コード例 #1
0
def save2binvox(reconstructed_volume, data_name1, data_name2):
    with open(data_name1, "rb") as f:
        bvx = brw.read_as_3d_array(f)
    bvx.dims = [256, 256, 256]
    bvx.data = reconstructed_volume
    with open(data_name2, "wb") as f:
        brw.write(bvx, f)
コード例 #2
0
def voxelizePart(grid, scale, translate, dims, cloud, labels, partId,
                 outputPath):
    bbmin = np.min(cloud, axis=0)
    bbmax = np.max(cloud, axis=0)
    center = 0.5 * (bbmax - bbmin)
    w1s = np.where(grid == 1)
    grid_xyz = [[x, y, z] for x, y, z in zip(w1s[0], w1s[1], w1s[2])]
    grid_xyz = np.array(grid_xyz)
    grid_xyz_sc = []
    for p in grid_xyz:
        trans_p = [0, 0, 0]
        trans_p[0] = scale * ((1 / scale) * center[0] - 0.5 + float(
            (p[0] + 0.5) / dims)) + translate[0]
        trans_p[1] = scale * ((1 / scale) * center[1] - 0.5 + float(
            (p[1] + 0.5) / dims)) + translate[1]
        trans_p[2] = scale * ((1 / scale) * center[2] - 0.5 + float(
            (p[2] + 0.5) / dims)) + translate[2]
        grid_xyz_sc.append(trans_p)
    grid_xyz_sc = np.array(grid_xyz_sc)
    #grid_xyz_sc is now in the same coordinate frame as the point-cloud

    clf = knc(n_neighbors=1)
    clf.fit(cloud, labels)
    voxelLabels = clf.predict(grid_xyz_sc)
    partIndices = voxelLabels == partId
    partVoxelIndices = grid_xyz[partIndices, :]
    partvox = np.zeros((dims, dims, dims, 1))
    partvox[partVoxelIndices[:, 0], partVoxelIndices[:, 2],
            partVoxelIndices[:, 1], 0] = 1
    partvox = partvox.astype('int')
    partbinvox = binvox_rw.Voxels(partvox, (dims, dims, dims), [0, 0, 0], 1,
                                  'xzy')
    partname = 'model_' + str(partId) + '.binvox'
    binvox_rw.write(partbinvox, open(os.path.join(outputPath, partname), 'wb'))
コード例 #3
0
ファイル: shape.py プロジェクト: prakhar0402/morph3D
 def write_voxel(self, filename):
     '''
     Write the voxel model data into a .binvox file
     '''
     if len(filename) != 0 and not self.isempty():
         fp = open(filename, 'w')
         data = self.voxel > 0
         dims = list(self.get_voxel_shape())
         translate = [0.0, 0.0, 0.0]
         scale = 1.0
         axis_order = 'xyz'
         model = binvox_rw.Voxels(data, dims, translate, scale, axis_order)
         binvox_rw.write(model, fp)
コード例 #4
0
def save_binvox_input_output(input_cloud, mean_voxel, binvox_folder):

    import binvox_rw
    import curvox

    cnn_voxel = shape_completion_utils.round_voxel_grid_to_0_and_1(mean_voxel)
    partial_vox = curvox.pc_vox_utils.pc_to_binvox_for_shape_completion(
        points=input_cloud[:, 0:3], patch_size=40)
    completed_vox = binvox_rw.Voxels(cnn_voxel, partial_vox.dims,
                                     partial_vox.translate, partial_vox.scale,
                                     partial_vox.axis_order)
    binvox_rw.write(partial_vox,
                    open(binvox_folder + "network_input.binvox", 'w'))
    binvox_rw.write(completed_vox,
                    open(binvox_folder + "network_output.binvox", 'w'))
コード例 #5
0
def process_binvox(outfile, res, prediction, fn, idx):
    # output voxel .binvox file
    # computer center and scale
    t = time.time()
    MIN = np.min(prediction, 0)
    MAX = np.max(prediction, 0)
    translate = (MIN + MAX) * 0.5
    translate = [float(x) for x in translate]
    scale = np.max(MAX - MIN)
    dims = [res, res, res]
    order = 'xzy'
    voxel_data = ((prediction - translate) / scale * res + (res - 1.0) / 2.0).T
    with open(outfile, 'wb') as fout:
        binvox_rw.write(
            binvox_rw.Voxels(np.ascontiguousarray(voxel_data), dims, translate,
                             scale, order), fout)
    print(fn, idx, voxel_data.shape, ' took %f[s]' % (time.time() - t))
コード例 #6
0
def cnn_and_pc_to_mesh(observed_pc,
                       cnn_voxel,
                       filepath,
                       mesh_name,
                       model_pose,
                       log_pc=False,
                       pc_name=""):
    cnn_voxel = round_voxel_grid_to_0_and_1(cnn_voxel)
    temp_pcd_handle, temp_pcd_filepath = tempfile.mkstemp(suffix=".pcd")
    os.close(temp_pcd_handle)
    pcd = np_to_pcl(observed_pc)
    pcl.save(pcd, temp_pcd_filepath)

    partial_vox = curvox.pc_vox_utils.pc_to_binvox_for_shape_completion(
        points=observed_pc[:, 0:3], patch_size=40)
    completed_vox = binvox_rw.Voxels(cnn_voxel, partial_vox.dims,
                                     partial_vox.translate, partial_vox.scale,
                                     partial_vox.axis_order)
    # Now we save the binvox file so that it can be passed to the
    # post processing along with the partial.pcd
    temp_handle, temp_binvox_filepath = tempfile.mkstemp(
        suffix="output.binvox")
    os.close(temp_handle)
    binvox_rw.write(completed_vox, open(temp_binvox_filepath, 'w'))

    # This is the file that the post-processed mesh will be saved it.
    mesh_file = file_utils.create_file(filepath, mesh_name)
    # mesh_reconstruction tmp/completion.binvox tmp/partial.pcd tmp/post_processed.ply
    # This command will look something like

    cmd_str = "mesh_reconstruction" + " " + temp_binvox_filepath + " " + temp_pcd_filepath \
        + " " + mesh_file + " --cuda"

    subprocess.call(cmd_str.split(" "), stdout=FNULL, stderr=subprocess.STDOUT)

    # subprocess.call(cmd_str.split(" "))
    if log_pc:
        pcd_file = file_utils.create_file(filepath, pc_name)
        cmd_str = "pcl_pcd2ply -format 0" + " " + temp_pcd_filepath + " " + pcd_file
        subprocess.call(cmd_str.split(" "),
                        stdout=FNULL,
                        stderr=subprocess.STDOUT)
        map_object_to_gt(pcd_file, model_pose)

    map_object_to_gt(mesh_file, model_pose)
コード例 #7
0
def main():
    if not len(sys.argv) == 2:
        print('python binvox_converter.py input_file_folder')
        sys.exit(1)

    input_file_folder = sys.argv[1]
    if not os.path.exists(input_file_folder) or not os.path.isdir(
            input_file_folder):
        print('[ERROR] Input folder not exists!')
        sys.exit(2)

    N_VOX = 32
    MESH_EXTENSION = '*.off'

    folder_path = os.path.join(input_file_folder, MESH_EXTENSION)
    mesh_files = glob(folder_path)

    for m_file in mesh_files:
        file_path = os.path.join(input_file_folder, m_file)
        file_name, ext = os.path.splitext(m_file)
        binvox_file_path = os.path.join(input_file_folder,
                                        '%s.binvox' % file_name)

        if os.path.exists(binvox_file_path):
            print('[WARN] %s File: %s exists. It will be overwritten.' %
                  (dt.now(), binvox_file_path))
            os.remove(binvox_file_path)

        print('[INFO] %s Processing file: %s' % (dt.now(), file_path))
        rc = subprocess.call([
            'binvox', '-d',
            str(N_VOX), '-e', '-cb', '-rotx', '-rotx', '-rotx', '-rotz', m_file
        ])
        if not rc == 0:
            print('[WARN] %s Failed to convert file: %s' % (dt.now(), m_file))
            continue

        with open(binvox_file_path, 'rb') as file:
            v = binvox_rw.read_as_3d_array(file)

        v.data = np.transpose(v.data, (2, 0, 1))
        with open(binvox_file_path, 'wb') as file:
            binvox_rw.write(v, file)
コード例 #8
0
def pcd2binvox(pcd_filepath, binvox_filepath, grid_dim):
    '''
    This function takes a pcd filepath, and converts it to
    a binvox file.  This does not voxeliz the point cloud,
    it assumes each point can be represented as indices
    ex cloud:
    pts = [(0,1,0), (0,10,23), ...]
    would be converted to a binvox with voxels 
    (0,1,0) and (0 , 10, 23) occupied
    '''

    pc = pcl.load(pcd_filepath)
    pc_arr = pc.to_array().astype(int)
    pc_mask = (pc_arr[:,0], pc_arr[:,1], pc_arr[:,2])

    out = np.zeros((grid_dim, grid_dim, grid_dim))
    out[pc_mask] = 1
    out_int = out.astype(int)

    bv = binvox_rw.Voxels(out_int, out_int.shape, (0,0,0),1, 'xyz')
    binvox_rw.write(bv, open(binvox_filepath, 'w'))
コード例 #9
0
def write_binvox_file(pred, filename):
    with open(filename, 'wb+') as f:
        voxel = binvox_rw.Voxels(pred, [32, 32, 32], [0, 0, 0], 1, 'xzy')
        binvox_rw.write(voxel, f)
        f.close()
コード例 #10
0
voxel_model = pcvu.pc_to_binvox_for_shape_completion(pcd_as_np, patch_size)
# print(voxel_model)
# print(type(voxel_model))
#is a <class 'binvox_rw.binvox_rw.Voxels'>

#Vs. saving this method gives a solid version even at 256, but looks low resolution
# voxel_model = pcvu.voxelize_points(pcd_as_np, [0,0,0], 1., patch_size, [0,0,0])
# voxel_model = binvox_rw.Voxels(voxel_model, [patch_size,patch_size,patch_size], [0, 0, 0], 0, 'xzy')

#bbox_center = [0,0,0]
#voxel_resolution = 1.
# center = [patch_size/2.,patch_size/2.,patch_size/2.]
# voxel_model = pcvu.voxelize_points(pcd_as_np, bbox_center, voxel_resolution, patch_size, center)
# voxel_model = binvox_rw.Voxels(voxel_model, [patch_size,patch_size,patch_size], [0,0,0], 0, 'xzy')

#Just save out a binvox to look at it and make sure it looks right:
#voxel_model = binvox_rw.Voxels(occupancy_3d_array, [resolution, resolution, resolution], [0, 0, 0], 0, 'xzy')
test_binvox_path = "/home/gregkocher/Desktop/aaaaaaaaa.binvox"
with open(test_binvox_path, 'wb') as fp:
    binvox_rw.write(voxel_model, fp, fast=True)
viewvox_path = '/home/gregkocher/CLionProjects/viewvox/viewvox'
test_cmd = '{0} {1}'.format(viewvox_path, test_binvox_path)
test_process = subprocess.Popen(test_cmd, shell=True)

#Now convert from voxels to octree.
#Even if following OGN paper and doing input as 2D image, need the octrees as truth for loss functions.
#Using the scripts provided by the OGN paper authors:
#10/2/2017 actually the OGN repo does not have working code for this.
#Their .../tools/ogn_converter.cpp cannot compile because of various issues.
#Their python code does not go binvox->octree, only the reverse direction.
#So have to make our own...
コード例 #11
0
def _SaveBinvox(vol, filepath):
    binvoxvol = binvox_rw.Voxels(vol.voxels, vol.voxels.shape, vol.origin, "%g %g %g" % (vol.voxsize[0], vol.voxsize[1], vol.voxsize[2]), 'xzy')
    binvox_rw.write(binvoxvol, filepath)
コード例 #12
0
def test(model, model_pose_filepath, partial_view_filepath,
         completion_filepath, gt_center_to_upright_filepath):

    pc = pcl.load(partial_view_filepath).to_array()
    model_pose = np.load(model_pose_filepath)
    gt_center_to_upright = np.load(gt_center_to_upright_filepath)

    batch_x = np.zeros(
        (1, args.PATCH_SIZE, args.PATCH_SIZE, args.PATCH_SIZE, 1),
        dtype=np.float32)

    batch_x[
        0, :, :, :, :], voxel_resolution, offset = build_test_from_pc_scaled(
            pc, args.PATCH_SIZE)

    mask = get_occluded_voxel_grid(batch_x[0, :, :, :, 0])

    #make batch B2C01 rather than B012C
    batch_x = batch_x.transpose(0, 3, 4, 1, 2)

    pred = model._predict(batch_x)

    # Prediction comes in format [batch number, z-axis, patch number, x-axis,
    #                             y-axis].
    pred = pred.reshape(1, args.PATCH_SIZE, 1, args.PATCH_SIZE,
                        args.PATCH_SIZE)

    # Convert prediction to format [batch number, x-axis, y-axis, z-axis,
    #                               patch number].
    pred_as_b012c = pred.transpose(0, 3, 4, 1, 2)

    completed_region = pred_as_b012c[0, :, :, :, 0]

    #output is voxel grid from camera_frame of reference.
    output = completed_region * mask

    output_vox = output > 0.5

    # This is the voxel grid in the camera frame of reference.
    vox = binvox_rw.Voxels(output > 0.5,
                           (args.PATCH_SIZE, args.PATCH_SIZE, args.PATCH_SIZE),
                           (offset[0], offset[1], offset[2]),
                           voxel_resolution * args.PATCH_SIZE, "xyz")
    '''
    #go from voxel grid back to list of points. 
    #4xn
    completion = np.zeros((4, len(output_vox.nonzero()[0])))
    completion[0] = (output_vox.nonzero()[0] ) * voxel_resolution + offset[0]
    completion[1] = (output_vox.nonzero()[1] ) * voxel_resolution + offset[1]
    completion[2] = (output_vox.nonzero()[2] ) * voxel_resolution + offset[2]
    completion[3] = 1.0


    world_to_camera_transform = np.array([[0, 0, 1, -1],[-1, 0, 0, 0], [0, -1, 0, 0], [0, 0, 0, 1]])
    transform = np.dot(model_pose.T, world_to_camera_transform)
    # 4xn array                                                                 
    completion_rot = np.dot(transform, completion).T

    for i in range(3):
        completion_rot[:,i] += gt_center_to_upright[i]

    center = get_center(completion_rot[:,0:3])
    pc_center_in_voxel_grid = (20, 20, 20)
    offset = np.array(center) - np.array(pc_center_in_voxel_grid) * voxel_resolution

    patch_center_z = (completion_rot[:, 2].max() + completion_rot[:, 2].min())/2.0
    patch_center = (0,0,patch_center_z)

    voxel_grid = create_voxel_grid_around_point_scaled(completion_rot[:,0:3], patch_center,
                                          voxel_resolution, args.PATCH_SIZE,
                                          (20,20,20))

    vox = binvox_rw.Voxels(voxel_grid[:,:,:,0],
                   (args.PATCH_SIZE, args.PATCH_SIZE, args.PATCH_SIZE),
                   (offset[0], offset[1], offset[2]),
                   voxel_resolution * args.PATCH_SIZE,
                   "xyz")
    '''

    #if not os.path.exists(completion_filepath):
    binvox_rw.write(vox, open(completion_filepath, 'w'))
コード例 #13
0
def _SaveBinvox(vol, filepath):
    binvoxvol = binvox_rw.Voxels(
        vol.voxels, vol.voxels.shape, vol.origin,
        "%g %g %g" % (vol.voxsize[0], vol.voxsize[1], vol.voxsize[2]), 'xzy')
    binvox_rw.write(binvoxvol, filepath)
コード例 #14
0
    def completion_cb(self, goal):
        rospy.loginfo('Received Completion Goal')

        self._feedback = pc_pipeline_msgs.msg.CompletePartialCloudFeedback()
        self._result = pc_pipeline_msgs.msg.CompletePartialCloudResult()

        temp_pcd_handle, temp_pcd_filepath = tempfile.mkstemp(suffix=".pcd")
        os.close(temp_pcd_handle)
        partial_pc_np = curvox.cloud_conversions.cloud_msg_to_np(
            goal.partial_cloud)
        pcd = curvox.cloud_conversions.np_to_pcl(partial_pc_np)
        pcl.save(pcd, temp_pcd_filepath)

        partial_vox = curvox.pc_vox_utils.pc_to_binvox_for_shape_completion(
            points=partial_pc_np[:, 0:3], patch_size=self.patch_size)

        batch_x = np.zeros(
            (1, self.patch_size, self.patch_size, self.patch_size, 1),
            dtype=np.float32)
        batch_x[0, :, :, :, 0] = partial_vox.data

        if self.flip_batch_x:
            rospy.loginfo("Flipping Batch X, if performance is poor,\
            try setting flip_batch_x=False")
            batch_x = batch_x.transpose(0, 2, 1, 3, 4)
            batch_x_new = np.zeros_like(batch_x)
            for i in range(40):
                batch_x_new[0, i, :, :, 0] = batch_x[0, 40 - i - 1, :, :, 0]

            batch_x = batch_x_new
        else:
            rospy.loginfo("NOT Flipping Batch X, if performance is poor,\
                try setting flip_batch_x=True")

        # output is the completed voxel grid,
        # it is all floats between 0,1 as last layer is softmax
        # think of this as probability of occupancy per voxel
        # output.shape = (X,Y,Z)
        output = self.complete_voxel_grid(batch_x)

        if self.flip_batch_x:
            rospy.loginfo("flipping batch x back")
            output_new = np.zeros_like(output)
            for i in range(40):
                output_new[i, :, :] = output[40 - i - 1, :, :]

            output = output_new
            output = output.transpose(1, 0, 2)

        # mask the output, so above 0.5 is occupied
        # below 0.5 is empty space.
        output_vox = np.array(output) > 0.5

        # Save the binary voxel grid as an occupancy map
        # in a binvox file
        completed_vox = binvox_rw.Voxels(output_vox, partial_vox.dims,
                                         partial_vox.translate,
                                         partial_vox.scale,
                                         partial_vox.axis_order)

        # Now we save the binvox file so that it can be passed to the
        # post processing along with the partial.pcd
        temp_handle, temp_binvox_filepath = tempfile.mkstemp(
            suffix="output.binvox")
        os.close(temp_handle)
        binvox_rw.write(completed_vox, open(temp_binvox_filepath, 'w'))

        # Now we save the binvox file so that it can be passed to the
        # post processing along with the partial.pcd
        temp_handle, temp_input_binvox_file = tempfile.mkstemp(
            suffix="input.binvox")
        os.close(temp_handle)
        binvox_rw.write(partial_vox, open(temp_input_binvox_file, 'w'))

        # This is the file that the post-processed mesh will be saved it.
        temp_handle, temp_completion_filepath = tempfile.mkstemp(suffix=".ply")
        os.close(temp_handle)
        # This command will look something like
        # mesh_reconstruction tmp/completion.binvox tmp/partial.pcd tmp/post_processed.ply
        cmd_str = self.post_process_executable + " " + temp_binvox_filepath + " " + temp_pcd_filepath \
                  + " " + temp_completion_filepath + " --cuda"

        subprocess.call(cmd_str.split(" "))

        # Now we are going to read in the post-processed mesh, that is a merge
        # of the partial view and of the completion from the CNN
        mesh = curvox.mesh_conversions.read_mesh_msg_from_ply_filepath(
            temp_completion_filepath)

        self._result.mesh = mesh

        self._as.set_succeeded(self._result)
        rospy.loginfo('Finished Msg')
コード例 #15
0
def align_gt_and_partial(gt_file_path,
                         gt_mesh_file_path,
                         model_pose_filepath,
                         single_view_pointcloud_filepath,
                         model_name,
                         partial_name ):

    model_pose = np.load(model_pose_filepath)
    partial_np_pc = load_partial_np_pc(single_view_pointcloud_filepath)
    gt_np_pc = load_gt_np_pc(gt_file_path)

    gt_mesh = plyfile.PlyData.read(gt_mesh_file_path)
    gt_mesh_vertices = np.zeros((gt_mesh['vertex']['x'].shape[0], 4))
    gt_mesh_vertices[:, 0] = gt_mesh['vertex']['x']
    gt_mesh_vertices[:, 1] = gt_mesh['vertex']['y']
    gt_mesh_vertices[:, 2] = gt_mesh['vertex']['z']

    partial_np_pc_cf, gt_np_pc_cf, gt_mesh_vertices_cf = map_to_camera_frame(
        partial_np_pc, gt_np_pc, gt_mesh_vertices, model_pose)

    partial_np_pc_of, camera_to_object_transform = map_to_object_frame(
        partial_np_pc, model_pose)
    
    gt_mesh['vertex']['x'] = gt_mesh_vertices_cf[:, 0]
    gt_mesh['vertex']['y'] = gt_mesh_vertices_cf[:, 1]
    gt_mesh['vertex']['z'] = gt_mesh_vertices_cf[:, 2]

    partial_pcd_pc_cf = pcl.PointCloud(np.array(partial_np_pc_cf.transpose()[:, 0:3], np.float32))
    gt_pcd_pc_cf = pcl.PointCloud(np.array(gt_np_pc_cf.transpose()[:, 0:3], np.float32))

    partial_pcd_pc_of = pcl.PointCloud(np.array(partial_np_pc_of.transpose()[:, 0:3], np.float32))
    gt_pcd_pc_of = pcl.PointCloud(np.array(gt_np_pc[:, 0:3], np.float32))
    
    result_folder = results_dir + model_name + "/" + partial_name + "/"
    if not os.path.exists(result_folder):
        os.makedirs(result_folder)

    partial_filepath = result_folder + "c_partial.pcd"
    if not os.path.exists(partial_filepath):
        pcl.save(partial_pcd_pc_cf, partial_filepath)

    gt_filepath = result_folder + "c_gt.pcd"
    if not os.path.exists(gt_filepath):
        pcl.save(gt_pcd_pc_cf, gt_filepath)

    partial_filepath_of = result_folder + "c_partial_of.pcd"
    if not os.path.exists(partial_filepath_of):
        pcl.save(partial_pcd_pc_of, partial_filepath_of)

    gt_filepath_of = result_folder + "c_gt_of.pcd"
    if not os.path.exists(gt_filepath_of):
        pcl.save(gt_pcd_pc_of, gt_filepath_of)

    gt_mesh_filepath = result_folder + "c_gt.ply"
    if True: #not os.path.exists(gt_mesh_filepath):
        gt_mesh.text = True
        gt_mesh.write(open(gt_mesh_filepath, "w"))

    completed_filepath = result_folder + "c_completed.pcd"
    if not os.path.exists(completed_filepath):
       completed_pcd_cf, completed_pcd_of, completed_binvox = get_completion(partial_np_pc, camera_to_object_transform)
       pcl.save(completed_pcd_cf, completed_filepath)
       pcl.save(completed_pcd_of, completed_filepath.replace(".pcd", "_of.pcd"))

       binvox_filepath = result_folder + "c_completed.binvox"
       if not os.path.exists(binvox_filepath):
           binvox_rw.write(completed_binvox, open(binvox_filepath, 'w'))


    camera_to_object_transform_filepath = result_folder + "camera_to_object.npy"
    if not os.path.exists(camera_to_object_transform_filepath):
        np.save(camera_to_object_transform_filepath, camera_to_object_transform.T)
コード例 #16
0
def AnalyzeOutput_SingleFile(test_ot_path,truth_ot_path,view=True,ignore_truth=False):
    """
    Convert the .ot output file to a binvox file and optionally view the 3d model using viewvox.
    Also, load the ground truth .ot file to do basic numerical analysis.


    test_ot_path - path to output .ot file

    truth_ot_path - path to corresponding ground truth .ot file

    e.g.
    test_ot_path = '/home/gregkocher/CLionProjects/ogn/examples/shape_from_id/shapenet_cars_256/output/0065.ot'
    truth_ot_path = '/home/gregkocher/CLionProjects/ogn/data/shapenet_cars/256_l4/0065.ot'
    IOU, NMI = AnalyzeOutput_SingleFile(test_ot_path,truth_ot_path,view=True)
    """


    #Load the .ot file that is output from the OGN test net, use the authors' scripts to convert to numpy array
    #npy_out_path = test_ot_path.replace('.ot','_voxels.npy')
    ot, resolution = python_octree.import_ot(test_ot_path)
    output = python_octree.octree_to_voxel_grid(ot, resolution)
    # print(output)
    # print(output.sum())
    # print(output.size)
    #np.save(npy_out_path,output)


    #Now use binvox_rw python module to convert the numpy array to .binvox file
    occupancy_3d_array = output.astype(np.int)
    #binvox_rw.Voxels(occupancy_3d_array, data, dims, translate, scale, axis_order)
    voxel_model = binvox_rw.Voxels(occupancy_3d_array, [resolution, resolution, resolution], [0, 0, 0], 0, 'xzy')
    #Output as a binvox file
    test_binvox_path = test_ot_path[:-3] + '.binvox'
    with open(test_binvox_path,'wb') as fp:
        binvox_rw.write(voxel_model, fp, fast=True)
        #binvox_rw.write(voxel_model, fp, fast=False)




    IOU = None
    NMI = None
    if not ignore_truth:

        #Also load the ground truth .ot file for comparison
        truth_ot, truth_resolution = python_octree.import_ot(truth_ot_path)
        truth_output = python_octree.octree_to_voxel_grid(truth_ot, truth_resolution).astype(np.int)

        #Now use binvox_rw python module to convert the numpy array to .binvox file
        truth_occupancy_3d_array = truth_output.astype(np.int)
        #binvox_rw.Voxels(occupancy_3d_array, data, dims, translate, scale, axis_order)
        truth_voxel_model = binvox_rw.Voxels(truth_occupancy_3d_array, [truth_resolution, truth_resolution, truth_resolution], [0, 0, 0], 0, 'xzy')
        #Output as a binvox file, put it in the test output dir side by side with test output binvox
        truth_binvox_path = test_binvox_path.replace('.binvox','_truth.binvox')
        with open(truth_binvox_path,'wb') as fp:
            binvox_rw.write(truth_voxel_model, fp, fast=True)
            #binvox_rw.write(truth_voxel_model, fp, fast=False)



        #Now do some basic numerical comparisons of output to ground truth:
        #IOU, Jake's mesh Hausdorff....
        #intersection_over_union(gt, pr)
        IOU = python_octree.intersection_over_union(truth_occupancy_3d_array.flatten(), occupancy_3d_array.flatten())
        NMI = metrics.normalized_mutual_info_score(truth_occupancy_3d_array.flatten(), occupancy_3d_array.flatten())
        print('IOU', IOU)
        print('NMI', NMI)
        #print('AMI', metrics.adjusted_mutual_info_score(truth_occupancy_3d_array.flatten(), occupancy_3d_array.flatten()))






    #Optionally view the binvox files using viewvox
    if view:
        viewvox_path = '/home/gregkocher/CLionProjects/viewvox/viewvox'
        test_cmd = '{0} {1}'.format(viewvox_path,test_binvox_path)
        test_process = subprocess.Popen(test_cmd, shell=True)

        if not ignore_truth:
            truth_cmd = '{0} {1}'.format(viewvox_path, truth_binvox_path)
            truth_process = subprocess.Popen(truth_cmd, shell=True)




    return IOU, NMI
コード例 #17
0
        rec.update(recall.item())
        for j in xrange(len(f)):
            modname = mod[j]
            squence = seq[j]

            # save .binvox
            binvox = os.path.join(outdir, modname + '_' + squence + '.binvox')
            pred = prediction3[j, :, :, :]
            voxel_data = pred.cpu().data.squeeze().numpy().astype('bool')
            dims = [64, 64, 64]
            translate = [0, 0, 0]
            scale = 1.0
            axis_order = 'xzy'
            with open(binvox, 'wb') as fout:
                binvox_rw.write(
                    binvox_rw.Voxels(np.ascontiguousarray(voxel_data), dims,
                                     translate, scale, axis_order), fout)
        print(
            '[%d/%d] mean iou img32: %f , mean iou input32: %f , mean iou input64: %f, precision: %f, recall: %f, time: %f'
            % (i, len(dataset) / opt.batchSize, iou1.avg, iou2.avg, iou3.avg,
               pre.avg, rec.avg, time.time() - t0))

iou1.reset()
iou2.reset()
iou3.reset()
pre.reset()
rec.reset()
network.eval()
with torch.no_grad():
    for i, data in enumerate(dataloader_test, 0):
        t0 = time.time()