def test_updates_algorithm_add_updates(): n = shared_floatx(1) m = shared_floatx(0) algorithm = UpdatesAlgorithm(updates=[(n, n + 1)]) algorithm.add_updates([(m, n % 2)]) assert len(algorithm.updates) == 2 algorithm.initialize() algorithm.process_batch({}) assert_allclose(n.get_value(), 2) assert_allclose(m.get_value(), 1) algorithm.process_batch({}) assert_allclose(n.get_value(), 3) assert_allclose(m.get_value(), 0)
def test_updates_algorithm(): n = shared_floatx(1) algorithm = UpdatesAlgorithm(updates=[(n, n + 1)]) algorithm.initialize() algorithm.process_batch({}) assert_allclose(n.get_value(), 2) algorithm.process_batch({}) assert_allclose(n.get_value(), 3)
def test_training_data_monitoring_updates_algorithm(): features = [ numpy.array(f, dtype=theano.config.floatX) for f in [[1, 2], [3, 5], [5, 8]] ] targets = numpy.array([f.sum() for f in features]) dataset = IterableDataset(dict(features=features, targets=targets)) x = tensor.vector('features') y = tensor.scalar('targets') m = x.mean().copy(name='features_mean') t = y.sum().copy(name='targets_sum') main_loop = MainLoop( model=None, data_stream=dataset.get_example_stream(), algorithm=UpdatesAlgorithm(), extensions=[ TrainingDataMonitoring([m, t], prefix="train1", after_batch=True) ], ) main_loop.extensions[0].main_loop = main_loop assert len(main_loop.algorithm.updates) == 0 main_loop.extensions[0].do('before_training') assert len(main_loop.algorithm.updates) > 0
def test_updates_algorithm_data(): n = shared_floatx(1) m = tensor.scalar('m') algorithm = UpdatesAlgorithm(updates=[(n, m + 1)]) algorithm.initialize() algorithm.process_batch({'m': 5}) assert_allclose(n.get_value(), 6) algorithm.process_batch({'m': 3}) assert_allclose(n.get_value(), 4)