コード例 #1
0
ファイル: pdbDope.py プロジェクト: graik/biskit
    def addDensity( self, radius=6, minasa=None, profName='density' ):
        """
        Count the number of heavy atoms within the given radius.
        Values are only collected for atoms with |minasa| accessible surface
        area.

        @param minasa: relative exposed surface - 0 to 100%
        @type  minasa: float
        @param radius: in Angstrom
        @type  radius: float
        """
        mHeavy = self.m.maskHeavy()

        xyz = N0.compress( mHeavy, self.m.getXyz(), 0 )

        if minasa and self.m.profile( 'relAS', 0 ) == 0:
            self.addASA()

        if minasa:
            mSurf = self.m.profile2mask( 'relAS', minasa )
        else:
            mSurf = N0.ones( self.m.lenAtoms() )

        ## loop over all surface atoms
        surf_pos = N0.nonzero( mSurf )
        contacts = []

        for i in surf_pos:
            dist = N0.sum(( xyz - self.m.xyz[i])**2, 1)
            contacts += [ N0.sum( N0.less(dist, radius**2 )) -1]

        self.m.atoms.set( profName, contacts, mSurf, default=-1,
                          comment='atom density radius %3.1fA' % radius,
                          version= T.dateString() + ' ' + self.version() )
コード例 #2
0
ファイル: mathUtils.py プロジェクト: suliat16/biskit
def linfit(x, y):
    """
    Calculate linear least-square fit to the points given by x and y.
    see U{http://mathworld.wolfram.com/LeastSquaresFitting.html}

    :param x: x-data
    :type  x: [ float ]
    :param y: y-data
    :type  y: [ float ]

    :return: m, n, r^2 (slope, intersection, corr. coefficient)
    :rtype: float, float, float

    :raise BiskitError: if x and y have different number of elements
    """
    x, y = N0.array(x, N0.Float64), N0.array(y, N0.Float64)
    if len(x) != len(y):
        raise Exception('linfit: x and y must have same length')

    av_x = N0.average(x)
    av_y = N0.average(y)
    n = len(x)

    ss_xy = N0.sum(x * y) - n * av_x * av_y
    ss_xx = N0.sum(x * x) - n * av_x * av_x
    ss_yy = N0.sum(y * y) - n * av_y * av_y

    slope = ss_xy / ss_xx

    inter = av_y - slope * av_x

    corr = ss_xy**2 / (ss_xx * ss_yy)

    return slope, inter, corr
コード例 #3
0
ファイル: complex.py プロジェクト: suliat16/biskit
    def __atomContacts(self, cutoff, rec_mask, lig_mask, cache):
        """
        Intermolecular distances below cutoff after applying the two masks.
        
        @param cutoff: cutoff for B{atom-atom} contact in \AA
        @type  cutoff: float
        @param rec_mask: atom mask
        @type  rec_mask: [1|0]
        @param lig_mask: atom mask
        @type  lig_mask: [1|0]
        @param cache: cache pairwise atom distance matrix
        @type  cache: 1|0
        
        @return: atom contact matrix, array sum_rec_mask x sum_lig_mask
        @rtype: array
        """
        ## get atom coordinats as array 3 x all_atoms
        rec_xyz = self.rec().getXyz()
        lig_xyz = self.lig().getXyz()

        ## get pair-wise distances -> atoms_rec x atoms_lig
        dist = getattr(self, 'pw_dist', None)
        if dist is None or \
               N0.shape( dist ) != ( N0.sum(rec_mask), N0.sum(lig_mask) ):
            dist = self.__pairwiseDistances(N0.compress(rec_mask, rec_xyz, 0),
                                            N0.compress(lig_mask, lig_xyz, 0))
        if cache:
            self.pw_dist = dist

        ## reduce to 1 (distance < cutoff) or 0 -> n_atoms_rec x n_atoms_lig
        return N0.less(dist, cutoff)
コード例 #4
0
ファイル: complex.py プロジェクト: graik/biskit
    def contactResDistribution( self, cm=None ):
        """
        Count occurrence of residues in protein-protein interface.
        
        @param cm: pre-calculated contact matrix (default: None)
        @type  cm: matrix
        
        @return: dict {'A':3, 'C':1, .. } (20 standard amino acids)
        @rtype: dict
        """
        if cm is None:
            cm = self.resContacts()

        ## get mask for residues involved in contacts
        maskLig = N0.sum( cm )
        maskRec = N0.sum( N0.transpose( cm ))

        ## get sequence of contact residues only
        seqLig = N0.compress( maskLig, self.lig().sequence() )
        seqRec = N0.compress( maskRec, self.rec().sequence() )
        seq    = ''.join( seqLig ) + ''.join(seqRec) ## convert back to string

        ## count occurrence of letters
        result = {}
        for aa in molUtils.allAA():
            result[aa] = seq.count( aa )

        return result
コード例 #5
0
ファイル: complex.py プロジェクト: graik/biskit
    def __findTransformation(self, x, y):
        """
        Match two arrays by rotation and translation. Returns the
        rotation matrix and the translation vector.
        Back transformation:
        for atom i new coordinates will be::
            y_new[i] = N0.dot(r, y[i]) + t
            
        for all atoms in one step::
            y_new = N0.dot(y, N0.transpose(r)) + t

        @param x: coordinates
        @type  x: array
        @param y: coordinates
        @type  y: array

        @return: rotation matrix, translation vector
        @rtype: array, array      
        
        @author: Michael Habeck
        """
        from numpy.linalg import svd

        ## center configurations
        x_av = N0.sum(x) / len(x)
        y_av = N0.sum(y) / len(y)
        x = x - x_av
        y = y - y_av
        ## svd of correlation matrix
        v, l, u = svd(N0.dot(N0.transpose(x), y))
        ## build rotation matrix and translation vector
        r = N0.dot(v, u)
        t = x_av - N0.dot(r, y_av)

        return r, t
コード例 #6
0
ファイル: complex.py プロジェクト: graik/biskit
    def __atomContacts(self, cutoff, rec_mask, lig_mask, cache):
        """
        Intermolecular distances below cutoff after applying the two masks.
        
        @param cutoff: cutoff for B{atom-atom} contact in \AA
        @type  cutoff: float
        @param rec_mask: atom mask
        @type  rec_mask: [1|0]
        @param lig_mask: atom mask
        @type  lig_mask: [1|0]
        @param cache: cache pairwise atom distance matrix
        @type  cache: 1|0
        
        @return: atom contact matrix, array sum_rec_mask x sum_lig_mask
        @rtype: array
        """
        ## get atom coordinats as array 3 x all_atoms
        rec_xyz = self.rec().getXyz()
        lig_xyz = self.lig().getXyz()

        ## get pair-wise distances -> atoms_rec x atoms_lig
        dist = getattr( self, 'pw_dist', None )
        if dist is None or \
               N0.shape( dist ) != ( N0.sum(rec_mask), N0.sum(lig_mask) ):
            dist = self.__pairwiseDistances(N0.compress( rec_mask, rec_xyz, 0),
                                            N0.compress( lig_mask, lig_xyz, 0) )
        if cache:
            self.pw_dist = dist

        ## reduce to 1 (distance < cutoff) or 0 -> n_atoms_rec x n_atoms_lig
        return N0.less( dist, cutoff )
コード例 #7
0
ファイル: complex.py プロジェクト: suliat16/biskit
    def contactResDistribution(self, cm=None):
        """
        Count occurrence of residues in protein-protein interface.
        
        @param cm: pre-calculated contact matrix (default: None)
        @type  cm: matrix
        
        @return: dict {'A':3, 'C':1, .. } (20 standard amino acids)
        @rtype: dict
        """
        if cm is None:
            cm = self.resContacts()

        ## get mask for residues involved in contacts
        maskLig = N0.sum(cm)
        maskRec = N0.sum(N0.transpose(cm))

        ## get sequence of contact residues only
        seqLig = N0.compress(maskLig, self.lig().sequence())
        seqRec = N0.compress(maskRec, self.rec().sequence())
        seq = ''.join(seqLig) + ''.join(seqRec)  ## convert back to string

        ## count occurrence of letters
        result = {}
        for aa in molUtils.allAA():
            result[aa] = seq.count(aa)

        return result
コード例 #8
0
ファイル: mathUtils.py プロジェクト: graik/biskit
def linfit( x, y ):
    """
    Calculate linear least-square fit to the points given by x and y.
    see U{http://mathworld.wolfram.com/LeastSquaresFitting.html}

    :param x: x-data
    :type  x: [ float ]
    :param y: y-data
    :type  y: [ float ]

    :return: m, n, r^2 (slope, intersection, corr. coefficient)
    :rtype: float, float, float

    :raise BiskitError: if x and y have different number of elements
    """
    x, y = N0.array( x, N0.Float64), N0.array( y, N0.Float64)
    if len( x ) != len( y ):
        raise Exception('linfit: x and y must have same length')

    av_x = N0.average( x )
    av_y = N0.average( y )
    n = len( x )

    ss_xy = N0.sum( x * y ) - n * av_x * av_y
    ss_xx = N0.sum( x * x ) - n * av_x * av_x
    ss_yy = N0.sum( y * y ) - n * av_y * av_y

    slope = ss_xy / ss_xx

    inter = av_y - slope * av_x

    corr  = ss_xy**2 / ( ss_xx * ss_yy )

    return slope, inter, corr
コード例 #9
0
ファイル: complex.py プロジェクト: suliat16/biskit
    def __findTransformation(self, x, y):
        """
        Match two arrays by rotation and translation. Returns the
        rotation matrix and the translation vector.
        Back transformation:
        for atom i new coordinates will be::
            y_new[i] = N0.dot(r, y[i]) + t
            
        for all atoms in one step::
            y_new = N0.dot(y, N0.transpose(r)) + t

        @param x: coordinates
        @type  x: array
        @param y: coordinates
        @type  y: array

        @return: rotation matrix, translation vector
        @rtype: array, array      
        
        @author: Michael Habeck
        """
        from numpy.linalg import svd

        ## center configurations
        x_av = N0.sum(x) / len(x)
        y_av = N0.sum(y) / len(y)
        x = x - x_av
        y = y - y_av
        ## svd of correlation matrix
        v, l, u = svd(N0.dot(N0.transpose(x), y))
        ## build rotation matrix and translation vector
        r = N0.dot(v, u)
        t = x_av - N0.dot(r, y_av)

        return r, t
コード例 #10
0
ファイル: mathUtils.py プロジェクト: graik/biskit
def wVar(x, w):
    """
    Variance of weighted (w) data (x).

    :param x: X-D array with numbers
    :type  x: array
    :param w: 1-D array of same length as x with weight factors
    :type  w: array

    :return: array('f') or float
    :rtype: array('f') or float    
    """
    wm = wMean(x,w)
    return ( N0.sum(w) / ( (N0.sum(w)**2-N0.sum(w**2)) ) ) * N0.sum(w*(x-wm)**2)
コード例 #11
0
ファイル: complex.py プロジェクト: suliat16/biskit
 def contactsDiff(self, ref, cutoff=None):
     """
     Number of different B{residue-residue} contacts in this and
     reference complex.
     
     @param ref: to compare this one with
     @type  ref: Complex
     @param cutoff: maximal atom-atom distance, None .. previous setting
     @type  cutoff: float
     
     @return: number of contacts different in this and refererence complex.
     @rtype: int
     """
     both = N0.logical_or(self.resContacts(cutoff), ref.resContacts(cutoff))
     return N0.sum(N0.sum(both)) - self.contactsShared(ref, cutoff)
コード例 #12
0
ファイル: complex.py プロジェクト: graik/biskit
 def contactsDiff(self, ref, cutoff=None):
     """
     Number of different B{residue-residue} contacts in this and
     reference complex.
     
     @param ref: to compare this one with
     @type  ref: Complex
     @param cutoff: maximal atom-atom distance, None .. previous setting
     @type  cutoff: float
     
     @return: number of contacts different in this and refererence complex.
     @rtype: int
     """
     both = N0.logical_or( self.resContacts(cutoff), ref.resContacts(cutoff))
     return N0.sum(N0.sum(both)) - self.contactsShared( ref, cutoff )
コード例 #13
0
ファイル: mathUtils.py プロジェクト: suliat16/biskit
def wVar(x, w):
    """
    Variance of weighted (w) data (x).

    :param x: X-D array with numbers
    :type  x: array
    :param w: 1-D array of same length as x with weight factors
    :type  w: array

    :return: array('f') or float
    :rtype: array('f') or float    
    """
    wm = wMean(x, w)
    return (N0.sum(w) / ((N0.sum(w)**2 - N0.sum(w**2)))) * N0.sum(w *
                                                                  (x - wm)**2)
コード例 #14
0
ファイル: reducecoordinates.py プロジェクト: suliat16/biskit
    def group( self, a_indices, maxPerCenter ):
        """
        Group a bunch of integers (atom indices in PDBModel) so that each
        group has at most maxPerCenter items.
        
        @param a_indices: atom indices
        @type  a_indices: [int]
        @param maxPerCenter: max entries per group
        @type  maxPerCenter: int
        
        @return: list of lists of int
        @rtype: [[int],[int]..]
        """
        ## how many groups are necessary?
        n_centers = len( a_indices ) // maxPerCenter  ## floor division
        if len( a_indices ) % maxPerCenter:
            n_centers += 1

        ## how many items/atoms go into each group?
        nAtoms = N0.ones(n_centers, N0.Int) * int(len( a_indices ) / n_centers)
        i=0
        while N0.sum(nAtoms) != len( a_indices ):
            nAtoms[i] += 1
            i += 1

        ## distribute atom indices into groups
        result = []
        pos = 0
        for n in nAtoms:
            result += [ N0.take( a_indices, N0.arange(n) + pos) ]
            pos += n

        return result
コード例 #15
0
ファイル: mathUtils.py プロジェクト: suliat16/biskit
def randomMask(nOnes, length):
    """
    Create random array of given lenght and number of ones.

    :param nOnes: number of ones
    :type  nOnes: int
    :param length: lenght of array
    :type  length: int

    :return: array with ones and zeros
    :rtype: array( 1|0 )
    """
    r = N0.zeros(length)
    pos = []

    ## add random ones
    for i in range(nOnes):
        pos += [int(random.random() * length)]
    N0.put(r, pos, 1)

    ## if two ones ended up on the same position
    while nOnes != N0.sum(r):
        pos = int(random.random() * length)
        N0.put(r, pos, 1)

    return r
コード例 #16
0
ファイル: reducecoordinates.py プロジェクト: suliat16/biskit
    def reduceToModel( self, xyz=None, reduce_profiles=1  ):
        """
        Create a reduced PDBModel from coordinates. Atom profiles the source
        PDBModel are reduced by averaging over the grouped atoms.
        
        @param xyz: coordinte array (N_atoms x 3) or
                    None (->use reference coordinates)
        @type  xyz: array OR None
        
        @return: PDBModel with reduced atom set and profile 'mass'
        @rtype: PDBModel
        """

        mass = self.m.atoms.get('mass')
        if xyz is None: xyz = self.m.getXyz()

        mProf = [ N0.sum( N0.take( mass, group ) ) for group in self.groups ]
        xyz = self.reduceXyz( xyz )

        result = PDBModel()

        for k in self.atoms.keys():
            result.atoms.set( k, self.atoms.valuesOf(k) )

##         result.setAtoms( self.atoms )

        result.setXyz( xyz )
        result.atoms.set( 'mass', mProf )

        if reduce_profiles:
            self.reduceAtomProfiles( self.m, result )

            result.residues = self.m.residues

        return result
コード例 #17
0
ファイル: rmsFit.py プロジェクト: graik/biskit
    def test_rmsFit( self ):
        """rmsFit test"""
        from . import tools as T

        self.traj = T.load( T.testRoot('lig_pcr_00/traj.dat') )

        rt, rmsdLst = match( self.traj.ref.xyz, self.traj[-1].xyz)

        if self.local:
            print('RMSD: %.2f' % rmsdLst[0][1])

        # return rotation matrix
        r = abs( N0.sum( N0.ravel( rt[0] )))
        e = abs( N0.sum( N0.ravel( self.EXPECT )))

        self.assertAlmostEqual(r, e, 6)
コード例 #18
0
ファイル: molUtils.py プロジェクト: graik/biskit
    def test_molUtils( self ):
        """molUtils test"""
        from biskit import PDBModel

        S = self
        
        ## load a structure
        S.m = PDBModel( t.testRoot('lig/1A19.pdb' ))
        S.model_1 = S.m.compress( S.m.maskProtein() )

        ## now sort in standard order
        S.model_2 = sortAtomsOfModel( S.model_1)

        ## compare the atom order
        cmp = []
        for a in S.model_1.atomRange():
            cmp += [ cmpAtoms( S.model_1.atoms[a], S.model_2.atoms[a] )]

        self.assertEqual( N0.sum(cmp), 159 )

        ## get the primaty sequence as a string
        S.seq = S.model_1.sequence()

        ## convert it to a list of three letter code
        S.seq=single2longAA(S.seq)

        ## convert it to a list in one letter code
        S.seq=singleAA(S.seq)

        self.assertEqual( ''.join(S.seq), S.model_1.sequence() )
コード例 #19
0
ファイル: ensembleTraj.py プロジェクト: graik/biskit
    def test_EnsembleTraj( self ):
        """EnsembleTraj.fit/fitMembers/plotMembers test """
        ## The second part of the test will fail with the slimmed
        ## down test trajectory of T.testRoot(). To run the full
        ## test pease select a larger trajectory.    

        self.tr = traj2ensemble( self.tr )

        mask = self.tr.memberMask( 1 )

        self.tr.fit( ref=self.tr.ref,
                     mask=self.tr.ref.maskCA(),
                     prof='rms_CA_ref',
                     verbose=self.local )

        self.tr.fitMembers( mask=self.tr.ref.maskCA(),
                            prof='rms_CA_0', refIndex=0,
                            verbose=self.local )
        
        self.tr.fitMembers( mask=self.tr.ref.maskCA(),
                            prof='rms_CA_av',
                            verbose=self.local )

        self.p = self.tr.plotMemberProfiles( 'rms_CA_av', 'rms_CA_0',
                                        'rms_CA_ref', xlabel='frame' )
        if self.local or self.VERBOSITY > 2:
            self.p.show()

        self.assertAlmostEqual( 26.19851,
                                 N0.sum( self.tr.profile('rms_CA_av') ), 2 )
コード例 #20
0
    def test_EnsembleTraj( self ):
        """EnsembleTraj.fit/fitMembers/plotMembers test """
        ## The second part of the test will fail with the slimmed
        ## down test trajectory of T.testRoot(). To run the full
        ## test pease select a larger trajectory.    

        self.tr = traj2ensemble( self.tr )

        mask = self.tr.memberMask( 1 )

        self.tr.fit( ref=self.tr.ref,
                     mask=self.tr.ref.maskCA(),
                     prof='rms_CA_ref',
                     verbose=self.local )

        self.tr.fitMembers( mask=self.tr.ref.maskCA(),
                            prof='rms_CA_0', refIndex=0,
                            verbose=self.local )
        
        self.tr.fitMembers( mask=self.tr.ref.maskCA(),
                            prof='rms_CA_av',
                            verbose=self.local )

        self.p = self.tr.plotMemberProfiles( 'rms_CA_av', 'rms_CA_0',
                                        'rms_CA_ref', xlabel='frame' )
        if self.local or self.VERBOSITY > 2:
            self.p.show()

        self.assertAlmostEqual( 26.19851,
                                 N0.sum( self.tr.profile('rms_CA_av') ), 2 )
コード例 #21
0
ファイル: amberEntropist.py プロジェクト: graik/biskit
    def tripples( self, lst, n ):
        """
        Group items of lst into n tripples with minimal overlap.
        """
        all = []
        l = len( lst )

        ## get all possible tripples
        for i in range( l ):
            for j in range( i+1, l ):
                for k in range( j+1, l ):
                    all += [ ( lst[i], lst[j], lst[k] ) ]

        ## calculate pairwise "distance" between tripples
        pw = N0.zeros( (len(all), len(all)), N0.Float32 )
        for i in range( len( all ) ):
            for j in range( i, len(all) ):
                pw[i,j] = pw[j,i] = len( MU.intersection(all[i],all[j]) )**2

        pos = 0
        r = []

        while len( r ) < n:

            r += [ pos ]
            ## overlap of selected tripples with all others
            overlap = N0.sum( N0.array( [ pw[ i ] for i in r ] ) )
            ## select one with lowest overlap to all tripples selected before
            pos = N0.argmin( overlap )

        return N0.take( all, r )
コード例 #22
0
def centerSurfDist(model, surf_mask, mask=None):
    """
    Calculate the longest and shortest distance from
    the center of the molecule to the surface.

    @param mask: atoms not to be considerd (default: None)
    @type  mask: [1|0]
    @param surf_mask: atom surface mask, needed for minimum surface distance
    @type  surf_mask: [1|0]

    @return: max distance, min distance
    @rtype: float, float
    """
    if mask is None:
        mask = model.maskHeavy()

    ## calculate center of mass
    center = model.centerOfMass()

    ## surface atom coordinates
    surf_xyz = N0.compress(mask * surf_mask, model.getXyz(), 0)

    ## find the atom closest and furthest away from center
    dist = N0.sqrt(N0.sum((surf_xyz - center)**2, 1))
    minDist = min(dist)
    maxDist = max(dist)

    return maxDist, minDist
コード例 #23
0
ファイル: mathUtils.py プロジェクト: graik/biskit
def projectOnSphere( xyz, radius=None, center=None ):
    """
    Project the coordinates xyz on a sphere with a given radius around
    a given center.

    :param xyz: cartesian coordinates
    :type  xyz: array N x 3 of float
    :param radius: radius of target sphere, if not provided the maximal
                   distance to center will be used (default: None)
    :type  radius: float
    :param center: center of the sphere, if not given the average of xyz
                   will be assigned to the center (default: None)
    :type  center: array 0 x 3 of float

    :return: array of cartesian coordinates (x, y, z)
    :rtype: array    
    """
    if center is None:
        center = N0.average( xyz )

    if radius is None:
        radius = max( N0.sqrt( N0.sum( N0.power( xyz - center, 2 ), 1 ) ) )

    rtp = cartesianToPolar( xyz - center )
    rtp[ :, 0 ] = radius

    return polarToCartesian( rtp ) + center
コード例 #24
0
ファイル: mathUtils.py プロジェクト: suliat16/biskit
def arrayEqual(a, b):
    """
    Compare 2 arrays or lists of numbers for equality.

    :param a: first array (multi-dimensional is supported)
    :type  a: array / list
    :param b: second array (multi-dimensional is supported)
    :type  b: array / list

    :return: 1 if array/list a equals array/list b
    :rtype: 1|0
    """
    if a is None or b is None:
        return a is b

    if len(a) != len(b):
        return 0

    if type(a) is list: a = N0.array(a)
    if type(b) is list: b = N0.array(b)

    a = N0.ravel(a)
    b = N0.ravel(b)

    return N0.sum(a == b) == len(a)
コード例 #25
0
ファイル: rmsFit.py プロジェクト: suliat16/biskit
    def test_rmsFit(self):
        """rmsFit test"""
        from . import tools as T

        self.traj = T.load(T.testRoot('lig_pcr_00/traj.dat'))

        rt, rmsdLst = match(self.traj.ref.xyz, self.traj[-1].xyz)

        if self.local:
            print('RMSD: %.2f' % rmsdLst[0][1])

        # return rotation matrix
        r = abs(N0.sum(N0.ravel(rt[0])))
        e = abs(N0.sum(N0.ravel(self.EXPECT)))

        self.assertAlmostEqual(r, e, 6)
コード例 #26
0
ファイル: mathUtils.py プロジェクト: graik/biskit
def arrayEqual( a, b ):
    """
    Compare 2 arrays or lists of numbers for equality.

    :param a: first array (multi-dimensional is supported)
    :type  a: array / list
    :param b: second array (multi-dimensional is supported)
    :type  b: array / list

    :return: 1 if array/list a equals array/list b
    :rtype: 1|0
    """
    if a is None or b is None:
        return a is b

    if len(a) != len(b):
        return 0

    if type(a) is list:  a = N0.array( a )
    if type(b) is list:  b = N0.array( b )

    a = N0.ravel( a )
    b = N0.ravel( b )

    return N0.sum( a==b ) == len(a)
コード例 #27
0
ファイル: mathUtils.py プロジェクト: graik/biskit
def randomMask( nOnes, length ):
    """
    Create random array of given lenght and number of ones.

    :param nOnes: number of ones
    :type  nOnes: int
    :param length: lenght of array
    :type  length: int

    :return: array with ones and zeros
    :rtype: array( 1|0 )
    """
    r = N0.zeros( length )
    pos = []

    ## add random ones
    for i in range( nOnes ):
        pos += [ int( random.random() * length ) ]      
    N0.put( r, pos, 1 ) 

    ## if two ones ended up on the same position
    while nOnes != N0.sum(r):
        pos = int( random.random() * length )
        N0.put( r, pos, 1 )

    return r
コード例 #28
0
ファイル: trajectory.py プロジェクト: suliat16/biskit
    def pairwiseRmsd( self, aMask=None, noFit=0 ):
        """
        Calculate rmsd between each 2 coordinate frames.

        :param aMask: atom mask
        :type  aMask: [1|0]
        :return: frames x frames array of float
        :rtype: array
        """
        frames = self.frames

        if aMask is not None:
            frames = N0.compress( aMask, frames, 1 )

        result = N0.zeros( (len( frames ), len( frames )), N0.Float32 )

        for i in range(0, len( frames ) ):

            for j in range( i+1, len( frames ) ):
                if noFit:
                    d = N0.sqrt(N0.sum(N0.power(frames[i]-frames[j], 2), 1))
                    result[i,j] = result[j,i] = N0.sqrt( N0.average(d**2) )

                else:
                    rt, rmsdLst = rmsFit.match( frames[i], frames[j], 1 )
                    result[i,j] = result[j,i] = rmsdLst[0][1]

        return result
コード例 #29
0
    def tripples(self, lst, n):
        """
        Group items of lst into n tripples with minimal overlap.
        """
        all = []
        l = len(lst)

        ## get all possible tripples
        for i in range(l):
            for j in range(i + 1, l):
                for k in range(j + 1, l):
                    all += [(lst[i], lst[j], lst[k])]

        ## calculate pairwise "distance" between tripples
        pw = N0.zeros((len(all), len(all)), N0.Float32)
        for i in range(len(all)):
            for j in range(i, len(all)):
                pw[i, j] = pw[j, i] = len(MU.intersection(all[i], all[j]))**2

        pos = 0
        r = []

        while len(r) < n:

            r += [pos]
            ## overlap of selected tripples with all others
            overlap = N0.sum(N0.array([pw[i] for i in r]))
            ## select one with lowest overlap to all tripples selected before
            pos = N0.argmin(overlap)

        return N0.take(all, r)
コード例 #30
0
ファイル: complextraj.py プロジェクト: graik/biskit
    def test_ComplexTraj(self):
        """Dock.ComplexTraj test"""

        import biskit.tools as T

        ## there is no complex trajectory in the test folder so will have
        ## to create a fake trajectory with a complex
        f =  [ T.testRoot()+ '/com/1BGS.pdb' ] * 5
        t = Trajectory( f, verbose=self.local )

        t = ComplexTraj( t, recChains=[0] )

        #if self.local:
            #print 'plotting contact density...'
            #t.plotContactDensity( step=2 )

        ## create a fake second chain in the ligand
        for i in range( 1093+98, 1968 ):
            t.ref.atoms['chain_id'][i] = 'B'

        t.ref.chainIndex( force=1, cache=1 )
        t.cl = [1,2]

        r = N0.concatenate((list(range(1093,1191)), list(range(0,1093)), list(range(1191,1968))))

        tt = t.takeAtoms( r )

        contactMat = tt.atomContacts( 1 )
        
        if self.local:
            print('Receptor chains: %s    Ligand chains: %s'%(t.cr, t.cl))
            
        self.assertEqual( N0.sum(N0.ravel(contactMat)), 308 )
コード例 #31
0
ファイル: complextraj.py プロジェクト: suliat16/biskit
    def test_ComplexTraj(self):
        """Dock.ComplexTraj test"""

        import biskit.tools as T

        ## there is no complex trajectory in the test folder so will have
        ## to create a fake trajectory with a complex
        f = [T.testRoot() + '/com/1BGS.pdb'] * 5
        t = Trajectory(f, verbose=self.local)

        t = ComplexTraj(t, recChains=[0])

        #if self.local:
        #print 'plotting contact density...'
        #t.plotContactDensity( step=2 )

        ## create a fake second chain in the ligand
        for i in range(1093 + 98, 1968):
            t.ref.atoms['chain_id'][i] = 'B'

        t.ref.chainIndex(force=1, cache=1)
        t.cl = [1, 2]

        r = N0.concatenate(
            (list(range(1093,
                        1191)), list(range(0, 1093)), list(range(1191, 1968))))

        tt = t.takeAtoms(r)

        contactMat = tt.atomContacts(1)

        if self.local:
            print('Receptor chains: %s    Ligand chains: %s' % (t.cr, t.cl))

        self.assertEqual(N0.sum(N0.ravel(contactMat)), 308)
コード例 #32
0
ファイル: mathUtils.py プロジェクト: suliat16/biskit
def projectOnSphere(xyz, radius=None, center=None):
    """
    Project the coordinates xyz on a sphere with a given radius around
    a given center.

    :param xyz: cartesian coordinates
    :type  xyz: array N x 3 of float
    :param radius: radius of target sphere, if not provided the maximal
                   distance to center will be used (default: None)
    :type  radius: float
    :param center: center of the sphere, if not given the average of xyz
                   will be assigned to the center (default: None)
    :type  center: array 0 x 3 of float

    :return: array of cartesian coordinates (x, y, z)
    :rtype: array    
    """
    if center is None:
        center = N0.average(xyz)

    if radius is None:
        radius = max(N0.sqrt(N0.sum(N0.power(xyz - center, 2), 1)))

    rtp = cartesianToPolar(xyz - center)
    rtp[:, 0] = radius

    return polarToCartesian(rtp) + center
コード例 #33
0
 def prepare( self ):
     """
     Overrides Executor method.
     """
     self.model = self.model.compress( self.model.maskHeavy() )
     if self.model.lenAtoms() == N0.sum(self.model.maskCA):
         raise Dssp_Error('The structure you want to calculate the secondary structure for seems to be a carbon alpha trace. Terminating')
     self.model.writePdb( self.f_pdb )
コード例 #34
0
ファイル: complex.py プロジェクト: suliat16/biskit
    def fractionNativeContacts(self, ref, cutoff=None):
        """
        Fraction of native B{residue-residue} contacts.
        
        @param ref: native complex
        @type  ref: Complex
        @param cutoff: maximal atom-atom distance, None .. previous setting
        @type  cutoff: float

        @return: fraction of native contacts
        @rtype: float
        """
        cont = self.resContacts(cutoff, refComplex=ref)
        ref_cont = ref.resContacts(cutoff)

        result = N0.sum(N0.sum(ref_cont * cont)) * 1.0
        return result / N0.sum(N0.sum(ref_cont))
コード例 #35
0
ファイル: complex.py プロジェクト: graik/biskit
 def contactsShared(self, reference, cutoff=None):
     """
     Number of equal B{residue-residue} contacts in this and
     reference complex.
     
     @param reference: reference complex
     @type  reference: Complex
     @param cutoff: cutoff for atom-atom contact to be counted
     @type  cutoff: float
     @return: the number or residue-residue contacts that are common to
              both this and reference::
                abs( N0.sum( N0.sum( contactMatrix_a - contactMatrix_b )))
     @rtype: int
     """
     equality = N0.logical_and(self.resContacts( cutoff=cutoff ),
                            reference.resContacts( cutoff=cutoff ) )
     return abs(N0.sum(N0.sum( equality )))
コード例 #36
0
ファイル: complex.py プロジェクト: suliat16/biskit
 def contactsShared(self, reference, cutoff=None):
     """
     Number of equal B{residue-residue} contacts in this and
     reference complex.
     
     @param reference: reference complex
     @type  reference: Complex
     @param cutoff: cutoff for atom-atom contact to be counted
     @type  cutoff: float
     @return: the number or residue-residue contacts that are common to
              both this and reference::
                abs( N0.sum( N0.sum( contactMatrix_a - contactMatrix_b )))
     @rtype: int
     """
     equality = N0.logical_and(self.resContacts(cutoff=cutoff),
                               reference.resContacts(cutoff=cutoff))
     return abs(N0.sum(N0.sum(equality)))
コード例 #37
0
ファイル: complex.py プロジェクト: graik/biskit
    def fractionNativeContacts(self, ref, cutoff=None ):
        """
        Fraction of native B{residue-residue} contacts.
        
        @param ref: native complex
        @type  ref: Complex
        @param cutoff: maximal atom-atom distance, None .. previous setting
        @type  cutoff: float

        @return: fraction of native contacts
        @rtype: float
        """
        cont     = self.resContacts( cutoff, refComplex=ref )
        ref_cont = ref.resContacts( cutoff )

        result = N0.sum(N0.sum( ref_cont * cont ))*1.0
        return result / N0.sum( N0.sum( ref_cont ))
コード例 #38
0
ファイル: mathUtils.py プロジェクト: suliat16/biskit
def area(curve, start=0.0, stop=1.0):
    """
    Numerically add up the area under the given curve.
    The curve is a 2-D array or list of tupples.
    The x-axis is the first column of this array (curve[:,0]).
    (originally taken from biskit.Statistics.ROCalyzer)

    :param curve: a list of x,y coordinates
    :type  curve: [ (y,x), ] or N0.array
    :param start: lower boundary (in x) (default: 0.0)
    :type  start: float
    :param stop: upper boundary (in x) (default: 1.0)
    :type  stop: float
    :return: the area underneath the curve between start and stop.
    :rtype: float
    """
    ## convert and swap axes
    curve = N0.array(curve)
    c = N0.zeros(N0.shape(curve), curve.dtype)
    c[:, 0] = curve[:, 1]
    c[:, 1] = curve[:, 0]

    assert len(N0.shape(c)) == 2

    ## apply boundaries  ## here we have a problem with flat curves
    mask = N0.greater_equal(c[:, 1], start)
    mask *= N0.less_equal(c[:, 1], stop)
    c = N0.compress(mask, c, axis=0)

    ## fill to boundaries -- not absolutely accurate: we actually should
    ## interpolate to the neighboring points instead
    c = N0.concatenate((N0.array([
        [c[0, 0], start],
    ]), c, N0.array([
        [c[-1, 0], stop],
    ])))
    x = c[:, 1]
    y = c[:, 0]

    dx = x[1:] - x[:-1]  # distance on x between points
    dy = y[1:] - y[:-1]  # distance on y between points

    areas1 = y[:-1] * dx  # the rectangles between all points
    areas2 = dx * dy / 2.0  # the triangles between all points

    return N0.sum(areas1) + N0.sum(areas2)
コード例 #39
0
ファイル: mathUtils.py プロジェクト: suliat16/biskit
def wMean(x, w=None):
    """
    Weighted mean: Mean of data (x) weighted by (w).

    :param x: X-D array with numbers
    :type  x: array
    :param w: 1-D array of same length as x with weight factors
    :type  w: array

    :return: array('f') or float
    :rtype: array('f') or float
    """
    if w is None:
        wx = x
    else:
        wx = [x[i] * 1. * w[i] for i in range(len(x))]

    return N0.sum(wx) / N0.sum(w)
コード例 #40
0
ファイル: mathUtils.py プロジェクト: graik/biskit
def wMean(x, w=None):
    """
    Weighted mean: Mean of data (x) weighted by (w).

    :param x: X-D array with numbers
    :type  x: array
    :param w: 1-D array of same length as x with weight factors
    :type  w: array

    :return: array('f') or float
    :rtype: array('f') or float
    """
    if w is None:
        wx = x
    else:
        wx = [ x[i] * 1. * w[i] for i in range( len(x) ) ]

    return N0.sum(wx)/N0.sum(w)
コード例 #41
0
ファイル: mathUtils.py プロジェクト: suliat16/biskit
    def test_mathUtils(self):
        """mathUtils.polar/euler test"""
        ## Calculating something ..
        self.d = N0.array([[20., 30., 40.], [23., 31., 50.]])

        self.a = polarToCartesian(cartesianToPolar(self.d))

        self.t = eulerRotation(self.a[0][0], self.a[0][1], self.a[0][2])

        self.assertAlmostEqual(N0.sum(SD(self.a)), self.EXPECT)
コード例 #42
0
ファイル: mathUtils.py プロジェクト: graik/biskit
def area(curve, start=0.0, stop=1.0 ):
    """
    Numerically add up the area under the given curve.
    The curve is a 2-D array or list of tupples.
    The x-axis is the first column of this array (curve[:,0]).
    (originally taken from biskit.Statistics.ROCalyzer)

    :param curve: a list of x,y coordinates
    :type  curve: [ (y,x), ] or N0.array
    :param start: lower boundary (in x) (default: 0.0)
    :type  start: float
    :param stop: upper boundary (in x) (default: 1.0)
    :type  stop: float
    :return: the area underneath the curve between start and stop.
    :rtype: float
    """
    ## convert and swap axes
    curve = N0.array( curve )
    c = N0.zeros( N0.shape(curve), curve.dtype )
    c[:,0] = curve[:,1]
    c[:,1] = curve[:,0]

    assert len( N0.shape( c ) ) == 2

    ## apply boundaries  ## here we have a problem with flat curves
    mask = N0.greater_equal( c[:,1], start )
    mask *= N0.less_equal( c[:,1], stop )
    c = N0.compress( mask, c, axis=0 )

    ## fill to boundaries -- not absolutely accurate: we actually should
    ## interpolate to the neighboring points instead
    c = N0.concatenate((N0.array([[c[0,0], start],]), c,
                       N0.array([[c[-1,0],stop ],])) )
    x = c[:,1]
    y = c[:,0]

    dx = x[1:] - x[:-1] # distance on x between points 
    dy = y[1:] - y[:-1] # distance on y between points

    areas1 = y[:-1] * dx  # the rectangles between all points
    areas2 = dx * dy / 2.0 # the triangles between all points

    return N0.sum(areas1) + N0.sum(areas2)
コード例 #43
0
ファイル: mathUtils.py プロジェクト: graik/biskit
    def test_mathUtils(self):
        """mathUtils.polar/euler test"""
        ## Calculating something ..
        self.d = N0.array([[20.,30.,40.],[23., 31., 50.]])

        self.a = polarToCartesian( cartesianToPolar( self.d ) )

        self.t = eulerRotation( self.a[0][0], self.a[0][1], self.a[0][2]  )

        self.assertAlmostEqual( N0.sum( SD(self.a) ), self.EXPECT )
コード例 #44
0
ファイル: complex.py プロジェクト: graik/biskit
    def rmsInterface( self, ref, cutoff=4.5, fit=1 ):
        """
        Rmsd between this and reference interface. The interface is
        defined as any residue that has an atom which is within the
        distance given by |cutoff| from its partner.
        
        @param ref: reference complex
        @type  ref: Complex
        @param cutoff: atom distance cutoff for interface residue definition
                       (default: 4.5)
        @type  cutoff: float
        @param fit: least-squares fit before calculating the rms (default: 1)
        @type  fit: 1|0
        
        @return: interface rmad
        @rtype: float
        """
        ## casting
        this = self
        if not ref.rec_model.equals( self.rec_model )[1] \
           or not ref.lig_model.equals( self.lig_model )[1]:

            m_rec, m_rec_ref, m_lig, m_lig_ref = self.equalAtoms( ref )
            this = self.compress( m_rec, m_lig )
            ref  = ref.compress( m_rec_ref, m_lig_ref )

        ## determine interface
        contacts = ref.resContacts( cutoff )

        if_rec = ref.rec_model.res2atomMask( N0.sum( contacts, 1 ) )
        if_lig = ref.lig_model.res2atomMask( N0.sum( contacts, 0 ) )

        mask_interface = N0.concatenate( (if_rec, if_lig) )
        mask_heavy = N0.concatenate( (ref.rec().maskHeavy(),
                                   ref.lig_model.maskHeavy()) )
        mask_interface = mask_interface * mask_heavy

        ## rms
        ref_model = ref.model()
        this_model= this.model()

        return ref_model.rms( this_model, mask_interface, fit=fit)
コード例 #45
0
ファイル: complex.py プロジェクト: suliat16/biskit
    def rmsInterface(self, ref, cutoff=4.5, fit=1):
        """
        Rmsd between this and reference interface. The interface is
        defined as any residue that has an atom which is within the
        distance given by |cutoff| from its partner.
        
        @param ref: reference complex
        @type  ref: Complex
        @param cutoff: atom distance cutoff for interface residue definition
                       (default: 4.5)
        @type  cutoff: float
        @param fit: least-squares fit before calculating the rms (default: 1)
        @type  fit: 1|0
        
        @return: interface rmad
        @rtype: float
        """
        ## casting
        this = self
        if not ref.rec_model.equals( self.rec_model )[1] \
           or not ref.lig_model.equals( self.lig_model )[1]:

            m_rec, m_rec_ref, m_lig, m_lig_ref = self.equalAtoms(ref)
            this = self.compress(m_rec, m_lig)
            ref = ref.compress(m_rec_ref, m_lig_ref)

        ## determine interface
        contacts = ref.resContacts(cutoff)

        if_rec = ref.rec_model.res2atomMask(N0.sum(contacts, 1))
        if_lig = ref.lig_model.res2atomMask(N0.sum(contacts, 0))

        mask_interface = N0.concatenate((if_rec, if_lig))
        mask_heavy = N0.concatenate(
            (ref.rec().maskHeavy(), ref.lig_model.maskHeavy()))
        mask_interface = mask_interface * mask_heavy

        ## rms
        ref_model = ref.model()
        this_model = this.model()

        return ref_model.rms(this_model, mask_interface, fit=fit)
コード例 #46
0
    def test_PDBParseModel(self):
        """PDBParseModel test"""

        ## loading output file from X-plor
        if self.local:
            print('Loading pdb file ..')

        self.p = PDBParseModel()
        self.m = self.p.parse2new(B.PDBModel(T.testRoot() + '/rec/1A2P.pdb'))

        self.assertAlmostEqual(N0.sum(self.m.centerOfMass()), 113.682601929, 2)
コード例 #47
0
ファイル: complex.py プロジェクト: graik/biskit
    def contactsOverlap(self, ref, cutoff=None):
        """
        Fraction of overlapping B{residue-residue} contacts between this and
        reference complex.
        
        @param ref: reference complex
        @type  ref: Complex
        @param cutoff: maximal atom-atom distance, None .. previous setting
        @type  cutoff: float
        
        @return: fraction of contacts shared between this and ref
                 (normalized to number of all contacts)
        @rtype: float
        """
        equal = N0.logical_and(self.resContacts( cutoff=cutoff ),
                            ref.resContacts( cutoff=cutoff ) )
        total = N0.logical_or( self.resContacts(cutoff),
                              ref.resContacts(cutoff) )

        return N0.sum(N0.sum( equal )) * 1.0 / N0.sum(N0.sum( total ))
コード例 #48
0
ファイル: complex.py プロジェクト: suliat16/biskit
    def contactsOverlap(self, ref, cutoff=None):
        """
        Fraction of overlapping B{residue-residue} contacts between this and
        reference complex.
        
        @param ref: reference complex
        @type  ref: Complex
        @param cutoff: maximal atom-atom distance, None .. previous setting
        @type  cutoff: float
        
        @return: fraction of contacts shared between this and ref
                 (normalized to number of all contacts)
        @rtype: float
        """
        equal = N0.logical_and(self.resContacts(cutoff=cutoff),
                               ref.resContacts(cutoff=cutoff))
        total = N0.logical_or(self.resContacts(cutoff),
                              ref.resContacts(cutoff))

        return N0.sum(N0.sum(equal)) * 1.0 / N0.sum(N0.sum(total))
コード例 #49
0
ファイル: pdbparseModel.py プロジェクト: graik/biskit
    def test_PDBParseModel( self ):
        """PDBParseModel test"""

        ## loading output file from X-plor
        if self.local:
            print('Loading pdb file ..')

        self.p = PDBParseModel()
        self.m = self.p.parse2new( B.PDBModel(T.testRoot()+'/rec/1A2P.pdb') )

        self.assertAlmostEqual( N0.sum( self.m.centerOfMass() ),
               113.682601929, 2 )
コード例 #50
0
ファイル: mathUtils.py プロジェクト: suliat16/biskit
def accumulate(a):
    """
    cumulative sum of C{ a[0], a[0]+a[1], a[0]+a[1]+[a2], ... }
    normalized by C{ N0.sum( a ) }

    :param a: array('f') or float
    :type  a: array

    :return: float
    :rtype: float
    """
    return N0.add.accumulate(a) / N0.sum(a)
コード例 #51
0
ファイル: mathUtils.py プロジェクト: graik/biskit
def accumulate( a ):
    """
    cumulative sum of C{ a[0], a[0]+a[1], a[0]+a[1]+[a2], ... }
    normalized by C{ N0.sum( a ) }

    :param a: array('f') or float
    :type  a: array

    :return: float
    :rtype: float
    """
    return N0.add.accumulate( a ) / N0.sum( a )
コード例 #52
0
ファイル: pdbparsePickle.py プロジェクト: suliat16/biskit
    def test_PDBParsePickle(self):
        """PDBParsePickle test"""

        import biskit.core.oldnumeric as N0

        ## loading output file from X-plor
        if self.local:
            print('Loading pickled model ..')

        self.p = PDBParsePickle()
        self.m = self.p.parse2new(T.testRoot('rec/1A2P_dry.model'))

        self.assertAlmostEqual(N0.sum(self.m.centerOfMass()), 114.18037, 5)
コード例 #53
0
ファイル: mathUtils.py プロジェクト: suliat16/biskit
def outliers(a, z=5, it=5):
    """
    Iterative detection of outliers in a set of numeric values.
    Requirement: len(a) > 0; outlier detection is only performed if len(a)>2
    
    :param a: array or list of values
    :type  a: [ float ]
    :param z: z-score threshold for iterative refinement of median and SD
    :type  z: float
    :param it: maximum number of iterations
    :type  it: int
    
    :return: outlier mask, median and standard deviation of last iteration
    :rtype: N0.array( int ), float, float
    """
    assert (len(a) > 0)
    mask = N0.ones(len(a))
    out = N0.zeros(len(a))

    if len(a) < 3:
        return out, N0.median(a), N0.std(a)

    for i in range(it):
        b = N0.compress(N0.logical_not(out), a)
        me = N0.median(b)
        sd = N0.std(b)

        bz = N0.absolute(
            (N0.array(a) - me) / sd)  # pseudo z-score of each value
        o = bz > z
        ##        print 'iteration %i: <%5.2f> +- %5.2f -- %i outliers' % (i,me,sd,N0.sum(o))

        ## stop if converged or reached bottom
        if (N0.sum(o) == N0.sum(out)) or (N0.sum(o) > len(a) - 3):
            return o, me, sd

        out = o

    return out, me, sd
コード例 #54
0
ファイル: reducecoordinates.py プロジェクト: suliat16/biskit
    def reduceXyz( self, xyz, axis=0 ):
        """
        Reduce the number of atoms in the given coordinate set. The set must
        have the same length and order as the reference model. It may have
        an additional (time) dimension as first axis.
        
        @param xyz: coordinates (N_atoms x 3) or (N_frames x N_atoms x 3)
        @type  xyz: array
        @param axis: axis with atoms (default: 0)
        @type  axis: int
        
        @return: coordinate array (N_less_atoms x 3) or
                 (N_frames x N_less_atoms x 3)
        @rtype: array
        """
        masses = self.m.atoms.get('mass')
        r_xyz = None

        for atom_indices in self.groups:

            x = N0.take( xyz, atom_indices, axis )
            m = N0.take( masses, atom_indices )

            center = N0.sum( x * N0.transpose([m,]), axis=axis) / N0.sum( m )

            if axis == 0:
                center = center[N0.NewAxis, :]

            if axis == 1:
                center = center[:, N0.NewAxis, :]

            if r_xyz is None:
                r_xyz = center

            else:
                r_xyz = N0.concatenate( (r_xyz, center), axis )

        return r_xyz
コード例 #55
0
ファイル: mathUtils.py プロジェクト: graik/biskit
def outliers( a, z=5, it=5 ):
    """
    Iterative detection of outliers in a set of numeric values.
    Requirement: len(a) > 0; outlier detection is only performed if len(a)>2
    
    :param a: array or list of values
    :type  a: [ float ]
    :param z: z-score threshold for iterative refinement of median and SD
    :type  z: float
    :param it: maximum number of iterations
    :type  it: int
    
    :return: outlier mask, median and standard deviation of last iteration
    :rtype: N0.array( int ), float, float
    """
    assert( len(a) > 0 )
    mask = N0.ones( len(a) )
    out  = N0.zeros( len(a) )
    
    if len(a) < 3:
        return out, N0.median(a), N0.std(a)
    
    for i in range( it ):
        b  = N0.compress( N0.logical_not(out), a )
        me = N0.median( b )
        sd = N0.std( b )
        
        bz = N0.absolute((N0.array( a ) - me) / sd)  # pseudo z-score of each value
        o  = bz > z
        ##        print 'iteration %i: <%5.2f> +- %5.2f -- %i outliers' % (i,me,sd,N0.sum(o))

        ## stop if converged or reached bottom
        if (N0.sum(o) == N0.sum(out)) or (N0.sum(o) > len(a) - 3):
            return o, me, sd
            
        out = o
    
    return out, me, sd
コード例 #56
0
ファイル: pdbparsePickle.py プロジェクト: graik/biskit
    def test_PDBParsePickle( self ):
        """PDBParsePickle test"""

        import biskit.core.oldnumeric as N0

        ## loading output file from X-plor
        if self.local:
            print('Loading pickled model ..')

        self.p = PDBParsePickle()
        self.m = self.p.parse2new( T.testRoot('rec/1A2P_dry.model'))

        self.assertAlmostEqual( N0.sum( self.m.centerOfMass() ),
                                114.18037, 5)