = poisson(datum=image, time=time, dt=dt)
        inpts = {'X': sample}

        # Run the network on the input.
        network.run(inpts=inpts, time=time)

        retries = 0
        while spikes['Y'].get('s').sum() < 5 and retries < 3:
            retries += 1
            image *= 2
            sample = poisson(datum=image, time=time, dt=dt)
            inpts = {'X': sample}
            network.run(inpts=inpts, time=time)

        # Add to spikes recording.
        spike_record[i % update_interval] = spikes['Y'].get('s').t()

        # Optionally plot various simulation information.
        if plot:
            _spikes = {
                'X': spikes['X'].get('s').view(side_length**2, time),
                'Y': spikes['Y'].get('s').view(n_filters * conv_prod, time)
            }

            spike_ims, spike_axes = plot_spikes(spikes=_spikes,
                                                ims=spike_ims,
                                                axes=spike_axes)
            weights_im = plot_locally_connected_weights(
                network.connections['X', 'Y'].w,
                n_filters,
                kernel_size,
                conv_size,
                locations,
                side_length,
                im=weights_im,
                wmin=0,
                wmax=1)

            plt.pause(1e-8)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    i += 1

    if i % len(labels) == 0:
        current_labels = labels[-update_interval:]
    else:
        current_labels = labels[i % len(images) - update_interval:i %
                                len(images)]

    if not train and relabel:
        # Assign labels to excitatory layer neurons.
        assignments, proportions, rates = assign_labels(
            spike_record, current_labels, n_classes, rates)

        # Compute ngram scores.
        ngram_scores = update_ngram_scores(spike_record, current_labels,
                                           n_classes, 2, ngram_scores)

    # Update and print accuracy evaluations.
    curves, preds = update_curves(curves,
                                  current_labels,
                                  n_classes,
                                  spike_record=spike_record,
                                  assignments=assignments,
                                  proportions=proportions,
                                  ngram_scores=ngram_scores,
                                  n=2)
    print_results(curves)

    for scheme in preds:
        predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]],
                                        -1)

    if train:
        if any([x[-1] > best_accuracy for x in curves.values()]):
            print('New best accuracy! Saving network parameters to disk.')

            # Save network to disk.
            network.save(os.path.join(params_path, model_name + '.pt'))
            path = os.path.join(params_path,
                                '_'.join(['auxiliary', model_name]) + '.pt')
            torch.save((assignments, proportions, rates, ngram_scores),
                       open(path, 'wb'))

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    print('Average accuracies:\n')
    for scheme in curves.keys():
        print('\t%s: %.2f' % (scheme, float(np.mean(curves[scheme]))))

    # Save accuracy curves to disk.
    to_write = ['train'] + params if train else ['test'] + params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save((curves, update_interval, n_examples),
               open(os.path.join(curves_path, f), 'wb'))

    # Save results to disk.
    path = os.path.join('..', '..', 'results', data, model)
    if not os.path.isdir(path):
        os.makedirs(path)

    results = [
        np.mean(curves['all']),
        np.mean(curves['proportion']),
        np.mean(curves['ngram']),
        np.max(curves['all']),
        np.max(curves['proportion']),
        np.max(curves['ngram'])
    ]

    to_write = params + results if train else test_params + results
    to_write = [str(x) for x in to_write]
    name = 'train.csv' if train else 'test.csv'

    if not os.path.isfile(os.path.join(results_path, name)):
        with open(os.path.join(path, name), 'w') as f:
            if train:
                f.write(
                    'random_seed,kernel_size,stride,n_filters,crop,n_train,inhib,time,lr,lr_decay,timestep,theta_plus,'
                    'theta_decay,norm,progress_interval,update_interval,mean_all_activity,mean_proportion_weighting,'
                    'mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )
            else:
                f.write(
                    'random_seed,kernel_size,stride,n_filters,crop,n_train,n_test,inhib,time,lr,lr_decay,timestep,'
                    'theta_plus,theta_decay,norm,progress_interval,update_interval,mean_all_activity,'
                    'mean_proportion_weighting,mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )

    with open(os.path.join(results_path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')

    if labels.numel() > n_examples:
        labels = labels[:n_examples]
    else:
        while labels.numel() < n_examples:
            if 2 * labels.numel() > n_examples:
                labels = torch.cat(
                    [labels, labels[:n_examples - labels.numel()]])
            else:
                labels = torch.cat([labels, labels])

    # Compute confusion matrices and save them to disk.
    confusions = {}
    for scheme in predictions:
        confusions[scheme] = confusion_matrix(labels, predictions[scheme])

    to_write = ['train'] + params if train else ['test'] + test_params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save(confusions, os.path.join(confusion_path, f))
コード例 #9
0
def main(seed=0, p_remove=0):

    model = '0_16_2_250_4_0.01_0.99_60000_250.0_250_1.0_0.05_1e-07_0.5_0.2_10_250.pt'

    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.set_default_tensor_type('torch.cuda.FloatTensor')
    torch.cuda.manual_seed_all(seed)

    crop = 4
    time = 250
    n_filters = 250
    intensity = 0.5
    n_examples = 10000
    n_classes = 10

    # Load network.
    network = load_network(
        os.path.join(
            ROOT_DIR, 'params', 'mnist', 'crop_locally_connected', model
        )
    )

    network.connections['X', 'Y'].update_rule = NoOp(
        connection=network.connections['X', 'Y'], nu=network.connections['X', 'Y'].nu
    )
    network.layers['Y'].theta_decay = 0
    network.layers['Y'].theta_plus = 0
    network.connections['X', 'Y'].norm = None

    # Remove `p_remove` percentage of neurons (set outgoing synapses to 0).
    mask = torch.bernoulli(p_remove * torch.ones(network.layers['Y'].shape)).byte()
    network.connections['X', 'Y'].w[:, mask] = 0

    conv_size = network.connections['X', 'Y'].conv_size
    conv_prod = int(np.prod(conv_size))
    n_neurons = n_filters * conv_prod

    # Voltage recording for excitatory and inhibitory layers.
    voltage_monitor = Monitor(network.layers['Y'], ['v'], time=time)
    network.add_monitor(voltage_monitor, name='output_voltage')

    # Load MNIST data.
    dataset = MNIST(path=data_path, download=True, shuffle=True)

    images, labels = dataset.get_test()
    images *= intensity
    images = images[:, crop:-crop, crop:-crop]

    update_interval = 250

    # Record spikes during the simulation.
    spike_record = torch.zeros(update_interval, time, n_neurons)

    # Neuron assignments and spike proportions.
    path = os.path.join(
        ROOT_DIR, 'params', 'mnist', 'crop_locally_connected', f'auxiliary_{model}'
    )
    assignments, proportions, rates, ngram_scores = torch.load(open(path, 'rb'))

    # Sequence of accuracy estimates.
    curves = {'all': [], 'proportion': [], 'ngram': []}
    predictions = {
        scheme: torch.Tensor().long() for scheme in curves.keys()
    }

    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer], state_vars=['s'], time=time)
        network.add_monitor(spikes[layer], name=f'{layer}_spikes')

    start = t()
    for i in range(n_examples):
        if i % 10 == 0:
            print(f'Progress: {i} / {n_examples} ({t() - start:.4f} seconds)')
            start = t()

        if i % update_interval == 0 and i > 0:
            if i % len(labels) == 0:
                current_labels = labels[-update_interval:]
            else:
                current_labels = labels[i % len(images) - update_interval:i % len(images)]

            # Update and print accuracy evaluations.
            curves, preds = update_curves(
                curves, current_labels, n_classes, spike_record=spike_record, assignments=assignments,
                proportions=proportions, ngram_scores=ngram_scores, n=2
            )
            print_results(curves)

            for scheme in preds:
                predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]], -1)

        # Get next input sample.
        image = images[i % len(images)].contiguous().view(-1)
        sample = poisson(datum=image, time=time, dt=1)
        inpts = {'X': sample}

        # Run the network on the input.
        network.run(inpts=inpts, time=time)

        retries = 0
        while spikes['Y'].get('s').sum() < 5 and retries < 3:
            retries += 1
            image *= 2
            sample = poisson(datum=image, time=time, dt=1)
            inpts = {'X': sample}
            network.run(inpts=inpts, time=time)

        # Add to spikes recording.
        spike_record[i % update_interval] = spikes['Y'].get('s').t()

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    i += 1

    if i % len(labels) == 0:
        current_labels = labels[-update_interval:]
    else:
        current_labels = labels[i % len(images) - update_interval:i % len(images)]

    # Update and print accuracy evaluations.
    curves, preds = update_curves(
        curves, current_labels, n_classes, spike_record=spike_record, assignments=assignments,
        proportions=proportions, ngram_scores=ngram_scores, n=2
    )
    print_results(curves)

    for scheme in preds:
        predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]], -1)

    print('Average accuracies:\n')
    for scheme in curves.keys():
        print('\t%s: %.2f' % (scheme, float(np.mean(curves[scheme]))))

    # Save results to disk.
    results = [
        np.mean(curves['all']), np.mean(curves['proportion']), np.mean(curves['ngram']),
        np.max(curves['all']), np.max(curves['proportion']), np.max(curves['ngram'])
    ]

    to_write = [str(x) for x in [seed, p_remove] + results]
    name = 'neuron_robust.csv'

    if not os.path.isfile(os.path.join(results_path, name)):
        with open(os.path.join(results_path, name), 'w') as f:
            f.write(
                'random_seed,p_remove\n'
            )

    with open(os.path.join(results_path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')
コード例 #10
0
import os
import torch

from experiments import ROOT_DIR

from bindsnet.datasets import MNIST
from bindsnet.encoding import poisson
from bindsnet.network import load_network

network = load_network(
    os.path.join(ROOT_DIR, 'params', 'mnist', 'diehl_and_cook_2015',
                 '2_400_60000_500.0_0.01_0.99_250_1_0.05_1e-07_0.5_10_250.pt'))

auxiliary = torch.load(
    os.path.join(
        ROOT_DIR, 'params', 'mnist', 'diehl_and_cook_2015',
        'auxiliary_2_400_60000_500.0_0.01_0.99_250_1_0.05_1e-07_0.5_10_250.pt')
)

images, labels = MNIST(path=os.path.join(ROOT_DIR, 'data', 'MNIST'),
                       download=True,
                       shuffle=True).get_train()

spikes = poisson(datum=images[0].view(-1), time=250, dt=1)

network.run(inpts={'X': spikes}, time=250)
コード例 #11
0
from bindsnet.datasets import MNIST
from bindsnet.network import load_network

from experiments import ROOT_DIR
from experiments.robustness.mnist import BindsNETModel


intensity = 0.5
crop = 4

# Load network.
model_name = '0_12_4_150_4_0.01_0.99_60000_250.0_250_1.0_0.05_1e-07_0.5_0.2_10_250'
network = load_network(
    os.path.join(
        ROOT_DIR, 'params', 'mnist', 'crop_locally_connected', f'{model_name}.pt'
    )
)

network.layers['Y'].theta_plus = 0
network.layers['Y'].theta_decay = 0

# Neuron assignments and spike proportions.
path = os.path.join(
    ROOT_DIR, 'params', 'mnist', 'crop_locally_connected', '_'.join(['auxiliary', model_name]) + '.pt'
)
_, _, _, ngram_scores = torch.load(open(path, 'rb'))

# Load MNIST data.
dataset = MNIST(
    path=os.path.join(
コード例 #12
0
def main(seed=0,
         n_train=60000,
         n_test=10000,
         inhib=250,
         kernel_size=(16, ),
         stride=(2, ),
         n_filters=25,
         n_output=100,
         time=100,
         crop=0,
         lr=1e-2,
         lr_decay=0.99,
         dt=1,
         theta_plus=0.05,
         theta_decay=1e-7,
         intensity=1,
         norm=0.2,
         progress_interval=10,
         update_interval=250,
         train=True,
         plot=False,
         gpu=False):

    assert n_train % update_interval == 0, 'No. examples must be divisible by update_interval'

    params = [
        seed, kernel_size, stride, n_filters, crop, lr, lr_decay, n_train,
        inhib, time, dt, theta_plus, theta_decay, intensity, norm,
        progress_interval, update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    if not train:
        test_params = [
            seed, kernel_size, stride, n_filters, crop, lr, lr_decay, n_train,
            n_test, inhib, time, dt, theta_plus, theta_decay, intensity, norm,
            progress_interval, update_interval
        ]

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    side_length = 28 - crop * 2
    n_inpt = side_length**2
    n_examples = n_train if train else n_test
    n_classes = 10

    # Build network.
    if train:
        network = load_network(
            os.path.join(
                ROOT_DIR, 'params', 'mnist', 'crop_locally_connected',
                '0_12_4_150_4_0.01_0.99_60000_250.0_250_1.0_0.05_1e-07_0.5_0.2_10_250.pt'
            ))

        for l in network.layers:
            network.layers[l].dt = 1
            network.layers[l].lbound = None

        for m in network.monitors:
            network.monitors[m].record_length = 0

        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'],
            nu=network.connections['X', 'Y'].nu)

        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0
        network.layers['Y'].theta -= 0.5 * network.layers['Y'].theta.mean()
        network.layers['Y'].one_spike = False

        del network.connections['Y', 'Y']

        output_layer = DiehlAndCookNodes(n=n_output,
                                         traces=True,
                                         rest=0,
                                         reset=0,
                                         thresh=1,
                                         refrac=0,
                                         decay=1e-2,
                                         trace_tc=5e-2)

        hidden_output_connection = Connection(
            network.layers['Y'],
            output_layer,
            nu=[0, lr],
            update_rule=WeightDependentPostPre,
            wmin=0,
            wmax=1,
            norm=norm * network.layers['Y'].n)

        w = -inhib * (torch.ones(n_output, n_output) -
                      torch.diag(torch.ones(n_output)))
        output_recurrent_connection = Connection(output_layer,
                                                 output_layer,
                                                 w=w,
                                                 update_rule=NoOp,
                                                 wmin=-inhib,
                                                 wmax=0)

        network.add_layer(output_layer, name='Z')
        network.add_connection(hidden_output_connection,
                               source='Y',
                               target='Z')
        network.add_connection(output_recurrent_connection,
                               source='Z',
                               target='Z')
    else:
        network = load_network(os.path.join(params_path, model_name + '.pt'))

        network.connections['Y', 'Z'].update_rule = NoOp(
            connection=network.connections['Y', 'Z'], nu=0)

        # network.layers['Z'].theta = 0
        # network.layers['Z'].theta_decay = 0
        # network.layers['Z'].theta_plus = 0

        # del network.connections['Z', 'Z']

    conv_size = network.connections['X', 'Y'].conv_size
    locations = network.connections['X', 'Y'].locations
    conv_prod = int(np.prod(conv_size))
    n_neurons = n_filters * conv_prod

    # Voltage recording for excitatory and inhibitory layers.
    voltage_monitor = Monitor(network.layers['Y'], ['v'], time=time)
    network.add_monitor(voltage_monitor, name='output_voltage')

    # Load MNIST data.
    dataset = MNIST(path=data_path, download=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    images *= intensity
    images = images[:, crop:-crop,
                    crop:-crop].contiguous().view(-1, side_length**2)

    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=['s'],
                                time=time)
        network.add_monitor(spikes[layer], name=f'{layer}_spikes')

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    spike_ims = None
    spike_axes = None
    weights_im = None
    weights2_im = None

    unclamps = {}
    per_class = int(n_output / n_classes)
    for label in range(n_classes):
        unclamp = torch.ones(n_output).byte()
        unclamp[label * per_class:(label + 1) * per_class] = 0
        unclamps[label] = unclamp

    predictions = torch.zeros(n_examples)
    corrects = torch.zeros(n_examples)

    start = t()
    for i in range(n_examples):
        if i % progress_interval == 0:
            print(f'Progress: {i} / {n_examples} ({t() - start:.4f} seconds)')
            start = t()

        if i % update_interval == 0 and i > 0:
            if train:
                network.save(os.path.join(params_path, model_name + '.pt'))
                network.connections['X', 'Y'].update_rule.nu[1] *= lr_decay

        # Get next input sample.
        image = images[i % len(images)]
        label = labels[i % len(images)].item()
        sample = poisson(datum=image, time=time, dt=dt)
        inpts = {'X': sample}

        # Run the network on the input.
        if train:
            network.run(inpts=inpts, time=time, unclamp={'Z': unclamps[label]})
        else:
            network.run(inpts=inpts, time=time)

        if not train:
            retries = 0
            while spikes['Z'].get('s').sum() < 5 and retries < 3:
                retries += 1
                image *= 1.5
                sample = poisson(datum=image, time=time, dt=dt)
                inpts = {'X': sample}

                if train:
                    network.run(inpts=inpts,
                                time=time,
                                unclamp={'Z': unclamps[label]})
                else:
                    network.run(inpts=inpts, time=time)

        output = spikes['Z'].get('s')
        summed_neurons = output.sum(dim=1).view(per_class, n_classes)
        summed_classes = summed_neurons.sum(dim=1)
        prediction = torch.argmax(summed_classes).item()
        correct = prediction == label

        predictions[i] = prediction
        corrects[i] = int(correct)

        # print(spikes[].get('s').sum(), spikes['Z'].get('s').sum())

        # Optionally plot various simulation information.
        if plot:
            _spikes = {
                'X': spikes['X'].get('s').view(side_length**2, time),
                'Y': spikes['Y'].get('s').view(n_neurons, time),
                'Z': spikes['Z'].get('s').view(n_output, time)
            }

            spike_ims, spike_axes = plot_spikes(spikes=_spikes,
                                                ims=spike_ims,
                                                axes=spike_axes)
            weights_im = plot_locally_connected_weights(
                network.connections['X', 'Y'].w,
                n_filters,
                kernel_size,
                conv_size,
                locations,
                side_length,
                im=weights_im)

            w = network.connections['Y', 'Z'].w
            weights2_im = plot_weights(w, im=weights2_im, wmax=1)

            plt.pause(1e-8)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    if train:
        network.save(os.path.join(params_path, model_name + '.pt'))

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    accuracy = torch.mean(corrects).item() * 100

    print(f'\nAccuracy: {accuracy}\n')

    to_write = params + [accuracy] if train else test_params + [accuracy]
    to_write = [str(x) for x in to_write]
    name = 'train.csv' if train else 'test.csv'

    if not os.path.isfile(os.path.join(results_path, name)):
        with open(os.path.join(results_path, name), 'w') as f:
            if train:
                f.write(
                    'random_seed,kernel_size,stride,n_filters,crop,lr,lr_decay,n_train,inhib,time,timestep,theta_plus,'
                    'theta_decay,intensity,norm,progress_interval,accuracy\n')
            else:
                f.write(
                    'random_seed,kernel_size,stride,n_filters,crop,lr,lr_decay,n_train,n_test,inhib,time,timestep,'
                    'theta_plus,theta_decay,intensity,norm,progress_interval,update_interval,accuracy\n'
                )

    with open(os.path.join(results_path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')

    if labels.numel() > n_examples:
        labels = labels[:n_examples]
    else:
        while labels.numel() < n_examples:
            if 2 * labels.numel() > n_examples:
                labels = torch.cat(
                    [labels, labels[:n_examples - labels.numel()]])
            else:
                labels = torch.cat([labels, labels])

    # Compute confusion matrices and save them to disk.
    confusion = confusion_matrix(labels, predictions)

    to_write = ['train'] + params if train else ['test'] + test_params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save(confusion, os.path.join(confusion_path, f))
コード例 #13
0
def main(seed=0,
         n_train=60000,
         n_test=10000,
         time=50,
         lr=0.01,
         lr_decay=0.95,
         update_interval=500,
         max_prob=1.0,
         plot=False,
         train=True,
         gpu=False):

    assert n_train % update_interval == 0 and n_test % update_interval == 0, \
                            'No. examples must be divisible by update_interval'

    params = [seed, n_train, time, lr, lr_decay, update_interval, max_prob]

    model_name = '_'.join([str(x) for x in params])

    if not train:
        test_params = [
            seed, n_train, n_test, time, lr, lr_decay, update_interval,
            max_prob
        ]

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    criterion = torch.nn.CrossEntropyLoss(
    )  # Loss function on output firing rates.
    n_examples = n_train if train else n_test

    if train:
        # Network building.
        network = Network()

        # Groups of neurons.
        input_layer = RealInput(n=784, sum_input=True)
        output_layer = IFNodes(n=10, sum_input=True)
        bias = RealInput(n=1, sum_input=True)
        network.add_layer(input_layer, name='X')
        network.add_layer(output_layer, name='Y')
        network.add_layer(bias, name='Y_b')

        # Connections between groups of neurons.
        input_connection = Connection(source=input_layer,
                                      target=output_layer,
                                      norm=150,
                                      wmin=-1,
                                      wmax=1)
        bias_connection = Connection(source=bias, target=output_layer)
        network.add_connection(input_connection, source='X', target='Y')
        network.add_connection(bias_connection, source='Y_b', target='Y')

        # State variable monitoring.
        for l in network.layers:
            m = Monitor(network.layers[l], state_vars=['s'], time=time)
            network.add_monitor(m, name=l)
    else:
        network = load_network(os.path.join(params_path, model_name + '.pt'))

    # Load MNIST data.
    dataset = MNIST(path=data_path, download=True, shuffle=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    images, labels = images.view(-1, 784) / 255, labels

    grads = {}
    accuracies = []
    predictions = []
    ground_truth = []
    best = -np.inf
    spike_ims, spike_axes, weights_im = None, None, None
    losses = torch.zeros(update_interval)
    correct = torch.zeros(update_interval)

    # Run training.
    start = t()
    for i in range(n_examples):
        label = torch.Tensor([labels[i % len(labels)]]).long()
        image = images[i % len(labels)]

        # Run simulation for single datum.
        inpts = {'X': image.repeat(time, 1), 'Y_b': torch.ones(time, 1)}
        network.run(inpts=inpts, time=time)

        # Retrieve spikes and summed inputs from both layers.
        spikes = {
            l: network.monitors[l].get('s')
            for l in network.layers if '_b' not in l
        }
        summed_inputs = {l: network.layers[l].summed for l in network.layers}

        # Compute softmax of output spiking activity and get predicted label.
        output = summed_inputs['Y'].softmax(0).view(1, -1)
        predicted = output.argmax(1).item()
        correct[i % update_interval] = int(predicted == label[0].item())
        predictions.append(predicted)
        ground_truth.append(label)

        # Compute cross-entropy loss between output and true label.
        losses[i % update_interval] = criterion(output, label)

        if train:
            # Compute gradient of the loss WRT average firing rates.
            grads['dl/df'] = summed_inputs['Y'].softmax(0)
            grads['dl/df'][label] -= 1

            # Compute gradient of the summed voltages WRT connection weights.
            # This is an approximation; the summed voltages are not a
            # smooth function of the connection weights.
            grads['dl/dw'] = torch.ger(summed_inputs['X'], grads['dl/df'])
            grads['dl/db'] = grads['dl/df']

            # Do stochastic gradient descent calculation.
            network.connections['X', 'Y'].w -= lr * grads['dl/dw']
            network.connections['Y_b', 'Y'].w -= lr * grads['dl/db']

        if i > 0 and i % update_interval == 0:
            accuracies.append(correct.mean() * 100)

            if train:
                if accuracies[-1] > best:
                    print()
                    print(
                        'New best accuracy! Saving network parameters to disk.'
                    )

                    # Save network to disk.
                    network.save(os.path.join(params_path, model_name + '.pt'))
                    best = accuracies[-1]

            print()
            print(f'Progress: {i} / {n_examples} ({t() - start:.3f} seconds)')
            print(f'Average cross-entropy loss: {losses.mean():.3f}')
            print(f'Last accuracy: {accuracies[-1]:.3f}')
            print(f'Average accuracy: {np.mean(accuracies):.3f}')

            # Decay learning rate.
            lr *= lr_decay

            if train:
                print(f'Best accuracy: {best:.3f}')
                print(f'Current learning rate: {lr:.3f}')

            start = t()

        if plot:
            w = network.connections['X', 'Y'].w
            weights = [w[:, i].view(28, 28) for i in range(10)]
            w = torch.zeros(5 * 28, 2 * 28)
            for i in range(5):
                for j in range(2):
                    w[i * 28:(i + 1) * 28,
                      j * 28:(j + 1) * 28] = weights[i + j * 5]

            spike_ims, spike_axes = plot_spikes(spikes,
                                                ims=spike_ims,
                                                axes=spike_axes)
            weights_im = plot_weights(w, im=weights_im, wmin=-1, wmax=1)

            plt.pause(1e-1)

        network.reset_()  # Reset state variables.

    accuracies.append(correct.mean() * 100)

    if train:
        lr *= lr_decay
        for c in network.connections:
            network.connections[c].update_rule.weight_decay *= lr_decay

        if accuracies[-1] > best:
            print()
            print('New best accuracy! Saving network parameters to disk.')

            # Save network to disk.
            network.save(os.path.join(params_path, model_name + '.pt'))
            best = accuracies[-1]

    print()
    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.3f} seconds)')
    print(f'Average cross-entropy loss: {losses.mean():.3f}')
    print(f'Last accuracy: {accuracies[-1]:.3f}')
    print(f'Average accuracy: {np.mean(accuracies):.3f}')

    if train:
        print(f'Best accuracy: {best:.3f}')

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    print(f'Average accuracy: {np.mean(accuracies):.3f}')

    # Save accuracy curves to disk.
    to_write = ['train'] + params if train else ['test'] + params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save((accuracies, update_interval, n_examples),
               open(os.path.join(curves_path, f), 'wb'))

    results = [np.mean(accuracies), np.max(accuracies)]
    to_write = params + results if train else test_params + results
    to_write = [str(x) for x in to_write]
    name = 'train.csv' if train else 'test.csv'

    if not os.path.isfile(os.path.join(results_path, name)):
        with open(os.path.join(results_path, name), 'w') as f:
            if train:
                f.write(
                    'seed,n_train,time,lr,lr_decay,update_interval,max_prob,mean_accuracy,max_accuracy\n'
                )
            else:
                f.write(
                    'seed,n_train,n_test,time,lr,lr_decay,update_interval,max_prob,mean_accuracy,max_accuracy\n'
                )

    with open(os.path.join(results_path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')

    # Compute confusion matrices and save them to disk.
    confusion = confusion_matrix(ground_truth, predictions)

    to_write = ['train'] + params if train else ['test'] + test_params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save(confusion, os.path.join(confusion_path, f))
コード例 #14
0
def main(seed=0, n_train=60000, n_test=10000, inhib=250, kernel_size=(16,), stride=(2,), n_filters=25, crop=4, lr=0.01,
         lr_decay=1, time=100, dt=1, theta_plus=0.05, theta_decay=1e-7, intensity=1, norm=0.2, progress_interval=10,
         update_interval=250, plot=False, train=True, gpu=False):

    assert n_train % update_interval == 0 and n_test % update_interval == 0, \
        'No. examples must be divisible by update_interval'

    params = [
        seed, kernel_size, stride, n_filters, crop, lr, lr_decay, n_train, inhib, time, dt,
        theta_plus, theta_decay, intensity, norm, progress_interval, update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    if not train:
        test_params = [
            seed, kernel_size, stride, n_filters, crop, lr, lr_decay, n_train, n_test, inhib, time, dt,
            theta_plus, theta_decay, intensity, norm, progress_interval, update_interval
        ]

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    side_length = 28 - crop * 2
    n_examples = n_train if train else n_test

    network = load_network(os.path.join(params_path, model_name + '.pt'))

    network.layers['X'] = Input(n=400)
    network.layers['Y'] = DiehlAndCookNodes(
        n=network.layers['Y'].n, thresh=network.layers['Y'].thresh, rest=network.layers['Y'].rest,
        reset=network.layers['Y'].reset, theta_plus=network.layers['Y'].theta_plus,
        theta_decay=network.layers['Y'].theta_decay
    )

    network.add_layer(network.layers['X'], name='X')
    network.add_layer(network.layers['Y'], name='Y')

    network.connections['X', 'Y'].source = network.layers['X']
    network.connections['X', 'Y'].target = network.layers['Y']

    network.connections['X', 'Y'].update_rule = NoOp(
        connection=network.connections['X', 'Y'], nu=network.connections['X', 'Y'].nu
    )
    network.layers['Y'].theta_decay = 0
    network.layers['Y'].theta_plus = 0

    conv_size = network.connections['X', 'Y'].conv_size
    locations = network.connections['X', 'Y'].locations
    conv_prod = int(np.prod(conv_size))
    n_neurons = n_filters * conv_prod
    n_classes = 10

    # Voltage recording for excitatory and inhibitory layers.
    voltage_monitor = Monitor(network.layers['Y'], ['v'], time=time)
    network.add_monitor(voltage_monitor, name='output_voltage')

    # Load MNIST data.
    dataset = MNIST(path=data_path, download=True)

    images, labels = dataset.get_test()
    images *= intensity
    images = images[:, crop:-crop, crop:-crop]

    # Neuron assignments and spike proportions.
    path = os.path.join(params_path, '_'.join(['auxiliary', model_name]) + '.pt')
    assignments, proportions, rates, ngram_scores = torch.load(open(path, 'rb'))

    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer], state_vars=['s'], time=time)
        network.add_monitor(spikes[layer], name=f'{layer}_spikes')

    # Train the network.
    print('\nBegin black box adversarial attack.\n')

    spike_ims = None
    spike_axes = None
    weights_im = None
    inpt_ims = None
    inpt_axes = None

    max_iters = 25
    delta = 0.1
    epsilon = 0.1

    for i in range(n_examples):
        # Get next input sample.
        original = images[i % len(images)].contiguous().view(-1)
        label = labels[i % len(images)]

        # Check if the image is correctly classified.
        sample = poisson(datum=original, time=time)
        inpts = {'X': sample}

        # Run the network on the input.
        network.run(inpts=inpts, time=time)

        # Check for incorrect classification.
        s = spikes['Y'].get('s').view(1, n_neurons, time)
        prediction = ngram(spikes=s, ngram_scores=ngram_scores, n_labels=10, n=2).item()

        if prediction != label:
            continue

        # Create adversarial example.
        adversarial = False
        while not adversarial:
            adv_example = 255 * torch.rand(original.size())
            sample = poisson(datum=adv_example, time=time)
            inpts = {'X': sample}

            # Run the network on the input.
            network.run(inpts=inpts, time=time)

            # Check for incorrect classification.
            s = spikes['Y'].get('s').view(1, n_neurons, time)
            prediction = ngram(spikes=s, ngram_scores=ngram_scores, n_labels=n_classes, n=2).item()

            if prediction == label:
                adversarial = True

        j = 0
        current = original.clone()
        while j < max_iters:
            # Orthogonal perturbation.
            # perturb = orthogonal_perturbation(delta=delta, image=adv_example, target=original)
            # temp = adv_example + perturb

            # # Forward perturbation.
            # temp = temp.clone() + forward_perturbation(epsilon * get_diff(temp, original), temp, adv_example)

            # print(temp)

            perturbation = torch.randn(original.size())

            unnormed_source_direction = original - perturbation
            source_norm = torch.norm(unnormed_source_direction)
            source_direction = unnormed_source_direction / source_norm

            dot = torch.dot(perturbation, source_direction)
            perturbation -= dot * source_direction
            perturbation *= epsilon * source_norm / torch.norm(perturbation)

            D = 1 / np.sqrt(epsilon ** 2 + 1)
            direction = perturbation - unnormed_source_direction
            spherical_candidate = current + D * direction

            spherical_candidate = torch.clamp(spherical_candidate, 0, 255)

            new_source_direction = original - spherical_candidate
            new_source_direction_norm = torch.norm(new_source_direction)

            # length if spherical_candidate would be exactly on the sphere
            length = delta * source_norm

            # length including correction for deviation from sphere
            deviation = new_source_direction_norm - source_norm
            length += deviation

            # make sure the step size is positive
            length = max(0, length)

            # normalize the length
            length = length / new_source_direction_norm

            candidate = spherical_candidate + length * new_source_direction
            candidate = torch.clamp(candidate, 0, 255)

            sample = poisson(datum=candidate, time=time)
            inpts = {'X': sample}

            # Run the network on the input.
            network.run(inpts=inpts, time=time)

            # Check for incorrect classification.
            s = spikes['Y'].get('s').view(1, n_neurons, time)
            prediction = ngram(spikes=s, ngram_scores=ngram_scores, n_labels=10, n=2).item()

            # Optionally plot various simulation information.
            if plot:
                _input = original.view(side_length, side_length)
                reconstruction = candidate.view(side_length, side_length)
                _spikes = {
                    'X': spikes['X'].get('s').view(side_length ** 2, time),
                    'Y': spikes['Y'].get('s').view(n_neurons, time)
                }
                w = network.connections['X', 'Y'].w

                spike_ims, spike_axes = plot_spikes(spikes=_spikes, ims=spike_ims, axes=spike_axes)
                weights_im = plot_locally_connected_weights(
                    w, n_filters, kernel_size, conv_size, locations, side_length, im=weights_im
                )
                inpt_axes, inpt_ims = plot_input(
                    _input, reconstruction, label=labels[i], ims=inpt_ims, axes=inpt_axes
                )

                plt.pause(1e-8)

            if prediction == label:
                print('Attack failed.')
            else:
                print('Attack succeeded.')
                adv_example = candidate

            j += 1

        network.reset_()  # Reset state variables.

    print('\nAdversarial attack complete.\n')
コード例 #15
0
def main(seed=0, n_train=60000, n_test=10000, c_low=1, c_high=25, p_low=0.5, kernel_size=(16,), stride=(2,),
         n_filters=25, crop=4, lr=0.01, lr_decay=1, time=100, dt=1, theta_plus=0.05, theta_decay=1e-7, intensity=1,
         norm=0.2, progress_interval=10, update_interval=250, plot=False, train=True, gpu=False):

    assert n_train % update_interval == 0 and n_test % update_interval == 0, \
        'No. examples must be divisible by update_interval'

    params = [
        seed, kernel_size, stride, n_filters, crop, lr, lr_decay, n_train, c_low, c_high, p_low, time, dt,
        theta_plus, theta_decay, intensity, norm, progress_interval, update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    if not train:
        test_params = [
            seed, kernel_size, stride, n_filters, crop, lr, lr_decay, n_train, n_test, c_low, c_high, p_low, time, dt,
            theta_plus, theta_decay, intensity, norm, progress_interval, update_interval
        ]

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    side_length = 28 - crop * 2
    n_inpt = side_length ** 2
    input_shape = [side_length, side_length]
    n_examples = n_train if train else n_test
    n_classes = 10

    if _pair(kernel_size) == input_shape:
        conv_size = [1, 1]
    else:
        conv_size = (int((input_shape[0] - _pair(kernel_size)[0]) / _pair(stride)[0]) + 1,
                     int((input_shape[1] - _pair(kernel_size)[1]) / _pair(stride)[1]) + 1)

    # Build network.
    if train:
        network = Network()

        input_layer = Input(n=n_inpt, traces=True, trace_tc=5e-2)
        output_layer = DiehlAndCookNodes(
            n=n_filters * conv_size[0] * conv_size[1], traces=True, rest=-65.0, reset=-60.0,
            thresh=-52.0, refrac=5, decay=1e-2, trace_tc=5e-2, theta_plus=theta_plus, theta_decay=theta_decay
        )
        input_output_conn = LocallyConnectedConnection(
            input_layer, output_layer, kernel_size=kernel_size, stride=stride, n_filters=n_filters,
            nu=[0, lr], update_rule=PostPre, wmin=0, wmax=1, norm=norm, input_shape=input_shape
        )

        w = torch.zeros(n_filters, *conv_size, n_filters, *conv_size)
        for fltr1 in range(n_filters):
            for fltr2 in range(n_filters):
                if fltr1 != fltr2:
                    for j in range(conv_size[0]):
                        for k in range(conv_size[1]):
                            x1, y1 = fltr1 // np.sqrt(n_filters), fltr1 % np.sqrt(n_filters)
                            x2, y2 = fltr2 // np.sqrt(n_filters), fltr2 % np.sqrt(n_filters)

                            w[fltr1, j, k, fltr2, j, k] = max(-c_high, -c_low * np.sqrt(euclidean([x1, y1], [x2, y2])))

        w = w.view(n_filters * conv_size[0] * conv_size[1], n_filters * conv_size[0] * conv_size[1])
        recurrent_conn = Connection(output_layer, output_layer, w=w)

        plt.matshow(w)
        plt.colorbar()

        network.add_layer(input_layer, name='X')
        network.add_layer(output_layer, name='Y')
        network.add_connection(input_output_conn, source='X', target='Y')
        network.add_connection(recurrent_conn, source='Y', target='Y')
    else:
        network = load_network(os.path.join(params_path, model_name + '.pt'))
        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'], nu=network.connections['X', 'Y'].nu
        )
        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0

    conv_size = network.connections['X', 'Y'].conv_size
    locations = network.connections['X', 'Y'].locations
    conv_prod = int(np.prod(conv_size))
    n_neurons = n_filters * conv_prod

    # Voltage recording for excitatory and inhibitory layers.
    voltage_monitor = Monitor(network.layers['Y'], ['v'], time=time)
    network.add_monitor(voltage_monitor, name='output_voltage')

    # Load MNIST data.
    dataset = MNIST(path=data_path, download=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    images *= intensity
    images = images[:, crop:-crop, crop:-crop]

    # Record spikes during the simulation.
    spike_record = torch.zeros(update_interval, time, n_neurons)

    # Neuron assignments and spike proportions.
    if train:
        assignments = -torch.ones_like(torch.Tensor(n_neurons))
        proportions = torch.zeros_like(torch.Tensor(n_neurons, 10))
        rates = torch.zeros_like(torch.Tensor(n_neurons, 10))
        ngram_scores = {}
    else:
        path = os.path.join(params_path, '_'.join(['auxiliary', model_name]) + '.pt')
        assignments, proportions, rates, ngram_scores = torch.load(open(path, 'rb'))

    if train:
        best_accuracy = 0

    # Sequence of accuracy estimates.
    curves = {'all': [], 'proportion': [], 'ngram': []}
    predictions = {
        scheme: torch.Tensor().long() for scheme in curves.keys()
    }

    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer], state_vars=['s'], time=time)
        network.add_monitor(spikes[layer], name=f'{layer}_spikes')

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    spike_ims = None
    spike_axes = None
    weights_im = None

    # Calculate linear increase every update interval.
    if train:
        n_increase = int(p_low * n_examples) / update_interval
        increase = (c_high - c_low) / n_increase
        increases = 0
        inhib = c_low

    start = t()
    for i in range(n_examples):
        if i % progress_interval == 0:
            print(f'Progress: {i} / {n_examples} ({t() - start:.4f} seconds)')
            start = t()

        if i % update_interval == 0 and i > 0:
            if train:
                network.connections['X', 'Y'].update_rule.nu[1] *= lr_decay

                if increases < n_increase:
                    inhib = inhib + increase

                    print(f'\nIncreasing inhibition to {inhib}.\n')

                    w = torch.zeros(n_filters, *conv_size, n_filters, *conv_size)
                    for fltr1 in range(n_filters):
                        for fltr2 in range(n_filters):
                            if fltr1 != fltr2:
                                for j in range(conv_size[0]):
                                    for k in range(conv_size[1]):
                                        x1, y1 = fltr1 // np.sqrt(n_filters), fltr1 % np.sqrt(n_filters)
                                        x2, y2 = fltr2 // np.sqrt(n_filters), fltr2 % np.sqrt(n_filters)

                                        w[fltr1, j, k, fltr2, j, k] = max(-c_high, -c_low * np.sqrt(euclidean([x1, y1], [x2, y2])))

                    w = w.view(n_filters * conv_size[0] * conv_size[1], n_filters * conv_size[0] * conv_size[1])
                    network.connections['Y', 'Y'].w = w

            if i % len(labels) == 0:
                current_labels = labels[-update_interval:]
            else:
                current_labels = labels[i % len(images) - update_interval:i % len(images)]

            # Update and print accuracy evaluations.
            curves, preds = update_curves(
                curves, current_labels, n_classes, spike_record=spike_record, assignments=assignments,
                proportions=proportions, ngram_scores=ngram_scores, n=2
            )
            print_results(curves)

            for scheme in preds:
                predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]], -1)

            # Save accuracy curves to disk.
            to_write = ['train'] + params if train else ['test'] + params
            f = '_'.join([str(x) for x in to_write]) + '.pt'
            torch.save((curves, update_interval, n_examples), open(os.path.join(curves_path, f), 'wb'))

            if train:
                if any([x[-1] > best_accuracy for x in curves.values()]):
                    print('New best accuracy! Saving network parameters to disk.')

                    # Save network to disk.
                    network.save(os.path.join(params_path, model_name + '.pt'))
                    path = os.path.join(params_path, '_'.join(['auxiliary', model_name]) + '.pt')
                    torch.save((assignments, proportions, rates, ngram_scores), open(path, 'wb'))

                    best_accuracy = max([x[-1] for x in curves.values()])

                # Assign labels to excitatory layer neurons.
                assignments, proportions, rates = assign_labels(spike_record, current_labels, 10, rates)

                # Compute ngram scores.
                ngram_scores = update_ngram_scores(spike_record, current_labels, 10, 2, ngram_scores)

            print()

        # Get next input sample.
        image = images[i % update_interval].contiguous().view(-1)
        sample = poisson(datum=image, time=time, dt=dt)
        inpts = {'X': sample}

        # Run the network on the input.
        network.run(inpts=inpts, time=time)

        retries = 0
        while spikes['Y'].get('s').sum() < 5 and retries < 3:
            retries += 1
            image *= 2
            sample = poisson(datum=image, time=time, dt=dt)
            inpts = {'X': sample}
            network.run(inpts=inpts, time=time)

        # Add to spikes recording.
        spike_record[i % update_interval] = spikes['Y'].get('s').t()

        # Optionally plot various simulation information.
        if plot:
            _spikes = {
                'X': spikes['X'].get('s').view(side_length ** 2, time),
                'Y': spikes['Y'].get('s').view(n_filters * conv_prod, time)
            }

            spike_ims, spike_axes = plot_spikes(spikes=_spikes, ims=spike_ims, axes=spike_axes)
            weights_im = plot_locally_connected_weights(
                network.connections[('X', 'Y')].w, n_filters, kernel_size, conv_size, locations, side_length, im=weights_im
            )

            plt.pause(1e-8)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    i += 1

    if i % len(labels) == 0:
        current_labels = labels[-update_interval:]
    else:
        current_labels = labels[i % len(images) - update_interval:i % len(images)]

    # Update and print accuracy evaluations.
    curves, preds = update_curves(
        curves, current_labels, n_classes, spike_record=spike_record, assignments=assignments,
        proportions=proportions, ngram_scores=ngram_scores, n=2
    )
    print_results(curves)

    for scheme in preds:
        predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]], -1)

    if train:
        if any([x[-1] > best_accuracy for x in curves.values()]):
            print('New best accuracy! Saving network parameters to disk.')

            # Save network to disk.
            network.save(os.path.join(params_path, model_name + '.pt'))
            path = os.path.join(params_path, '_'.join(['auxiliary', model_name]) + '.pt')
            torch.save((assignments, proportions, rates, ngram_scores), open(path, 'wb'))

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    print('Average accuracies:\n')
    for scheme in curves.keys():
        print('\t%s: %.2f' % (scheme, float(np.mean(curves[scheme]))))

    # Save accuracy curves to disk.
    to_write = ['train'] + params if train else ['test'] + params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save((curves, update_interval, n_examples), open(os.path.join(curves_path, f), 'wb'))

    # Save results to disk.
    results = [
        np.mean(curves['all']), np.mean(curves['proportion']), np.mean(curves['ngram']),
        np.max(curves['all']), np.max(curves['proportion']), np.max(curves['ngram'])
    ]

    to_write = params + results if train else test_params + results
    to_write = [str(x) for x in to_write]
    name = 'train.csv' if train else 'test.csv'

    if not os.path.isfile(os.path.join(results_path, name)):
        with open(os.path.join(results_path, name), 'w') as f:
            if train:
                f.write(
                    'random_seed,kernel_size,stride,n_filters,crop,lr,lr_decay,n_train,c_low,c_high,p_low,time,timestep,theta_plus,'
                    'theta_decay,intensity,norm,progress_interval,update_interval,mean_all_activity,'
                    'mean_proportion_weighting,mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )
            else:
                f.write(
                    'random_seed,kernel_size,stride,n_filters,crop,lr,lr_decay,n_train,n_test,c_low,c_high,p_low,time,timestep,'
                    'theta_plus,theta_decay,intensity,norm,progress_interval,update_interval,mean_all_activity,'
                    'mean_proportion_weighting,mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )

    with open(os.path.join(results_path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')

    if labels.numel() > n_examples:
        labels = labels[:n_examples]
    else:
        while labels.numel() < n_examples:
            if 2 * labels.numel() > n_examples:
                labels = torch.cat([labels, labels[:n_examples - labels.numel()]])
            else:
                labels = torch.cat([labels, labels])

    # Compute confusion matrices and save them to disk.
    confusions = {}
    for scheme in predictions:
        confusions[scheme] = confusion_matrix(labels, predictions[scheme])

    to_write = ['train'] + params if train else ['test'] + test_params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save(confusions, os.path.join(confusion_path, f))
コード例 #16
0
def main(seed=0,
         n_neurons=100,
         n_train=60000,
         n_test=10000,
         inhib=500,
         dt=1,
         theta_plus=0.05,
         theta_decay=1e-7,
         intensity=1 / 40,
         progress_interval=10,
         update_interval=250,
         plot=False,
         train=True,
         gpu=False):

    assert n_train % update_interval == 0 and n_test % update_interval == 0, \
                            'No. examples must be divisible by update_interval'

    params = [
        seed, n_neurons, n_train, inhib, dt, theta_plus, theta_decay,
        intensity, progress_interval, update_interval
    ]

    test_params = [
        seed, n_neurons, n_train, n_test, inhib, dt, theta_plus, theta_decay,
        intensity, progress_interval, update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    n_examples = n_train if train else n_test
    n_sqrt = int(np.ceil(np.sqrt(n_neurons)))
    n_classes = 10

    # Build network.
    if train:
        network = Network()

        input_layer = RealInput(n=40, traces=True, trace_tc=5e-2)
        network.add_layer(input_layer, name='X')

        output_layer = DiehlAndCookNodes(n=n_neurons,
                                         traces=True,
                                         rest=-65.0,
                                         reset=-65.0,
                                         thresh=-52.0,
                                         refrac=5,
                                         decay=1e-2,
                                         trace_tc=5e-2,
                                         theta_plus=theta_plus,
                                         theta_decay=theta_decay)
        network.add_layer(output_layer, name='Y')

        w = 0.3 * torch.rand(40, n_neurons)
        input_connection = Connection(source=network.layers['X'],
                                      target=network.layers['Y'],
                                      w=w,
                                      update_rule=PostPre,
                                      nu=(0, 1),
                                      wmin=0,
                                      wmax=1,
                                      norm=4)
        network.add_connection(input_connection, source='X', target='Y')

        w = -inhib * (torch.ones(n_neurons, n_neurons) -
                      torch.diag(torch.ones(n_neurons)))
        recurrent_connection = Connection(source=network.layers['Y'],
                                          target=network.layers['Y'],
                                          w=w,
                                          wmin=-inhib,
                                          wmax=0)
        network.add_connection(recurrent_connection, source='Y', target='Y')

    else:
        network = load_network(os.path.join(params_path, model_name + '.pt'))
        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'],
            nu=network.connections['X', 'Y'].nu)
        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0

    # Load Spoken MNIST data.
    dataset = SpokenMNIST(path=data_path, download=True, shuffle=False)

    if train:
        audio, labels = dataset.get_train()
    else:
        audio, labels = dataset.get_test()

    audio = [_ * intensity for _ in audio]

    # Record spikes during the simulation.
    avg_time = int(np.mean([_.size(0) for _ in audio]))
    spike_record = torch.zeros(update_interval, avg_time, n_neurons)

    # Neuron assignments and spike proportions.
    if train:
        assignments = -torch.ones_like(torch.Tensor(n_neurons))
        proportions = torch.zeros_like(torch.Tensor(n_neurons, 10))
        rates = torch.zeros_like(torch.Tensor(n_neurons, 10))
        ngram_scores = {}
    else:
        path = os.path.join(params_path,
                            '_'.join(['auxiliary', model_name]) + '.pt')
        assignments, proportions, rates, ngram_scores = torch.load(
            open(path, 'rb'))

    # Sequence of accuracy estimates.
    curves = {'all': [], 'proportion': [], 'ngram': []}
    predictions = {scheme: torch.Tensor().long() for scheme in curves.keys()}

    if train:
        best_accuracy = 0

    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=['s'],
                                time=avg_time)
        network.add_monitor(spikes[layer], name='%s_spikes' % layer)

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    inpt_axes = None
    inpt_ims = None
    spike_ims = None
    spike_axes = None
    weights_im = None
    assigns_im = None
    perf_ax = None

    start = t()
    for i in range(n_examples):
        if i % progress_interval == 0:
            print(f'Progress: {i} / {n_examples} ({t() - start:.4f} seconds)')
            start = t()

        if i % update_interval == 0 and i > 0:
            if i % len(labels) == 0:
                current_labels = labels[-update_interval:]
            else:
                current_labels = labels[i % len(audio) - update_interval:i %
                                        len(audio)]

            # Update and print accuracy evaluations.
            curves, preds = update_curves(curves,
                                          current_labels,
                                          n_classes,
                                          spike_record=spike_record,
                                          assignments=assignments,
                                          proportions=proportions,
                                          ngram_scores=ngram_scores,
                                          n=2)
            print_results(curves)

            for scheme in preds:
                predictions[scheme] = torch.cat(
                    [predictions[scheme], preds[scheme]], -1)

            # Save accuracy curves to disk.
            to_write = ['train'] + params if train else ['test'] + params
            f = '_'.join([str(x) for x in to_write]) + '.pt'
            torch.save((curves, update_interval, n_examples),
                       open(os.path.join(curves_path, f), 'wb'))

            if train:
                if any([x[-1] > best_accuracy for x in curves.values()]):
                    print(
                        'New best accuracy! Saving network parameters to disk.'
                    )

                    # Save network to disk.
                    network.save(os.path.join(params_path, model_name + '.pt'))
                    path = os.path.join(
                        params_path,
                        '_'.join(['auxiliary', model_name]) + '.pt')
                    torch.save((assignments, proportions, rates, ngram_scores),
                               open(path, 'wb'))
                    best_accuracy = max([x[-1] for x in curves.values()])

                # Assign labels to excitatory layer neurons.
                assignments, proportions, rates = assign_labels(
                    spike_record, current_labels, 10, rates)

                # Compute ngram scores.
                ngram_scores = update_ngram_scores(spike_record,
                                                   current_labels, 10, 2,
                                                   ngram_scores)

            print()

        # Get next input sample.
        sample = audio[i % len(audio)]
        sample = sample[:40, :]

        inpts = {'X': sample}
        time = min(avg_time, sample.size(0))

        # Run the network on the input.
        network.run(inpts=inpts, time=time)

        retries = 0
        while spikes['Y'].get('s').sum() < 5 and retries < 3:
            retries += 1
            sample *= 2
            inpts = {'X': sample}
            network.run(inpts=inpts, time=time)

        # Add to spikes recording.
        spike_record[i % update_interval] = spikes['Y'].get('s').t()

        # Optionally plot various simulation information.
        if plot:
            # _input = image.view(28, 28)
            # reconstruction = inpts['X'].view(time, 40).sum(0).view(8, 5)
            _spikes = {layer: spikes[layer].get('s') for layer in spikes}
            input_exc_weights = network.connections[('X', 'Y')].w
            square_weights = get_square_weights(
                input_exc_weights.view(40, n_neurons), n_sqrt, (8, 5))
            # square_assignments = get_square_assignments(assignments, n_sqrt)

            # inpt_axes, inpt_ims = plot_input(_input, reconstruction, label=labels[i], axes=inpt_axes, ims=inpt_ims)
            spike_ims, spike_axes = plot_spikes(_spikes,
                                                ims=spike_ims,
                                                axes=spike_axes)
            weights_im = plot_weights(square_weights, im=weights_im)
            # assigns_im = plot_assignments(square_assignments, im=assigns_im)
            # perf_ax = plot_performance(curves, ax=perf_ax)

            plt.pause(1e-8)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    i += 1

    if i % len(labels) == 0:
        current_labels = labels[-update_interval:]
    else:
        current_labels = labels[i % len(audio) - update_interval:i %
                                len(audio)]

    # Update and print accuracy evaluations.
    curves, preds = update_curves(curves,
                                  current_labels,
                                  n_classes,
                                  spike_record=spike_record,
                                  assignments=assignments,
                                  proportions=proportions,
                                  ngram_scores=ngram_scores,
                                  n=2)
    print_results(curves)

    for scheme in preds:
        predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]],
                                        -1)

    if train:
        if any([x[-1] > best_accuracy for x in curves.values()]):
            print('New best accuracy! Saving network parameters to disk.')

            # Save network to disk.
            if train:
                network.save(os.path.join(params_path, model_name + '.pt'))
                path = os.path.join(
                    params_path, '_'.join(['auxiliary', model_name]) + '.pt')
                torch.save((assignments, proportions, rates, ngram_scores),
                           open(path, 'wb'))

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    print('Average accuracies:\n')
    for scheme in curves.keys():
        print('\t%s: %.2f' % (scheme, float(np.mean(curves[scheme]))))

    # Save accuracy curves to disk.
    to_write = ['train'] + params if train else ['test'] + params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save((curves, update_interval, n_examples),
               open(os.path.join(curves_path, f), 'wb'))

    # Save results to disk.
    results = [
        np.mean(curves['all']),
        np.mean(curves['proportion']),
        np.mean(curves['ngram']),
        np.max(curves['all']),
        np.max(curves['proportion']),
        np.max(curves['ngram'])
    ]

    to_write = params + results if train else test_params + results
    to_write = [str(x) for x in to_write]
    name = 'train.csv' if train else 'test.csv'

    if not os.path.isfile(os.path.join(results_path, name)):
        with open(os.path.join(results_path, name), 'w') as f:
            if train:
                f.write(
                    'random_seed,n_neurons,n_train,inhib,timestep,theta_plus,theta_decay,intensity,'
                    'progress_interval,update_interval,mean_all_activity,mean_proportion_weighting,'
                    'mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )
            else:
                f.write(
                    'random_seed,n_neurons,n_train,n_test,inhib,timestep,theta_plus,theta_decay,intensity,'
                    'progress_interval,update_interval,mean_all_activity,mean_proportion_weighting,'
                    'mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )

    with open(os.path.join(results_path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')

    if labels.numel() > n_examples:
        labels = labels[:n_examples]
    else:
        while labels.numel() < n_examples:
            if 2 * labels.numel() > n_examples:
                labels = torch.cat(
                    [labels, labels[:n_examples - labels.numel()]])
            else:
                labels = torch.cat([labels, labels])

    # Compute confusion matrices and save them to disk.
    confusions = {}
    for scheme in predictions:
        confusions[scheme] = confusion_matrix(labels, predictions[scheme])

    to_write = ['train'] + params if train else ['test'] + test_params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save(confusions, os.path.join(confusion_path, f))
コード例 #17
0
from sklearn.linear_model import LogisticRegression

from bindsnet.analysis.plotting import plot_spikes, plot_locally_connected_weights, plot_weights
from experiments import ROOT_DIR

from bindsnet.datasets import MNIST
from bindsnet.encoding import poisson
from bindsnet.network import load_network

plot = True

path = os.path.join(
    ROOT_DIR, 'params', 'mnist', 'crop_locally_connected',
    '0_12_4_150_4_0.01_0.99_60000_250.0_250_1.0_0.05_1e-07_0.5_0.2_10_250.pt')

network = load_network(file_name=path, learning=False)

for l in network.layers:
    network.layers[l].dt = 1
    network.layers[l].lbound = None

for m in network.monitors:
    network.monitors[m].record_length = 0

network.layers['Y'].theta_plus = 0
network.layers['Y'].theta_decay = 0

del network.connections['Y', 'Y']

n_classes = 10
time = 250
コード例 #18
0
def main(seed=0,
         n_neurons=100,
         n_train=60000,
         n_test=10000,
         inhib=100,
         lr_decay=1,
         time=350,
         dt=1,
         theta_plus=0.05,
         theta_decay=1e-7,
         intensity=1,
         progress_interval=10,
         update_interval=250,
         plot=False,
         train=True,
         gpu=False,
         lr=1e-2,
         norm=32**2 / 5):

    #assert n_train % update_interval == 0 and n_test % update_interval == 0, \
    #                        'No. examples must be divisible by update_interval'

    params = [
        seed, n_neurons, n_train, inhib, lr_decay, time, dt, theta_plus,
        theta_decay, intensity, progress_interval, update_interval
    ]

    test_params = [
        seed, n_neurons, n_train, n_test, inhib, lr_decay, time, dt,
        theta_plus, theta_decay, intensity, progress_interval, update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    n_examples = n_train if train else n_test
    n_sqrt = int(np.ceil(np.sqrt(n_neurons)))
    n_classes = 5

    # Build network.
    if train:
        network = DiehlAndCook2015v2(n_inpt=32**2,
                                     n_neurons=n_neurons,
                                     inh=inhib,
                                     dt=dt,
                                     norm=norm,
                                     theta_plus=theta_plus,
                                     theta_decay=theta_decay,
                                     nu_pre=0,
                                     nu_post=np.sqrt(350 / float(time)) * lr)

    else:
        network = load_network(os.path.join(params_path, model_name + '.pt'))
        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'],
            nu=network.connections['X', 'Y'].nu)
        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0

    # Load MNIST data.
    #dataset = MNIST(path=data_path, download=True)
    dataset = VPR('./data/Dataset_lighting4/left')

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()
    n_examples = images.shape[0]
    images = images.view(-1, 32**2)
    images *= intensity

    # Record spikes during the simulation.
    spike_record = torch.zeros(update_interval, time, n_neurons)

    # Neuron assignments and spike proportions.
    if train:
        assignments = -torch.ones_like(torch.Tensor(n_neurons))
        proportions = torch.zeros_like(torch.Tensor(n_neurons, 5))
        rates = torch.zeros_like(torch.Tensor(n_neurons, 5))
        ngram_scores = {}
    else:
        path = os.path.join(params_path,
                            '_'.join(['auxiliary', model_name]) + '.pt')
        assignments, proportions, rates, ngram_scores = torch.load(
            open(path, 'rb'))

    # Sequence of accuracy estimates.
    curves = {'all': [], 'proportion': [], 'ngram': []}
    predictions = {scheme: torch.Tensor().long() for scheme in curves.keys()}

    if train:
        best_accuracy = 0

    spikes = {}
    for layer in set(network.layers) - {'X'}:
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=['s'],
                                time=time)
        network.add_monitor(spikes[layer], name='%s_spikes' % layer)

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    inpt_axes = None
    inpt_ims = None
    spike_ims = None
    spike_axes = None
    weights_im = None
    assigns_im = None
    perf_ax = None

    start = t()
    for i in range(n_examples):
        if i % progress_interval == 0:
            print(f'Progress: {i} / {n_examples} ({t() - start:.4f} seconds)')
            start = t()

        if i % update_interval == 0 and i > 0:
            if train:
                network.connections['X', 'Y'].update_rule.nu[1] *= lr_decay

            if i % len(labels) == 0:
                current_labels = labels[-update_interval:]
            else:
                current_labels = labels[i % len(images) - update_interval:i %
                                        len(images)]

            # Update and print accuracy evaluations.
            curves, preds = update_curves(curves,
                                          current_labels,
                                          n_classes,
                                          spike_record=spike_record,
                                          assignments=assignments,
                                          proportions=proportions,
                                          ngram_scores=ngram_scores,
                                          n=2)
            print_results(curves)

            for scheme in preds:
                predictions[scheme] = torch.cat(
                    [predictions[scheme], preds[scheme]], -1)

            # Save accuracy curves to disk.
            to_write = ['train'] + params if train else ['test'] + params
            f = '_'.join([str(x) for x in to_write]) + '.pt'
            torch.save((curves, update_interval, n_examples),
                       open(os.path.join(curves_path, f), 'wb'))

            if train:
                if any([x[-1] > best_accuracy for x in curves.values()]):
                    print(
                        'New best accuracy! Saving network parameters to disk.'
                    )

                    # Save network to disk.
                    network.save(os.path.join(params_path, model_name + '.pt'))
                    path = os.path.join(
                        params_path,
                        '_'.join(['auxiliary', model_name]) + '.pt')
                    torch.save((assignments, proportions, rates, ngram_scores),
                               open(path, 'wb'))
                    best_accuracy = max([x[-1] for x in curves.values()])

                # Assign labels to excitatory layer neurons.
                assignments, proportions, rates = assign_labels(
                    spike_record, current_labels, 5, rates)

                # Compute ngram scores.
                ngram_scores = update_ngram_scores(spike_record,
                                                   current_labels, 5, 2,
                                                   ngram_scores)

            print()

        # Get next input sample.
        image = images[i % len(images)]
        sample = poisson(datum=image, time=time)
        inpts = {'X': sample}

        # Run the network on the input.
        network.run(inpts=inpts, time=time)

        retries = 0
        while spikes['Y'].get('s').sum() < 5 and retries < 3:
            retries += 1
            image *= 2
            sample = poisson(datum=image, time=time)
            inpts = {'X': sample}
            network.run(inpts=inpts, time=time)

        # Add to spikes recording.
        spike_record[i % update_interval] = spikes['Y'].get('s').t()

        # Optionally plot various simulation information.
        if plot:
            # _input = image.view(28, 28)
            # reconstruction = inpts['X'].view(time, 784).sum(0).view(28, 28)
            _spikes = {layer: spikes[layer].get('s') for layer in spikes}
            input_exc_weights = network.connections[('X', 'Y')].w
            square_weights = get_square_weights(
                input_exc_weights.view(32**2, n_neurons), n_sqrt, 32)
            # square_assignments = get_square_assignments(assignments, n_sqrt)

            # inpt_axes, inpt_ims = plot_input(_input, reconstruction, label=labels[i], axes=inpt_axes, ims=inpt_ims)
            spike_ims, spike_axes = plot_spikes(_spikes,
                                                ims=spike_ims,
                                                axes=spike_axes)
            weights_im = plot_weights(square_weights, im=weights_im)
            # assigns_im = plot_assignments(square_assignments, im=assigns_im)
            # perf_ax = plot_performance(curves, ax=perf_ax)

            plt.pause(1e-8)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    i += 1

    if i % len(labels) == 0:
        current_labels = labels[-update_interval:]
    else:
        current_labels = labels[i % len(images) - update_interval:i %
                                len(images)]

    # Update and print accuracy evaluations.
    curves, preds = update_curves(curves,
                                  current_labels,
                                  n_classes,
                                  spike_record=spike_record,
                                  assignments=assignments,
                                  proportions=proportions,
                                  ngram_scores=ngram_scores,
                                  n=2)
    print_results(curves)

    for scheme in preds:
        predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]],
                                        -1)

    if train:
        if any([x[-1] > best_accuracy for x in curves.values()]):
            print('New best accuracy! Saving network parameters to disk.')

            # Save network to disk.
            if train:
                network.save(os.path.join(params_path, model_name + '.pt'))
                path = os.path.join(
                    params_path, '_'.join(['auxiliary', model_name]) + '.pt')
                torch.save((assignments, proportions, rates, ngram_scores),
                           open(path, 'wb'))

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    print('Average accuracies:\n')
    for scheme in curves.keys():
        print('\t%s: %.2f' % (scheme, float(np.mean(curves[scheme]))))

    # Save accuracy curves to disk.
    to_write = ['train'] + params if train else ['test'] + params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save((curves, update_interval, n_examples),
               open(os.path.join(curves_path, f), 'wb'))

    # Save results to disk.
    results = [
        np.mean(curves['all']),
        np.mean(curves['proportion']),
        np.mean(curves['ngram']),
        np.max(curves['all']),
        np.max(curves['proportion']),
        np.max(curves['ngram'])
    ]

    to_write = params + results if train else test_params + results
    to_write = [str(x) for x in to_write]
    name = 'train.csv' if train else 'test.csv'

    if not os.path.isfile(os.path.join(results_path, name)):
        with open(os.path.join(results_path, name), 'w') as f:
            if train:
                f.write(
                    'random_seed,n_neurons,n_train,inhib,lr_decay,time,timestep,theta_plus,theta_decay,intensity,'
                    'progress_interval,update_interval,mean_all_activity,mean_proportion_weighting,'
                    'mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )
            else:
                f.write(
                    'random_seed,n_neurons,n_train,n_test,inhib,lr_decay,time,timestep,theta_plus,theta_decay,intensity,'
                    'progress_interval,update_interval,mean_all_activity,mean_proportion_weighting,'
                    'mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )

    with open(os.path.join(results_path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')

    if labels.numel() > n_examples:
        labels = labels[:n_examples]
    else:
        while labels.numel() < n_examples:
            if 2 * labels.numel() > n_examples:
                labels = torch.cat(
                    [labels, labels[:n_examples - labels.numel()]])
            else:
                labels = torch.cat([labels, labels])

    # Compute confusion matrices and save them to disk.
    confusions = {}
    for scheme in predictions:
        confusions[scheme] = confusion_matrix(labels, predictions[scheme])

    to_write = ['train'] + params if train else ['test'] + test_params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save(confusions, os.path.join(confusion_path, f))
コード例 #19
0
def main(seed=0,
         n_neurons=100,
         n_train=60000,
         n_test=10000,
         c_low=1,
         c_high=25,
         p_low=0.5,
         time=250,
         dt=1,
         theta_plus=0.05,
         theta_decay=1e-7,
         intensity=1,
         progress_interval=10,
         update_interval=250,
         plot=False,
         train=True,
         gpu=False):

    assert n_train % update_interval == 0 and n_test % update_interval == 0,\
        'No. examples must be divisible by update_interval'

    params = [
        seed, n_neurons, n_train, c_low, c_high, p_low, time, dt, theta_plus,
        theta_decay, intensity, progress_interval, update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    if not train:
        test_params = [
            seed, n_neurons, n_train, n_test, c_low, c_high, p_low, time, dt,
            theta_plus, theta_decay, intensity, progress_interval,
            update_interval
        ]

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    n_examples = n_train if train else n_test
    n_sqrt = int(np.ceil(np.sqrt(n_neurons)))
    n_classes = 10

    # Build network.
    if train:
        network = Network(dt=dt)
        input_layer = Input(n=784, traces=True)
        exc_layer = DiehlAndCookNodes(n=n_neurons, traces=True)

        w = torch.rand(input_layer.n, exc_layer.n)
        input_exc_conn = Connection(input_layer,
                                    exc_layer,
                                    w=w,
                                    update_rule=PostPre,
                                    norm=78.4,
                                    nu=(1e-4, 1e-2),
                                    wmax=1.0)

        w = torch.zeros(exc_layer.n, exc_layer.n)
        for k1 in range(n_neurons):
            for k2 in range(n_neurons):
                if k1 != k2:
                    x1, y1 = k1 // np.sqrt(n_neurons), k1 % np.sqrt(n_neurons)
                    x2, y2 = k2 // np.sqrt(n_neurons), k2 % np.sqrt(n_neurons)

                    w[k1, k2] = max(
                        -c_high,
                        -c_low * np.sqrt(euclidean([x1, y1], [x2, y2])))

        recurrent_conn = Connection(exc_layer, exc_layer, w=w)

        network.add_layer(input_layer, name='X')
        network.add_layer(exc_layer, name='Y')
        network.add_connection(input_exc_conn, source='X', target='Y')
        network.add_connection(recurrent_conn, source='Y', target='Y')
    else:
        network = load_network(os.path.join(params_path, model_name + '.pt'))
        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'],
            nu=network.connections['X', 'Y'].nu)
        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0

    # Load MNIST data.
    dataset = MNIST(data_path, download=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    images = images.view(-1, 784)
    images *= intensity

    # Record spikes during the simulation.
    spike_record = torch.zeros(update_interval, int(time / dt), n_neurons)

    # Neuron assignments and spike proportions.
    if train:
        assignments = -torch.ones_like(torch.Tensor(n_neurons))
        proportions = torch.zeros_like(torch.Tensor(n_neurons, 10))
        rates = torch.zeros_like(torch.Tensor(n_neurons, 10))
        ngram_scores = {}
    else:
        path = os.path.join(params_path,
                            '_'.join(['auxiliary', model_name]) + '.pt')
        assignments, proportions, rates, ngram_scores = torch.load(
            open(path, 'rb'))

    # Sequence of accuracy estimates.
    curves = {'all': [], 'proportion': [], 'ngram': []}
    predictions = {scheme: torch.Tensor().long() for scheme in curves.keys()}

    if train:
        best_accuracy = 0

    spikes = {}
    for layer in set(network.layers) - {'X'}:
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=['s'],
                                time=int(time / dt))
        network.add_monitor(spikes[layer], name='%s_spikes' % layer)

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    inpt_axes = None
    inpt_ims = None
    spike_ims = None
    spike_axes = None
    weights_im = None
    assigns_im = None
    perf_ax = None

    # Calculate linear increase every update interval.
    if train:
        n_increase = int(p_low * n_examples) / update_interval
        increase = (c_high - c_low) / n_increase
        increases = 0
        inhib = c_low

    start = t()
    for i in range(n_examples):
        if train and i % update_interval == 0 and i > 0 and increases < n_increase:
            inhib = inhib + increase

            print(f'\nIncreasing inhibition to {inhib}.\n')

            w = torch.zeros(n_neurons, n_neurons)
            for k1 in range(n_neurons):
                for k2 in range(n_neurons):
                    if k1 != k2:
                        x1, y1 = k1 // np.sqrt(n_neurons), k1 % np.sqrt(
                            n_neurons)
                        x2, y2 = k2 // np.sqrt(n_neurons), k2 % np.sqrt(
                            n_neurons)

                        w[k1, k2] = max(
                            -c_high,
                            -inhib * np.sqrt(euclidean([x1, y1], [x2, y2])))

            network.connections['Y', 'Y'].w = w

            increases += 1

        if i % progress_interval == 0:
            print(f'Progress: {i} / {n_examples} ({t() - start:.4f} seconds)')
            start = t()

        if i % update_interval == 0 and i > 0:
            if i % len(labels) == 0:
                current_labels = labels[-update_interval:]
            else:
                current_labels = labels[i % len(images) - update_interval:i %
                                        len(images)]

            # Update and print accuracy evaluations.
            curves, preds = update_curves(curves,
                                          current_labels,
                                          n_classes,
                                          spike_record=spike_record,
                                          assignments=assignments,
                                          proportions=proportions,
                                          ngram_scores=ngram_scores,
                                          n=2)
            print_results(curves)

            for scheme in preds:
                predictions[scheme] = torch.cat(
                    [predictions[scheme], preds[scheme]], -1)

            # Save accuracy curves to disk.
            to_write = ['train'] + params if train else ['test'] + params
            f = '_'.join([str(x) for x in to_write]) + '.pt'
            torch.save((curves, update_interval, n_examples),
                       open(os.path.join(curves_path, f), 'wb'))

            if train:
                if any([x[-1] > best_accuracy for x in curves.values()]):
                    print(
                        'New best accuracy! Saving network parameters to disk.'
                    )

                    # Save network to disk.
                    network.save(os.path.join(params_path, model_name + '.pt'))
                    path = os.path.join(
                        params_path,
                        '_'.join(['auxiliary', model_name]) + '.pt')
                    torch.save((assignments, proportions, rates, ngram_scores),
                               open(path, 'wb'))

                    best_accuracy = max([x[-1] for x in curves.values()])

                # Assign labels to excitatory layer neurons.
                assignments, proportions, rates = assign_labels(
                    spike_record, labels[i - update_interval:i], 10, rates)

                # Compute ngram scores.
                ngram_scores = update_ngram_scores(
                    spike_record, labels[i - update_interval:i], 10, 2,
                    ngram_scores)

            print()

        # Get next input sample.
        image = images[i]
        sample = poisson(datum=image, time=int(time / dt))
        inpts = {'X': sample}

        # Run the network on the input.
        network.run(inpts=inpts, time=time)

        retries = 0
        while spikes['Y'].get('s').sum() < 5 and retries < 3:
            retries += 1
            image *= 2
            sample = poisson(datum=image, time=int(time / dt))
            inpts = {'X': sample}
            network.run(inpts=inpts, time=time)

        # Add to spikes recording.
        spike_record[i % update_interval] = spikes['Y'].get('s').t()

        # Optionally plot various simulation information.
        if plot:
            inpt = inpts['X'].view(time, 784).sum(0).view(28, 28)
            _spikes = {layer: spikes[layer].get('s') for layer in spikes}
            input_exc_weights = network.connections['X', 'Y'].w
            square_weights = get_square_weights(
                input_exc_weights.view(784, n_neurons), n_sqrt, 28)
            square_assignments = get_square_assignments(assignments, n_sqrt)

            # inpt_axes, inpt_ims = plot_input(images[i].view(28, 28), inpt, label=labels[i], axes=inpt_axes, ims=inpt_ims)
            spike_ims, spike_axes = plot_spikes(_spikes,
                                                ims=spike_ims,
                                                axes=spike_axes)
            weights_im = plot_weights(square_weights, im=weights_im)
            # assigns_im = plot_assignments(square_assignments, im=assigns_im)
            # perf_ax = plot_performance(curves, ax=perf_ax)

            plt.pause(1e-8)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    i += 1

    if i % len(labels) == 0:
        current_labels = labels[-update_interval:]
    else:
        current_labels = labels[i % len(images) - update_interval:i %
                                len(images)]

    # Update and print accuracy evaluations.
    curves, preds = update_curves(curves,
                                  current_labels,
                                  n_classes,
                                  spike_record=spike_record,
                                  assignments=assignments,
                                  proportions=proportions,
                                  ngram_scores=ngram_scores,
                                  n=2)
    print_results(curves)

    for scheme in preds:
        predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]],
                                        -1)

    if train:
        if any([x[-1] > best_accuracy for x in curves.values()]):
            print('New best accuracy! Saving network parameters to disk.')

            # Save network to disk.
            network.save(os.path.join(params_path, model_name + '.pt'))
            path = os.path.join(params_path,
                                '_'.join(['auxiliary', model_name]) + '.pt')
            torch.save((assignments, proportions, rates, ngram_scores),
                       open(path, 'wb'))

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    print('Average accuracies:\n')
    for scheme in curves.keys():
        print(f'\t%s: %.2f' % (scheme, float(np.mean(curves[scheme]))))

    # Save accuracy curves to disk.
    to_write = ['train'] + params if train else ['test'] + params
    to_write = [str(x) for x in to_write]
    f = '_'.join(to_write) + '.pt'
    torch.save((curves, update_interval, n_examples),
               open(os.path.join(curves_path, f), 'wb'))

    results = [
        np.mean(curves['all']),
        np.mean(curves['proportion']),
        np.mean(curves['ngram']),
        np.max(curves['all']),
        np.max(curves['proportion']),
        np.max(curves['ngram'])
    ]

    to_write = params + results if train else test_params + results
    to_write = [str(x) for x in to_write]
    name = 'train.csv' if train else 'test.csv'

    if not os.path.isfile(os.path.join(results_path, name)):
        with open(os.path.join(results_path, name), 'w') as f:
            if train:
                f.write(
                    'random_seed,n_neurons,n_train,excite,c_low,c_high,p_low,time,timestep,theta_plus,theta_decay,'
                    'intensity,progress_interval,update_interval,mean_all_activity,mean_proportion_weighting,'
                    'mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )
            else:
                f.write(
                    'random_seed,n_neurons,n_train,n_test,excite,c_low,c_high,p_low,time,timestep,theta_plus,theta_decay,'
                    'intensity,progress_interval,update_interval,mean_all_activity,mean_proportion_weighting,'
                    'mean_ngram,max_all_activity,max_proportion_weighting,max_ngram\n'
                )

    with open(os.path.join(results_path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')

    if labels.numel() > n_examples:
        labels = labels[:n_examples]
    else:
        while labels.numel() < n_examples:
            if 2 * labels.numel() > n_examples:
                labels = torch.cat(
                    [labels, labels[:n_examples - labels.numel()]])
            else:
                labels = torch.cat([labels, labels])

    # Compute confusion matrices and save them to disk.
    confusions = {}
    for scheme in predictions:
        confusions[scheme] = confusion_matrix(labels, predictions[scheme])

    to_write = ['train'] + params if train else ['test'] + test_params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save(confusions, os.path.join(confusion_path, f))

    print()
コード例 #20
0
    hidden_bias_connection = Connection(source=hidden_bias,
                                        target=hidden_layer)
    hidden_connection = Connection(source=hidden_layer, target=output_layer)
    output_bias_connection = Connection(source=output_bias,
                                        target=output_layer)
    network.add_connection(input_connection, source='X', target='Y')
    network.add_connection(hidden_bias_connection, source='Y_b', target='Y')
    network.add_connection(hidden_connection, source='Y', target='Z')
    network.add_connection(output_bias_connection, source='Z_b', target='Z')

    # State variable monitoring.
    for l in network.layers:
        m = Monitor(network.layers[l], state_vars=['s'], time=time)
        network.add_monitor(m, name=l)
else:
    network = load_network(os.path.join(params_path, model_name + '.pt'))

# Load MNIST data.
dataset = MNIST(path=data_path, download=True, shuffle=True)

if train:
    images, labels = dataset.get_train()
else:
    images, labels = dataset.get_test()

images, labels = images[:n_examples], labels[:n_examples]
images, labels = iter(images.view(-1, 784) / 255), iter(labels)

grads = {}
accuracies = []
predictions = []
コード例 #21
0
def main(seed=0,
         n_train=60000,
         n_test=10000,
         kernel_size=(16, ),
         stride=(4, ),
         n_filters=25,
         padding=0,
         inhib=100,
         time=25,
         lr=1e-3,
         lr_decay=0.99,
         dt=1,
         intensity=1,
         progress_interval=10,
         update_interval=250,
         plot=False,
         train=True,
         gpu=False):

    assert n_train % update_interval == 0 and n_test % update_interval == 0, \
        'No. examples must be divisible by update_interval'

    params = [
        seed, n_train, kernel_size, stride, n_filters, padding, inhib, time,
        lr, lr_decay, dt, intensity, update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    if not train:
        test_params = [
            seed, n_train, n_test, kernel_size, stride, n_filters, padding,
            inhib, time, lr, lr_decay, dt, intensity, update_interval
        ]

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    n_examples = n_train if train else n_test
    input_shape = [20, 20]

    if kernel_size == input_shape:
        conv_size = [1, 1]
    else:
        conv_size = (int((input_shape[0] - kernel_size[0]) / stride[0]) + 1,
                     int((input_shape[1] - kernel_size[1]) / stride[1]) + 1)

    n_classes = 10
    n_neurons = n_filters * np.prod(conv_size)
    total_kernel_size = int(np.prod(kernel_size))
    total_conv_size = int(np.prod(conv_size))

    # Build network.
    if train:
        network = Network()
        input_layer = Input(n=400, shape=(1, 1, 20, 20), traces=True)
        conv_layer = DiehlAndCookNodes(n=n_filters * total_conv_size,
                                       shape=(1, n_filters, *conv_size),
                                       thresh=-64.0,
                                       traces=True,
                                       theta_plus=0.05 * (kernel_size[0] / 20),
                                       refrac=0)
        conv_layer2 = LIFNodes(n=n_filters * total_conv_size,
                               shape=(1, n_filters, *conv_size),
                               refrac=0)
        conv_conn = Conv2dConnection(input_layer,
                                     conv_layer,
                                     kernel_size=kernel_size,
                                     stride=stride,
                                     update_rule=WeightDependentPostPre,
                                     norm=0.05 * total_kernel_size,
                                     nu=[0, lr],
                                     wmin=0,
                                     wmax=0.25)
        conv_conn2 = Conv2dConnection(input_layer,
                                      conv_layer2,
                                      w=conv_conn.w,
                                      kernel_size=kernel_size,
                                      stride=stride,
                                      update_rule=None,
                                      wmax=0.25)

        w = -inhib * torch.ones(n_filters, conv_size[0], conv_size[1],
                                n_filters, conv_size[0], conv_size[1])
        for f in range(n_filters):
            for f2 in range(n_filters):
                if f != f2:
                    w[f, :, :f2, :, :] = 0

        w = w.view(n_filters * conv_size[0] * conv_size[1],
                   n_filters * conv_size[0] * conv_size[1])
        recurrent_conn = Connection(conv_layer, conv_layer, w=w)

        network.add_layer(input_layer, name='X')
        network.add_layer(conv_layer, name='Y')
        network.add_layer(conv_layer2, name='Y_')
        network.add_connection(conv_conn, source='X', target='Y')
        network.add_connection(conv_conn2, source='X', target='Y_')
        network.add_connection(recurrent_conn, source='Y', target='Y')

        # Voltage recording for excitatory and inhibitory layers.
        voltage_monitor = Monitor(network.layers['Y'], ['v'], time=time)
        network.add_monitor(voltage_monitor, name='output_voltage')
    else:
        network = load_network(os.path.join(params_path, model_name + '.pt'))
        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'],
            nu=network.connections['X', 'Y'].nu)
        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0

    # Load MNIST data.
    dataset = MNIST(data_path, download=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    images *= intensity
    images = images[:, 4:-4, 4:-4].contiguous()

    # Record spikes during the simulation.
    spike_record = torch.zeros(update_interval, time, n_neurons)
    full_spike_record = torch.zeros(n_examples, n_neurons)

    # Neuron assignments and spike proportions.
    if train:
        logreg_model = LogisticRegression(warm_start=True,
                                          n_jobs=-1,
                                          solver='lbfgs',
                                          max_iter=1000,
                                          multi_class='multinomial')
        logreg_model.coef_ = np.zeros([n_classes, n_neurons])
        logreg_model.intercept_ = np.zeros(n_classes)
        logreg_model.classes_ = np.arange(n_classes)
    else:
        path = os.path.join(params_path,
                            '_'.join(['auxiliary', model_name]) + '.pt')
        logreg_coef, logreg_intercept = torch.load(open(path, 'rb'))
        logreg_model = LogisticRegression(warm_start=True,
                                          n_jobs=-1,
                                          solver='lbfgs',
                                          max_iter=1000,
                                          multi_class='multinomial')
        logreg_model.coef_ = logreg_coef
        logreg_model.intercept_ = logreg_intercept
        logreg_model.classes_ = np.arange(n_classes)

    # Sequence of accuracy estimates.
    curves = {'logreg': []}
    predictions = {scheme: torch.Tensor().long() for scheme in curves.keys()}

    if train:
        best_accuracy = 0

    spikes = {}
    for layer in set(network.layers):
        spikes[layer] = Monitor(network.layers[layer],
                                state_vars=['s'],
                                time=time)
        network.add_monitor(spikes[layer], name='%s_spikes' % layer)

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    inpt_ims = None
    inpt_axes = None
    spike_ims = None
    spike_axes = None
    weights_im = None

    plot_update_interval = 100

    start = t()
    for i in range(n_examples):
        if i % progress_interval == 0:
            print('Progress: %d / %d (%.4f seconds)' %
                  (i, n_examples, t() - start))
            start = t()

        if i % update_interval == 0 and i > 0:
            if train:
                network.connections['X', 'Y'].update_rule.nu[1] *= lr_decay

            if i % len(labels) == 0:
                current_labels = labels[-update_interval:]
                current_record = full_spike_record[-update_interval:]
            else:
                current_labels = labels[i % len(labels) - update_interval:i %
                                        len(labels)]
                current_record = full_spike_record[i % len(labels) -
                                                   update_interval:i %
                                                   len(labels)]

            # Update and print accuracy evaluations.
            curves, preds = update_curves(curves,
                                          current_labels,
                                          n_classes,
                                          full_spike_record=current_record,
                                          logreg=logreg_model)
            print_results(curves)

            for scheme in preds:
                predictions[scheme] = torch.cat(
                    [predictions[scheme], preds[scheme]], -1)

            # Save accuracy curves to disk.
            to_write = ['train'] + params if train else ['test'] + params
            f = '_'.join([str(x) for x in to_write]) + '.pt'
            torch.save((curves, update_interval, n_examples),
                       open(os.path.join(curves_path, f), 'wb'))

            if train:
                if any([x[-1] > best_accuracy for x in curves.values()]):
                    print(
                        'New best accuracy! Saving network parameters to disk.'
                    )

                    # Save network to disk.
                    network.save(os.path.join(params_path, model_name + '.pt'))
                    path = os.path.join(
                        params_path,
                        '_'.join(['auxiliary', model_name]) + '.pt')
                    torch.save((logreg_model.coef_, logreg_model.intercept_),
                               open(path, 'wb'))
                    best_accuracy = max([x[-1] for x in curves.values()])

                # Refit logistic regression model.
                logreg_model = logreg_fit(full_spike_record[:i], labels[:i],
                                          logreg_model)

            print()

        # Get next input sample.
        image = images[i % len(images)]
        sample = bernoulli(datum=image, time=time, dt=dt,
                           max_prob=1).unsqueeze(1).unsqueeze(1)
        inpts = {'X': sample}

        # Run the network on the input.
        network.run(inpts=inpts, time=time)

        network.connections['X', 'Y_'].w = network.connections['X', 'Y'].w

        # Add to spikes recording.
        spike_record[i % update_interval] = spikes['Y_'].get('s').view(
            time, -1)
        full_spike_record[i] = spikes['Y_'].get('s').view(time, -1).sum(0)

        # Optionally plot various simulation information.
        if plot and i % plot_update_interval == 0:
            _input = inpts['X'].view(time, 400).sum(0).view(20, 20)
            w = network.connections['X', 'Y'].w

            _spikes = {
                'X': spikes['X'].get('s').view(400, time),
                'Y': spikes['Y'].get('s').view(n_filters * total_conv_size,
                                               time),
                'Y_': spikes['Y_'].get('s').view(n_filters * total_conv_size,
                                                 time)
            }

            inpt_axes, inpt_ims = plot_input(image.view(20, 20),
                                             _input,
                                             label=labels[i % len(labels)],
                                             ims=inpt_ims,
                                             axes=inpt_axes)
            spike_ims, spike_axes = plot_spikes(spikes=_spikes,
                                                ims=spike_ims,
                                                axes=spike_axes)
            weights_im = plot_conv2d_weights(
                w, im=weights_im, wmax=network.connections['X', 'Y'].wmax)

            plt.pause(1e-2)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    i += 1

    if i % len(labels) == 0:
        current_labels = labels[-update_interval:]
        current_record = full_spike_record[-update_interval:]
    else:
        current_labels = labels[i % len(labels) - update_interval:i %
                                len(labels)]
        current_record = full_spike_record[i % len(labels) -
                                           update_interval:i % len(labels)]

    # Update and print accuracy evaluations.
    curves, preds = update_curves(curves,
                                  current_labels,
                                  n_classes,
                                  full_spike_record=current_record,
                                  logreg=logreg_model)
    print_results(curves)

    for scheme in preds:
        predictions[scheme] = torch.cat([predictions[scheme], preds[scheme]],
                                        -1)

    if train:
        if any([x[-1] > best_accuracy for x in curves.values()]):
            print('New best accuracy! Saving network parameters to disk.')

            # Save network to disk.
            network.save(os.path.join(params_path, model_name + '.pt'))
            path = os.path.join(params_path,
                                '_'.join(['auxiliary', model_name]) + '.pt')
            torch.save((logreg_model.coef_, logreg_model.intercept_),
                       open(path, 'wb'))

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')

    print('Average accuracies:\n')
    for scheme in curves.keys():
        print('\t%s: %.2f' % (scheme, float(np.mean(curves[scheme]))))

    # Save accuracy curves to disk.
    to_write = ['train'] + params if train else ['test'] + params
    to_write = [str(x) for x in to_write]
    f = '_'.join(to_write) + '.pt'
    torch.save((curves, update_interval, n_examples),
               open(os.path.join(curves_path, f), 'wb'))

    # Save results to disk.
    results = [np.mean(curves['logreg']), np.std(curves['logreg'])]

    to_write = params + results if train else test_params + results
    to_write = [str(x) for x in to_write]
    name = 'train.csv' if train else 'test.csv'

    if not os.path.isfile(os.path.join(results_path, name)):
        with open(os.path.join(results_path, name), 'w') as f:
            if train:
                columns = [
                    'seed', 'n_train', 'kernel_size', 'stride', 'n_filters',
                    'padding', 'inhib', 'time', 'lr', 'lr_decay', 'dt',
                    'intensity', 'update_interval', 'mean_logreg', 'std_logreg'
                ]

                header = ','.join(columns) + '\n'
                f.write(header)
            else:
                columns = [
                    'seed', 'n_train', 'n_test', 'kernel_size', 'stride',
                    'n_filters', 'padding', 'inhib', 'time', 'lr', 'lr_decay',
                    'dt', 'intensity', 'update_interval', 'mean_logreg',
                    'std_logreg'
                ]

                header = ','.join(columns) + '\n'
                f.write(header)

    with open(os.path.join(results_path, name), 'a') as f:
        f.write(','.join(to_write) + '\n')

    if labels.numel() > n_examples:
        labels = labels[:n_examples]
    else:
        while labels.numel() < n_examples:
            if 2 * labels.numel() > n_examples:
                labels = torch.cat(
                    [labels, labels[:n_examples - labels.numel()]])
            else:
                labels = torch.cat([labels, labels])

    # Compute confusion matrices and save them to disk.
    confusions = {}
    for scheme in predictions:
        confusions[scheme] = confusion_matrix(labels, predictions[scheme])

    to_write = ['train'] + params if train else ['test'] + test_params
    f = '_'.join([str(x) for x in to_write]) + '.pt'
    torch.save(confusions, os.path.join(confusion_path, f))
コード例 #22
0
def main(seed=0, n_neurons=100, n_train=60000, n_test=10000, inhib=100, lr=0.01, lr_decay=1, time=350, dt=1,
         theta_plus=0.05, theta_decay=1e-7, progress_interval=10, update_interval=250, plot=False,
         train=True, gpu=False):

    assert n_train % update_interval == 0 and n_test % update_interval == 0, \
                            'No. examples must be divisible by update_interval'

    params = [
        seed, n_neurons, n_train, inhib, lr_decay, time, dt,
        theta_plus, theta_decay, progress_interval, update_interval
    ]

    test_params = [
        seed, n_neurons, n_train, n_test, inhib, lr_decay, time, dt,
        theta_plus, theta_decay, progress_interval, update_interval
    ]

    model_name = '_'.join([str(x) for x in params])

    np.random.seed(seed)

    if gpu:
        torch.set_default_tensor_type('torch.cuda.FloatTensor')
        torch.cuda.manual_seed_all(seed)
    else:
        torch.manual_seed(seed)

    n_examples = n_train if train else n_test
    n_sqrt = int(np.ceil(np.sqrt(n_neurons)))
    n_classes = 10

    # Build network.
    if train:
        network = Network(dt=dt)

        input_layer = RealInput(n=784, traces=True, trace_tc=5e-2)
        network.add_layer(input_layer, name='X')

        output_layer = DiehlAndCookNodes(
            n=n_neurons, traces=True, rest=0, reset=1, thresh=1, refrac=0,
            decay=1e-2, trace_tc=5e-2, theta_plus=theta_plus, theta_decay=theta_decay
        )
        network.add_layer(output_layer, name='Y')

        readout = IFNodes(n=n_classes, reset=0, thresh=1)
        network.add_layer(readout, name='Z')

        w = torch.rand(784, n_neurons)
        input_connection = Connection(
            source=input_layer, target=output_layer, w=w,
            update_rule=MSTDP, nu=lr, wmin=0, wmax=1, norm=78.4
        )
        network.add_connection(input_connection, source='X', target='Y')

        w = -inhib * (torch.ones(n_neurons, n_neurons) - torch.diag(torch.ones(n_neurons)))
        recurrent_connection = Connection(
            source=output_layer, target=output_layer, w=w, wmin=-inhib, wmax=0
        )
        network.add_connection(recurrent_connection, source='Y', target='Y')

        readout_connection = Connection(
            source=network.layers['Y'], target=readout, w=torch.rand(n_neurons, n_classes), norm=10
        )
        network.add_connection(readout_connection, source='Y', target='Z')

    else:
        network = load_network(os.path.join(params_path, model_name + '.pt'))
        network.connections['X', 'Y'].update_rule = NoOp(
            connection=network.connections['X', 'Y'], nu=network.connections['X', 'Y'].nu
        )
        network.layers['Y'].theta_decay = 0
        network.layers['Y'].theta_plus = 0

    # Load MNIST data.
    dataset = MNIST(path=data_path, download=True)

    if train:
        images, labels = dataset.get_train()
    else:
        images, labels = dataset.get_test()

    images = images.view(-1, 784)
    labels = labels.long()

    spikes = {}
    for layer in set(network.layers) - {'X'}:
        spikes[layer] = Monitor(network.layers[layer], state_vars=['s'], time=time)
        network.add_monitor(spikes[layer], name='%s_spikes' % layer)

    # Train the network.
    if train:
        print('\nBegin training.\n')
    else:
        print('\nBegin test.\n')

    inpt_axes = None
    inpt_ims = None
    spike_ims = None
    spike_axes = None
    weights_im = None
    weights2_im = None
    assigns_im = None
    perf_ax = None

    predictions = torch.zeros(update_interval).long()

    start = t()
    for i in range(n_examples):
        if i % progress_interval == 0:
            print(f'Progress: {i} / {n_examples} ({t() - start:.4f} seconds)')
            start = t()

            if i > 0 and train:
                network.connections['X', 'Y'].update_rule.nu[1] *= lr_decay

        # Get next input sample.
        image = images[i % len(images)]

        # Run the network on the input.
        for j in range(time):
            readout = network.layers['Z'].s

            if readout[labels[i % len(labels)]]:
                network.run(inpts={'X': image.unsqueeze(0)}, time=1, reward=1, a_minus=0, a_plus=1)
            else:
                network.run(inpts={'X': image.unsqueeze(0)}, time=1, reward=0)

        label = spikes['Z'].get('s').sum(1).argmax()
        predictions[i % update_interval] = label.long()

        if i > 0 and i % update_interval == 0:
            if i % len(labels) == 0:
                current_labels = labels[-update_interval:]
            else:
                current_labels = labels[i % len(images) - update_interval:i % len(images)]

            accuracy = 100 * (predictions == current_labels).float().mean().item()
            print(f'Accuracy over last {update_interval} examples: {accuracy}')

        # Optionally plot various simulation information.
        if plot:
            _spikes = {layer: spikes[layer].get('s') for layer in spikes}
            input_exc_weights = network.connections['X', 'Y'].w
            square_weights = get_square_weights(input_exc_weights.view(784, n_neurons), n_sqrt, 28)
            exc_readout_weights = network.connections['Y', 'Z'].w

            # _input = image.view(28, 28)
            # reconstruction = inpts['X'].view(time, 784).sum(0).view(28, 28)
            # square_assignments = get_square_assignments(assignments, n_sqrt)

            spike_ims, spike_axes = plot_spikes(_spikes, ims=spike_ims, axes=spike_axes)
            weights_im = plot_weights(square_weights, im=weights_im)
            weights2_im = plot_weights(exc_readout_weights, im=weights2_im)

            # inpt_axes, inpt_ims = plot_input(_input, reconstruction, label=labels[i], axes=inpt_axes, ims=inpt_ims)
            # assigns_im = plot_assignments(square_assignments, im=assigns_im)
            # perf_ax = plot_performance(curves, ax=perf_ax)

            plt.pause(1e-8)

        network.reset_()  # Reset state variables.

    print(f'Progress: {n_examples} / {n_examples} ({t() - start:.4f} seconds)')

    if train:
        print('\nTraining complete.\n')
    else:
        print('\nTest complete.\n')