コード例 #1
0
def set_mass(biorbd_model: biorbd.Model, value: MX):
    """
    The pre dynamics function is called right before defining the dynamics of the system. If one wants to
    modify the dynamics (e.g. optimize the gravity in this case), then this function is the proper way to do it.

    Parameters
    ----------
    biorbd_model: biorbd.Model
        The model to modify by the parameters
    value: MX
        The CasADi variables to modify the model
    """

    biorbd_model.segment(0).characteristics().setMass(value)
コード例 #2
0
ファイル: custom_parameters.py プロジェクト: pyomeca/bioptim
def my_parameter_function(biorbd_model: biorbd.Model, value: MX, extra_value: Any):
    """
    The pre dynamics function is called right before defining the dynamics of the system. If one wants to
    modify the dynamics (e.g. optimize the gravity in this case), then this function is the proper way to do it.

    Parameters
    ----------
    biorbd_model: biorbd.Model
        The model to modify by the parameters
    value: MX
        The CasADi variables to modify the model
    extra_value: Any
        Any parameters required by the user. The name(s) of the extra_value must match those used in parameter.add
    """

    value[2] *= extra_value
    biorbd_model.setGravity(value)
コード例 #3
0
def generate_data(biorbd_model: biorbd.Model,
                  final_time: float,
                  n_shooting: int,
                  use_residual_torque: bool = True) -> tuple:
    """
    Generate random data. If np.random.seed is defined before, it will always return the same results

    Parameters
    ----------
    biorbd_model: biorbd.Model
        The loaded biorbd model
    final_time: float
        The time at final node
    n_shooting: int
        The number of shooting points
    use_residual_torque: bool
        If residual torque are present or not in the dynamics

    Returns
    -------
    The time, marker, states and controls of the program. The ocp will try to track these
    """

    # Aliases
    n_q = biorbd_model.nbQ()
    n_qdot = biorbd_model.nbQdot()
    n_tau = biorbd_model.nbGeneralizedTorque()
    n_mus = biorbd_model.nbMuscleTotal()
    dt = final_time / n_shooting

    # Casadi related stuff
    symbolic_q = MX.sym("q", n_q, 1)
    symbolic_qdot = MX.sym("qdot", n_qdot, 1)
    symbolic_mus_states = MX.sym("mus", n_mus, 1)

    symbolic_tau = MX.sym("tau", n_tau, 1)
    symbolic_mus_controls = MX.sym("mus", n_mus, 1)

    symbolic_states = vertcat(*(symbolic_q, symbolic_qdot,
                                symbolic_mus_states))
    symbolic_controls = vertcat(*(symbolic_tau, symbolic_mus_controls))

    symbolic_parameters = MX.sym("u", 0, 0)
    nlp = NonLinearProgram()
    nlp.model = biorbd_model
    nlp.variable_mappings = {
        "q": BiMapping(range(n_q), range(n_q)),
        "qdot": BiMapping(range(n_qdot), range(n_qdot)),
        "tau": BiMapping(range(n_tau), range(n_tau)),
        "muscles": BiMapping(range(n_mus), range(n_mus)),
    }
    markers_func = biorbd.to_casadi_func("ForwardKin", biorbd_model.markers,
                                         symbolic_q)

    nlp.states.append("q", [symbolic_q, symbolic_q], symbolic_q,
                      nlp.variable_mappings["q"])
    nlp.states.append("qdot", [symbolic_qdot, symbolic_qdot], symbolic_qdot,
                      nlp.variable_mappings["qdot"])
    nlp.states.append("muscles", [symbolic_mus_states, symbolic_mus_states],
                      symbolic_mus_states, nlp.variable_mappings["muscles"])

    nlp.controls.append("tau", [symbolic_tau, symbolic_tau], symbolic_tau,
                        nlp.variable_mappings["tau"])
    nlp.controls.append(
        "muscles",
        [symbolic_mus_controls, symbolic_mus_controls],
        symbolic_mus_controls,
        nlp.variable_mappings["muscles"],
    )

    dynamics_func = biorbd.to_casadi_func(
        "ForwardDyn",
        DynamicsFunctions.muscles_driven,
        symbolic_states,
        symbolic_controls,
        symbolic_parameters,
        nlp,
        False,
    )

    def dyn_interface(t, x, u):
        u = np.concatenate([np.zeros(n_tau), u])
        return np.array(dynamics_func(x, u, np.empty((0, 0)))).squeeze()

    # Generate some muscle excitations
    U = np.random.rand(n_shooting, n_mus).T

    # Integrate and collect the position of the markers accordingly
    X = np.ndarray((n_q + n_qdot + n_mus, n_shooting + 1))
    markers = np.ndarray((3, biorbd_model.nbMarkers(), n_shooting + 1))

    def add_to_data(i, q):
        X[:, i] = q
        markers[:, :, i] = markers_func(q[:n_q])

    x_init = np.array([0] * n_q + [0] * n_qdot + [0.5] * n_mus)
    add_to_data(0, x_init)
    for i, u in enumerate(U.T):
        sol = solve_ivp(dyn_interface, (0, dt),
                        x_init,
                        method="RK45",
                        args=(u, ))
        x_init = sol["y"][:, -1]
        add_to_data(i + 1, x_init)

    time_interp = np.linspace(0, final_time, n_shooting + 1)
    return time_interp, markers, X, U
コード例 #4
0
def prepare_ocp(
    biorbd_model: biorbd.Model,
    final_time: float,
    n_shooting: int,
    markers_ref: np.ndarray,
    excitations_ref: np.ndarray,
    q_ref: np.ndarray,
    use_residual_torque: bool,
    kin_data_to_track: str = "markers",
    ode_solver: OdeSolver = OdeSolver.COLLOCATION(),
) -> OptimalControlProgram:
    """
    Prepare the ocp to solve

    Parameters
    ----------
    biorbd_model: biorbd.Model
        The loaded biorbd model
    final_time: float
        The time at final node
    n_shooting: int
        The number of shooting points
    markers_ref: np.ndarray
        The marker to track if 'markers' is chosen in kin_data_to_track
    excitations_ref: np.ndarray
        The muscle excitation (EMG) to track
    q_ref: np.ndarray
        The state to track if 'q' is chosen in kin_data_to_track
    kin_data_to_track: str
        The type of kin data to track ('markers' or 'q')
    use_residual_torque: bool
        If residual torque are present or not in the dynamics
    ode_solver: OdeSolver
        The ode solver to use

    Returns
    -------
    The OptimalControlProgram ready to solve
    """

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(ObjectiveFcn.Lagrange.TRACK_CONTROL,
                            key="muscles",
                            target=excitations_ref)
    if use_residual_torque:
        objective_functions.add(ObjectiveFcn.Lagrange.MINIMIZE_CONTROL,
                                key="tau")
    if kin_data_to_track == "markers":
        objective_functions.add(ObjectiveFcn.Lagrange.TRACK_MARKERS,
                                node=Node.ALL,
                                weight=100,
                                target=markers_ref)
    elif kin_data_to_track == "q":
        objective_functions.add(
            ObjectiveFcn.Lagrange.TRACK_STATE,
            key="q",
            weight=100,
            node=Node.ALL,
            target=q_ref,
            index=range(biorbd_model.nbQ()),
        )
    else:
        raise RuntimeError("Wrong choice of kin_data_to_track")

    # Dynamics
    dynamics = DynamicsList()
    dynamics.add(DynamicsFcn.MUSCLE_DRIVEN,
                 with_excitations=True,
                 with_residual_torque=use_residual_torque)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(bounds=QAndQDotBounds(biorbd_model))
    # Due to unpredictable movement of the forward dynamics that generated the movement, the bound must be larger
    x_bounds[0].min[[0, 1], :] = -2 * np.pi
    x_bounds[0].max[[0, 1], :] = 2 * np.pi

    # Add muscle to the bounds
    activation_min, activation_max, activation_init = 0, 1, 0.5
    x_bounds[0].concatenate(
        Bounds([activation_min] * biorbd_model.nbMuscles(),
               [activation_max] * biorbd_model.nbMuscles()))
    x_bounds[0][(biorbd_model.nbQ() + biorbd_model.nbQdot()):,
                0] = excitations_ref[:, 0]

    # Initial guess
    x_init = InitialGuessList()
    x_init.add([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()) +
               [0] * biorbd_model.nbMuscles())

    # Define control path constraint
    excitation_min, excitation_max, excitation_init = 0, 1, 0.5
    u_bounds = BoundsList()
    u_init = InitialGuessList()
    if use_residual_torque:
        tau_min, tau_max, tau_init = -100, 100, 0
        u_bounds.add(
            [tau_min] * biorbd_model.nbGeneralizedTorque() +
            [excitation_min] * biorbd_model.nbMuscles(),
            [tau_max] * biorbd_model.nbGeneralizedTorque() +
            [excitation_max] * biorbd_model.nbMuscles(),
        )
        u_init.add([tau_init] * biorbd_model.nbGeneralizedTorque() +
                   [excitation_init] * biorbd_model.nbMuscles())
    else:
        u_bounds.add([excitation_min] * biorbd_model.nbMuscles(),
                     [excitation_max] * biorbd_model.nbMuscles())
        u_init.add([excitation_init] * biorbd_model.nbMuscles())
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        n_shooting,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        ode_solver=ode_solver,
    )
コード例 #5
0
def set_mass(biorbd_model: biorbd.Model, value: MX):
    biorbd_model.segment(0).characteristics().setMass(value)
コード例 #6
0
def my_parameter_function(biorbd_model: biorbd.Model, value: MX,
                          extra_value: Any):
    value[2] *= extra_value
    biorbd_model.setGravity(value)
コード例 #7
0
def prepare_ocp(
        biorbd_model: biorbd.Model,
        final_time: float,
        n_shooting: int,
        markers_ref: np.ndarray,
        tau_ref: np.ndarray,
        ode_solver: OdeSolver = OdeSolver.RK4(),
) -> OptimalControlProgram:
    """
    Prepare the ocp

    Parameters
    ----------
    biorbd_model: biorbd.Model
        The loaded biorbd model
    final_time: float
        The time at final node
    n_shooting: int
        The number of shooting points
    markers_ref: np.ndarray
        The markers to track
    tau_ref: np.ndarray
        The generalized forces to track
    ode_solver: OdeSolver
        The ode solver to use

    Returns
    -------
    The OptimalControlProgram ready to be solved
    """

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(
        ObjectiveFcn.Lagrange.TRACK_MARKERS,
        axes=[Axis.Y, Axis.Z],
        node=Node.ALL,
        weight=100,
        target=markers_ref[1:, :, :],
    )
    objective_functions.add(ObjectiveFcn.Lagrange.TRACK_CONTROL,
                            key="tau",
                            target=tau_ref)

    # Dynamics
    dynamics = DynamicsList()
    expand = False if isinstance(ode_solver, OdeSolver.IRK) else True
    dynamics.add(DynamicsFcn.TORQUE_DRIVEN, expand=expand)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(bounds=QAndQDotBounds(biorbd_model))
    x_bounds[0][:, 0] = 0

    # Initial guess
    n_q = biorbd_model.nbQ()
    n_qdot = biorbd_model.nbQdot()
    x_init = InitialGuessList()
    x_init.add([0] * (n_q + n_qdot))

    # Define control path constraint
    n_tau = biorbd_model.nbGeneralizedTorque()
    tau_min, tau_max, tau_init = -100, 100, 0
    u_bounds = BoundsList()
    u_bounds.add([tau_min] * n_tau, [tau_max] * n_tau)

    u_init = InitialGuessList()
    u_init.add([tau_init] * n_tau)

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        n_shooting,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        ode_solver=ode_solver,
    )