コード例 #1
0
def alphagamma_from_t(t, prob):
    """
    Returns a list of tuples containing each shape obtained from `Shape` sh (assuming sh has probability prob) with
    their associate probability under the Alpha-Gamma model.
    :param sh: `Shape` instance.
    :param prob: `function` instance.
    :return: `list` instance.
    """
    n = count_leaves(t)
    if t.is_leaf():
        return [(add_leaf_to_edge(t),
                 lambda a, c: simplify(prob(a, c) * (1 - a) / (n - a)))]
    else:
        for i in range(len(t.children)):
            k = count_leaves(t.children[i])
            if n > 1:
                p_times_m = lambda a, c, k=k: simplify(
                    prob(a, c) * (k - a) / (n - a))
            else:
                p_times_m = prob
            for ti, q in alphagamma_from_t(t.children[i], p_times_m):
                ts2 = list(iter_replace_tree_at(t.children, i, ti))
                yield (Shape(ts2), q)

        yield (add_leaf_to_edge(t),
               lambda a, c: simplify(prob(a, c) * c / (n - a)))

        k = len(t.children)
        if k > 1:
            prob2 = lambda a, c, k=k: simplify(
                prob(a, c) * ((k - 1) * a - c) / (n - a))
        else:
            prob2 = prob

        yield (add_leaf_to_node(t), prob2)
コード例 #2
0
def var_depths(t):
    """
    Given a `Shape` t, it returns the variance of its leaves' depths.
    :param t: `Shape` instance.
    :return: `float` instance.
    """
    n = count_leaves(t)
    return (n - 1) / n * variance(get_leaf_depths(t))
コード例 #3
0
def cherry_picking(tree, k):
    if tree.is_leaf():
        return [tree]
    elif tree == Shape.CHERRY:
        return [Shape.LEAF]
    else:

        def go(t, i, d):  # for binary eyes only

            if d != k and not (t.is_leaf() or t.is_cherry()):
                chs = [go(ch, i, d + 1) for ch in t.children]
                if any(ch is None for ch in chs):
                    return None
                else:
                    return PhyloTree(None, sorted(chs))

            elif d != k and (t == PhyloTree(
                    None, [PhyloTree(i), PhyloTree(i + 1)]) or t == PhyloTree(
                        None,
                        [PhyloTree(i - 1), PhyloTree(i)])):
                return None

            elif d == k and (t == PhyloTree(
                    None, [PhyloTree(i), PhyloTree(i + 1)]) or t == PhyloTree(
                        None,
                        [PhyloTree(i - 1), PhyloTree(i)])):
                return PhyloTree(i)

            elif t == PhyloTree(i):
                return None

            else:
                return t

        n = count_leaves(tree)
        phyl = shape_to_phylotree(tree, gen=int)

        ts = []

        for i in range(n):
            t = go(phyl, i, 1)

            if t:
                ts.append(phylotree_to_shape(t))

        return unique(sorted(ts))
コード例 #4
0
def normalized_sackin_index(tree):
    n = count_leaves(tree)

    return sackin_index(tree) / (sackin_index(max_sackin(n)[0]) -
                                 sackin_index(binary_max_balanced(n)))
コード例 #5
0
ファイル: colless.py プロジェクト: biocom-uib/biotrees
def normalized_binary_colless_index(tree):
    n = count_leaves(tree)

    return binary_colless_index(tree) / (binary_colless_index(
        max_colless(n)[0]) - binary_colless_index(binary_max_balanced(n)))
コード例 #6
0
def normalized_quartet_index(tree):
    n = count_leaves(tree)

    return quartet_index(tree) / quartet_index(max_quartet(n)[0])
コード例 #7
0
def normalized_binary_quartet_index(tree):
    n = count_leaves(tree)

    return binary_quartet_index(tree) / binary_quartet_index(
        max_binary_quartet(n)[0])
コード例 #8
0
def normalized_cophenetic_index(tree):
    n = count_leaves(tree)

    return cophenetic_index(tree) / (cophenetic_index(max_cophenetic(n)[0]) -
                                     cophenetic_index(min_cophenetic(n)[0]))
コード例 #9
0
ファイル: qcolless.py プロジェクト: biocom-uib/biotrees
def normalized_binary_qcolless_index(tree):
    n = count_leaves(tree)

    return binary_qcolless_index(tree) / (binary_qcolless_index(
        max_qcolless(n)[0]) - binary_qcolless_index(min_qcolless(n)[0]))