def start_device(): # Connect to BITalino device = BITalino(settings.bitalino.mac_address) # Set battery threshold device.battery(settings.bitalino.battery_led_threshold) # Read BITalino version logger.info(device.version()) # Start Acquisition device.start(settings.sampling.base_sample_rate, [0, 1, 2, 3]) return device
def set_acquisition(): # This example will collect data for 5 sec. running_time = 5 batteryThreshold = 30 acqChannels = [0, 1, 2, 3, 4, 5] samplingRate = 1000 nSamples = 10 digitalOutput = [1, 1] # Connect to BITalino device = BITalino(macAddress) # Set battery threshold device.battery(batteryThreshold)
def launch_acquisition(msg): global isAcquiring isAcquiring = 1 macAddress = msg['payload']['macAddress'] # This example will collect data for 5 sec. running_time = 9 batteryThreshold = 30 acqChannels = [0, 1, 2, 3, 4, 5] samplingRate = 1000 nSamples = 10 digitalOutput = [1, 1] # Connect to BITalino device = BITalino(macAddress) # Set battery threshold device.battery(batteryThreshold) # Read BITalino version print(device.version()) # ON/OFF device.trigger([1, 1]) device.trigger([0, 0]) # Start Acquisition device.start(samplingRate, acqChannels) start = time.time() end = time.time() while (end - start) < running_time and isAcquiring == 1: # Read samples data = device.read(nSamples) print(data) msg['payload']['val'] = data.tolist() end = time.time() # Stop acquisition device.stop() # Close connection device.close() isAcquiring = 0 return ("success")
datatype = FieldTrip.DATATYPE_FLOAT32 ft_output.putHeader(nchans, float(fsample), datatype) try: # Connect to BITalino device = BITalino(device) except: print "Error: cannot connect to BITalino" exit() # Read BITalino version print(device.version()) # Set battery threshold device.battery(batterythreshold) # Start Acquisition device.start(fsample, channels) # Turn BITalino led on digitalOutput = [1,1] device.trigger(digitalOutput) startfeedback = time.time(); countfeedback = 0; print "STARTING STREAM" while True: # measure the time that it takes
def main(self): parser = argparse.ArgumentParser() parser.add_argument("--sampling_rate", help="Sampling rate used for recording data", type=int, default=10) parser.add_argument("--offline", help="run in offline mode", action="store_true") parser.add_argument("--logging", dest="logging", help="Log the data", action="store_true", default=True) parser.add_argument("--no_logging", dest='logging', help="Log the data", action="store_false") parser.add_argument("--osc_path", help="the osc path prefix", default="Bitalino") parser.add_argument("--dest_ip", help="IP address of the destination", default="127.0.0.1") parser.add_argument("--dest_port", help="the port", type=int, default=8000) parser.add_argument("--mac_address", default="20:16:12:22:45:56") parser.add_argument("--battery_threshold", default=30) parser.add_argument("--analog_channels", default="0,1,2,3,4,5") parser.add_argument("--batch_size", help="number of samples read in batch", type=int, default=10) parser.add_argument("--EDA_channel", help="the analog channel inded of EXA", type=int, default=3) args = parser.parse_args() the_logger = log_writer(args.logging) the_logger.log_msg("Starting up.") # The channel list parsing is bit of a hack.. I'm sure there is some more pythonesque way of doing this anal_channels = args.analog_channels.split(',') channels = list(map(int, anal_channels)) # small samping rate for testing.. analogChannels = args.analog_channels samplingRate = args.sampling_rate nSamples = args.batch_size # Connect to BITalino device = BITalino(args.mac_address) # Set battery threshold batty = device.battery(args.battery_threshold) # If we are not in offline mode we start streaming to given UDP port. # He we just create a UDPClient for that. if not args.offline: client = udp_client.SimpleUDPClient(args.dest_ip, args.dest_port) # Start recording device.start(samplingRate, channels) while self.interrupter == False: # Start Acquisition rec_data = device.read(nSamples) current_time = datetime.datetime.now().timestamp() for sample in rec_data: # Delete digital channels (that contains just zeroes but that cannot be ignored) # maybe this delete/insert thing is inefficient, but hopefully not inefficient enough # to cause issues... sample = np.delete(sample, [0, 1, 2, 3, 4]) sample = np.insert(sample, 0, current_time) the_logger.log_data(sample) current_time += (1.0 / samplingRate) # Following code just for State of Darkness!! Does not generalize and will break if EDA is # recorded from somewhere other than first channel. EDA_data = np.mean(rec_data, axis=0)[(4 + args.EDA_channel)] print("the EDA_data is: ", EDA_data) osc_address = args.osc_path + "/EDA" msg = osc_message_builder.OscMessageBuilder(address=osc_address) msg.add_arg(EDA_data) msg = msg.build() if not args.offline: client.send(msg) # Stop acquisition device.stop() # Close connection device.close() return
datatype = FieldTrip.DATATYPE_FLOAT32 ft_output.putHeader(nchans, float(fsample), datatype) try: # Connect to BITalino device = BITalino(device) except: print("Error: cannot connect to BITalino") exit() # Read BITalino version print((device.version())) # Set battery threshold device.battery(batterythreshold) # Start Acquisition device.start(fsample, channels) # Turn BITalino led on digitalOutput = [1,1] device.trigger(digitalOutput) startfeedback = time.time() countfeedback = 0 print("STARTING STREAM") while True: # measure the time that it takes
def _start(): """Start the module This uses the global variables from setup and adds a set of global variables """ global parser, args, config, r, response, patch, name global monitor, debug, device, fsample, blocksize, channels, batterythreshold, nchans, startfeedback, countfeedback, ft_host, ft_port, ft_output, datatype, digitalOutput # this can be used to show parameters that have changed monitor = EEGsynth.monitor(name=name, debug=patch.getint("general", "debug")) # get the options from the configuration file debug = patch.getint("general", "debug") device = patch.getstring("bitalino", "device") fsample = patch.getfloat("bitalino", "fsample", default=1000) blocksize = patch.getint("bitalino", "blocksize", default=10) channels = patch.getint("bitalino", "channels", multiple=True) # these should be one-offset batterythreshold = patch.getint("bitalino", "batterythreshold", default=30) # switch from one-offset to zero-offset nchans = len(channels) for i in range(nchans): channels[i] -= 1 monitor.info("fsample = " + str(fsample)) monitor.info("channels = " + str(channels)) monitor.info("nchans = " + str(nchans)) monitor.info("blocksize = " + str(blocksize)) try: ft_host = patch.getstring("fieldtrip", "hostname") ft_port = patch.getint("fieldtrip", "port") monitor.success("Trying to connect to buffer on %s:%i ..." % (ft_host, ft_port)) ft_output = FieldTrip.Client() ft_output.connect(ft_host, ft_port) monitor.success("Connected to output FieldTrip buffer") except: raise RuntimeError("cannot connect to output FieldTrip buffer") datatype = FieldTrip.DATATYPE_FLOAT32 ft_output.putHeader(nchans, float(fsample), datatype) try: # Connect to BITalino device = BITalino(device) monitor.success((device.version())) except: raise RuntimeError("cannot connect to BITalino") # Set battery threshold device.battery(batterythreshold) # Start Acquisition device.start(fsample, channels) # Turn BITalino led on digitalOutput = [1, 1] device.trigger(digitalOutput) startfeedback = time.time() countfeedback = 0 # there should not be any local variables in this function, they should all be global if len(locals()): print("LOCALS: " + ", ".join(locals().keys()))
def main(): # OS Specific Initializations clearCmd = "cls||clear" if platform.system() == 'Windows': clearCmd = "cls" print("Using Windows default console size 80x24") columns = 80 rows = 24 else: clearCmd = "clear" rows, columns = os.popen('stty size', 'r').read().split() print("Connecting to BITalino...") # Set MAC Address with argument defaultMACAddress = "20:16:12:21:98:56" if len(sys.argv) == 2: macAddress = sys.argv[1] print("Using address: " + macAddress) elif len(sys.argv) > 1: print("Please input only 1 argument, which is the address of the BITalino device.") print("Running without argument will use default MAC Address = " + defaultMACAddress) print("Exiting...") exit() else: macAddress = defaultMACAddress print("Using default MAC address: " + macAddress) # Setting other attributes batteryThreshold = 30 acqChannels = [0,1] samplingRate = 100 nSamples = 20 digitalOutput = [1,1] # Connect to BITalino device = BITalino(macAddress) # Set battery threshold device.battery(batteryThreshold) # Read BITalino version os.system(clearCmd) print("Device Version:" + device.version()) # Start Acquisition device.start(samplingRate, acqChannels) # Take baseline measurement p1Base = [] p2Base = [] start = time.time() end = time.time() samplingTime = 15 print("Sampling for baseline...") while (end - start) < samplingTime: # Sampling for baseline baseSample = device.read(nSamples) p1Base.append(numpy.mean(baseSample[:,5])) p2Base.append(numpy.mean(baseSample[:,6])) end = time.time() p1B = numpy.mean(p1Base) p2B = numpy.mean(p2Base) print("\n") p1P = "Player 1 Baseline: " + str(p1B) print(p1P) p2P = "Player 2 Baseline: " + str(p2B) print(p2P) print("\n\n\n\n\n\n") print("Are you ready for the game? Type 'No' to exit".center(int(columns)," ")) response = sys.stdin.readline().rstrip() if response == "No": sys.exit() print("\n") print("Starting Game...".center(int(columns), " ")) time.sleep(5) # Start Game os.system(clearCmd) gameRunning = True player1Progress = 28 while gameRunning: # While not reaching runningTime, read samples rawData = device.read(nSamples) portA1 = rawData[:,5] #print "Port A1: ", portA1 valueA1 = numpy.mean(portA1 - p1B) #print "Value A1: ", valueA1 #print "" portA2 = rawData[:,6] #print "Port A2: ", portA2 valueA2 = numpy.mean(portA2 - p2B) #print "Value A2: ", valueA2 #print "\n" if (valueA2 - valueA1) > 10: player1Progress-=1 elif (valueA2 - valueA1) > 20: plater1Progress-=2 elif (valueA1 - valueA2) > 10: player1Progress+=1 elif (valueA1 - valueA2) > 20: player1Progress+=2 print("\n\n") print("Player 1 Reading:".center(int(columns)," ")) print("\n") print(str(valueA1).center(int(columns)," ")) print("\n\n\n") print("*****************************I*****************************".center(int(columns)," ")) progress = "P1 *" + ' '*player1Progress + 'O' + ' '*(56-player1Progress) + '* P2' print(progress.center(int(columns)," ")) print("*****************************I*****************************".center(int(columns)," ")) print("\n\n\n") print("Player 2 Reading:".center(int(columns)," ")) print("\n") print(str(valueA2).center(int(columns)," ")) time.sleep(0.2) os.system(clearCmd) if player1Progress == 0: print("\n\n\n\n\n") print("Player 1 has won".center(int(columns)," ")) gameRunning = False elif player1Progress == 56: print("\n\n\n\n\n") print("Player 2 has won".center(int(columns)," ")) gameRunning = False # Turn BITalino LED on device.trigger(digitalOutput) # Stop acquisition device.stop() # Close connection device.close()
class Bitalino(Node): """BITalino driver. This node connects to a BITalino device and streams data at a provided rate. It is based on the original BITalino Python library, with some performance improvements and careful timestamping. Two output streams are provided. The default output is the data read from the analog and digital channels. The ``o_offsets`` output provides continuous offsets between the local time and the estimated device time. This enables drift correction to be performed during post-processing, although no significant drift has been observed during testing. Attributes: o (Port): BITalino data, provides DataFrame. o_offsets (Port): Time offsets, provide DataFrame. Args: port (string): The serial port. e.g. ``COM3`` on Windows; ``/dev/tty.bitalino-DevB`` on MacOS; ``/dev/ttyUSB0`` on GNU/Linux. rate (int): The device rate in Hz. Possible values: ``1``, ``10``, ``100``, ``1000``. Default: ``1000``. channels (tupple): The analog channels to read from. Default: ``('A1', 'A2', 'A3', 'A4', 'A5', 'A6')``. Example: .. literalinclude:: /../examples/bitalino.yaml :language: yaml Notes: .. attention:: Make sure to set your graph rate to an high-enough value, otherwise the device internal buffer may saturate, and data may be lost. A 30Hz graph rate is recommended for a 1000Hz device rate. """ def __init__(self, port, rate=1000, channels=("A1", "A2", "A3", "A4", "A5", "A6")): # Check port if not port.startswith("/dev/") and not port.startswith("COM"): raise ValueError(f"Invalid serial port: {port}") # Check rate if rate not in (1, 10, 100, 1000): raise ValueError(f"Invalid rate: {rate}") # Check channels unique_channels = set(channels) analog_channels = ["A1", "A2", "A3", "A4", "A5", "A6"] channels = [] for channel_num, channel_name in enumerate(analog_channels): if channel_name in unique_channels: channels.append(channel_num) # Set column names # Sequence number and numeric channels are always present self.columns = ["SEQ", "I1", "I2", "O1", "O2"] # Add required analog channels for channel in channels: self.columns.append(analog_channels[channel]) # Compute the sample size in bytes self.channel_count = len(channels) if self.channel_count <= 4: self.sample_size = int( np.ceil((12.0 + 10.0 * self.channel_count) / 8.0)) else: self.sample_size = int( np.ceil((52.0 + 6.0 * (self.channel_count - 4)) / 8.0)) # Connect to BITalino try: self.device = BITalino(port) except UnicodeDecodeError: # This can happen after an internal buffer overflow. # The solution seems to power off the device and repair. raise WorkerInterrupt("Unstable state. Could not connect.") except Exception as e: raise WorkerInterrupt(e) # Set battery threshold # The red led will light up at 5-10% self.device.battery(30) # Read BITalino version self.logger.info(self.device.version()) # Read state and show battery level # http://forum.bitalino.com/viewtopic.php?t=448 state = self.device.state() battery = round( 1 + (state["battery"] - 511) * ((99 - 1) / (645 - 511)), 2) self.logger.info("Battery: %.2f%%", battery) # Start Acquisition self.device.start(rate, channels) # Initialize counters for timestamp indices and continuity checks self.last_sample_counter = 15 self.time_device = np.datetime64(int(time.time() * 1e6), "us") self.time_local = self.time_device self.time_delta = np.timedelta64(int(1000 / rate), "ms") # Set meta self.meta = {"rate": rate} def update(self): # Send BITalino data data, timestamps = self._read_all() self.o.set(data, timestamps, self.columns, self.meta) # Send time offsets if len(timestamps) > 0: offset = (self.time_local - self.time_device).astype(int) self.o_offsets.set( [[self.time_device, offset]], [self.time_local], ["time_device", "time_offset"], ) def _read_all(self): """Read all available data""" # Make sure the device is in aquisition mode if not self.device.started: raise Exception(ExceptionCode.DEVICE_NOT_IN_ACQUISITION) # We only support serial connections if not self.device.serial: raise Exception("Device must be opened in serial mode.") # Check buffer size and limits buffer_size = self.device.socket.in_waiting if buffer_size == 1020: # The device buffer can hold up to 1020 bytes self.logger.warn( "OS serial buffer saturated. Increase graph rate or decrease device rate." ) # Compute the maximum number of samples we can get sample_count = int(buffer_size / self.sample_size) # Infer timestamps from sample count and rate # Will fail dramatically if too much packets are lost # Tests show that there is no significant drift during a 2-hour session start = self.time_device stop = start + self.time_delta * sample_count self.time_device = stop timestamps = np.arange(start, stop, self.time_delta) self.time_local = np.datetime64(int(time.time() * 1e6), "us") # Infer timestamps from local time and rate # /!\ Not monotonic # stop = np.datetime64(int(time.time() * 1e6), 'us') # start = stop - (sample_count * self.time_delta) # timestamps = np.arange(start, stop, self.time_delta) # Read raw samples from device raw = self.device.socket.read(sample_count * self.sample_size) # Initialize the output matrix data = np.full((sample_count, 5 + self.channel_count), np.nan) # Parse the raw data # http://bitalino.com/datasheets/REVOLUTION_MCU_Block_Datasheet.pdf for sample_number in range(sample_count): # Extract sample start = sample_number * self.sample_size stop = start + self.sample_size sample = list( struct.unpack(self.sample_size * "B ", raw[start:stop])) # Is the sample corrupted? crc = sample[-1] & 0x0F sample[-1] = sample[-1] & 0xF0 x = 0 for i in range(self.sample_size): for bit in range(7, -1, -1): x = x << 1 if x & 0x10: x = x ^ 0x03 x = x ^ ((sample[i] >> bit) & 0x01) if crc != x & 0x0F: self.logger.warn("Checksum failed.") continue # Parse sample data[sample_number, 0] = sample[-1] >> 4 data[sample_number, 1] = sample[-2] >> 7 & 0x01 data[sample_number, 2] = sample[-2] >> 6 & 0x01 data[sample_number, 3] = sample[-2] >> 5 & 0x01 data[sample_number, 4] = sample[-2] >> 4 & 0x01 if self.channel_count > 0: data[sample_number, 5] = ((sample[-2] & 0x0F) << 6) | (sample[-3] >> 2) if self.channel_count > 1: data[sample_number, 6] = ((sample[-3] & 0x03) << 8) | sample[-4] if self.channel_count > 2: data[sample_number, 7] = (sample[-5] << 2) | (sample[-6] >> 6) if self.channel_count > 3: data[sample_number, 8] = ((sample[-6] & 0x3F) << 4) | (sample[-7] >> 4) if self.channel_count > 4: data[sample_number, 9] = ((sample[-7] & 0x0F) << 2) | (sample[-8] >> 6) if self.channel_count > 5: data[sample_number, 10] = sample[-8] & 0x3F # Did we miss any sample? # Check for discontinuity in the internal sample counter, encoded to 4 bits. sample_counter = data[sample_number, 0] if sample_counter == self.last_sample_counter + 1: pass elif sample_counter == 0 and self.last_sample_counter == 15: pass else: self.logger.warn("Missed sample.") self.last_sample_counter = sample_counter return data, timestamps def terminate(self): self.device.stop() self.device.close()