コード例 #1
0
def fixture_bi_lstm_model():
    check_data()
    config = load_config()
    conf = Namespace(embeddings=Path(config['sentences.wordEmbeddings']),
                     chars_file=Path(config['sentences.charsFile']),
                     hparams_file=Path(config['sentences.hparamsFile']),
                     model_file=Path(config['sentences.modelFile']))
    proc = create_processor(conf)
    yield proc
    proc.close()
コード例 #2
0
ファイル: test_sentences.py プロジェクト: rmcewan/biomedicus3
def fixture_bi_lstm_model():
    check_data()
    conf = Namespace(chars_file=None,
                     words_file=None,
                     model_hparams=None,
                     model_file=None,
                     torch_device='cpu')
    proc = bi_lstm.create_processor(conf)
    yield proc
    proc.close()
コード例 #3
0
ファイル: bi_lstm.py プロジェクト: nlpie/biomedicus3
def create_processor(conf):
    torch.set_num_threads(1)
    torch.set_num_interop_threads(1)
    logging.basicConfig(level=logging.INFO)
    check_data(conf.download_data)
    config = load_config()
    if conf.embeddings is None:
        conf.embeddings = Path(config['sentences.wordEmbeddings'])
    if conf.chars_file is None:
        conf.chars_file = Path(config['sentences.charsFile'])
    if conf.hparams_file is None:
        conf.hparams_file = Path(config['sentences.hparamsFile'])
    if conf.model_file is None:
        conf.model_file = Path(config['sentences.modelFile'])
    if conf.torch_device is not None:
        device = conf.torch_device
    else:
        device = "cpu" if conf.force_cpu or not torch.cuda.is_available(
        ) else "cuda"
    device = torch.device(device)
    logger.info('Using torch device: "{}"'.format(repr(device)))
    logger.info('Loading hparams from: {}'.format(conf.hparams_file))
    with conf.hparams_file.open('r') as f:
        d = yaml.load(f, Loader)

        class Hparams:
            pass

        hparams = Hparams()
        hparams.__dict__.update(d)
    logger.info('Loading word embeddings from: "{}"'.format(conf.embeddings))
    words, vectors = load_vectors(conf.embeddings)
    vectors = np.array(vectors)
    logger.info('Loading characters from: {}'.format(conf.chars_file))
    char_mapping = load_char_mapping(conf.chars_file)
    input_mapping = InputMapping(char_mapping, words, hparams.word_length)
    model = BiLSTM(hparams, n_chars(char_mapping), vectors)
    model.eval()
    model.to(device=device)
    model.share_memory()
    logger.info('Loading model weights from: {}'.format(conf.model_file))
    with conf.model_file.open('rb') as f:
        state_dict = torch.load(f)
        model.load_state_dict(state_dict)
    torch.multiprocessing.set_start_method('fork')
    processor = SentenceProcessor(input_mapping, model, device)
    return processor
コード例 #4
0
ファイル: bi_lstm.py プロジェクト: vinnakotakk/biomedicus3
def processor(conf):
    logging.basicConfig(level=logging.INFO)
    check_data(conf.download_data)
    proc = create_processor(conf)
    run_processor(proc, namespace=conf)
コード例 #5
0
def processor(conf):
    check_data(conf.download_data)
    proc = create_processor(conf)
    run_processor(proc, namespace=conf)