def main(save_to, num_epochs): mlp = MLP([Tanh(), Softmax()], [784, 100, 10], weights_init=IsotropicGaussian(0.01), biases_init=Constant(0)) mlp.initialize() x = tensor.matrix('features') y = tensor.lmatrix('targets') probs = mlp.apply(tensor.flatten(x, outdim=2)) cost = CategoricalCrossEntropy().apply(y.flatten(), probs) error_rate = MisclassificationRate().apply(y.flatten(), probs) cg = ComputationGraph([cost]) W1, W2 = VariableFilter(roles=[WEIGHT])(cg.variables) cost = cost + .00005 * (W1**2).sum() + .00005 * (W2**2).sum() cost.name = 'final_cost' mnist_train = MNIST(("train", )) mnist_test = MNIST(("test", )) algorithm = GradientDescent(cost=cost, parameters=cg.parameters, step_rule=Scale(learning_rate=0.1)) extensions = [ Timing(), FinishAfter(after_n_epochs=num_epochs), DataStreamMonitoring([cost, error_rate], Flatten(DataStream.default_stream( mnist_test, iteration_scheme=SequentialScheme( mnist_test.num_examples, 500)), which_sources=('features', )), prefix="test"), TrainingDataMonitoring([ cost, error_rate, aggregation.mean(algorithm.total_gradient_norm) ], prefix="train", after_epoch=True), Checkpoint(save_to), Printing() ] if BLOCKS_EXTRAS_AVAILABLE: extensions.append( Plot('MNIST example', channels=[[ 'test_final_cost', 'test_misclassificationrate_apply_error_rate' ], ['train_total_gradient_norm']])) main_loop = MainLoop(algorithm, Flatten(DataStream.default_stream( mnist_train, iteration_scheme=SequentialScheme( mnist_train.num_examples, 50)), which_sources=('features', )), model=Model(cost), extensions=extensions) main_loop.run()
def test_plot(): class Writer(SimpleExtension): def do(self, *args, **kwargs): self.main_loop.log.current_row['channel'] = ( self.main_loop.status['iterations_done']**2) main_loop = MockMainLoop(extensions=[ Writer(after_batch=True), Plot('test', [['channel']]).set_conditions(after_batch=True), FinishAfter(after_n_batches=11) ]) main_loop.run()
test_stream = Flatten( DataStream.default_stream( dataset=test, iteration_scheme=ShuffledScheme( test.num_examples, batch_size=test.num_examples))) test_monitor = DataStreamMonitoring( variables=[cost], data_stream=test_stream, prefix='test' ) plotting = Plot('AdniNet_{}'.format(side), channels=[ ['entropy', 'validation_entropy'], ['error', 'validation_error'], ], after_batch=False) # The main loop will train the network and output reports, etc stamp = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d-%H:%M') main = MainLoop( data_stream=training_stream, model=autoencoder, algorithm=algo, extensions=[ FinishAfter(after_n_epochs=max_iter), FinishIfNoImprovementAfter(notification_name='validation_error', epochs=3), Printing(), validation_monitor,
algorithm = GradientDescent(cost=cost, parameters=ComputationGraph(cost).parameters, step_rule=CompositeRule([RemoveNotFinite(), AdaDelta()])) # CompositeRule([StepClipping(10.0), Scale(0.02)])) monitor_cost = TrainingDataMonitoring([cost, error_rate], prefix="train", after_epoch=True) monitor_valid = DataStreamMonitoring([cost, error_rate, edit_distance, errors_per_char], data_stream=valid_stream, prefix="valid", after_epoch=True) plot = Plot(document='CTC_toy_dataset_%d_%d'%(h_dim, rec_dim), channels=[['train_CTC', 'valid_CTC'], ['train_error_rate', 'valid_error_rate'], ['valid_edit_distance'], ['valid_errors_per_char']], after_epoch=True) model = Model(cost) main_loop = MainLoop(data_stream=stream, algorithm=algorithm, extensions=[monitor_cost, monitor_valid, plot, FinishAfter(after_n_epochs=n_epochs), Printing()], model=model) print('Starting training ...') # --------------------------------------------------- main_loop.run() # vim: set sts=4 ts=4 sw=4 tw=0 et:
def main(name, epochs, batch_size, learning_rate, dim, mix_dim, old_model_name, max_length, bokeh, GRU, dropout, depth, max_grad, step_method, epsilon, sample, skip, uniform, top): #---------------------------------------------------------------------- datasource = name def shnum(x): """ Convert a positive float into a short tag-usable string E.g.: 0 -> 0, 0.005 -> 53, 100 -> 1-2 """ return '0' if x <= 0 else '%s%d' % (("%e"%x)[0], -np.floor(np.log10(x))) jobname = "%s-%dX%dm%dd%dr%sb%de%s" % (datasource, depth, dim, mix_dim, int(dropout*10), shnum(learning_rate), batch_size, shnum(epsilon)) if max_length != 600: jobname += '-L%d'%max_length if GRU: jobname += 'g' if max_grad != 5.: jobname += 'G%g'%max_grad if step_method != 'adam': jobname += step_method if skip: jobname += 'D' assert depth > 1 if top: jobname += 'T' assert depth > 1 if uniform > 0.: jobname += 'u%d'%int(uniform*100) if debug: jobname += ".debug" if sample: print("Sampling") else: print("\nRunning experiment %s" % jobname) if old_model_name: print("starting from model %s"%old_model_name) #---------------------------------------------------------------------- transitions = [GatedRecurrent(dim=dim) if GRU else LSTM(dim=dim) for _ in range(depth)] if depth > 1: transition = RecurrentStack(transitions, name="transition", skip_connections=skip or top) if skip: source_names=[RecurrentStack.suffix('states', d) for d in range(depth)] else: source_names=[RecurrentStack.suffix('states', depth-1)] else: transition = transitions[0] transition.name = "transition" source_names=['states'] emitter = SketchEmitter(mix_dim=mix_dim, epsilon=epsilon, name="emitter") readout = Readout( readout_dim=emitter.get_dim('inputs'), source_names=source_names, emitter=emitter, name="readout") generator = SequenceGenerator(readout=readout, transition=transition) # Initialization settings if uniform > 0.: generator.weights_init = Uniform(width=uniform*2.) else: generator.weights_init = OrthogonalGlorot() generator.biases_init = Constant(0) # Build the cost computation graph [steps, batch_size, 3] x = T.tensor3('features', dtype=floatX) if debug: x.tag.test_value = np.ones((max_length,batch_size,3)).astype(floatX) x = x[:max_length,:,:] # has to be after setting test_value cost = generator.cost(x) cost.name = "sequence_log_likelihood" # Give an idea of what's going on model = Model(cost) params = model.get_parameter_dict() logger.info("Parameters:\n" + pprint.pformat( [(key, value.get_value().shape) for key, value in params.items()], width=120)) model_size = 0 for v in params.itervalues(): s = v.get_value().shape model_size += s[0] * (s[1] if len(s) > 1 else 1) logger.info("Total number of parameters %d"%model_size) #------------------------------------------------------------ extensions = [] if old_model_name: if old_model_name == 'continue': old_model_name = jobname with open(old_model_name + '_model', "rb") as f: old_model = pickle.load(f) model.set_parameter_values(old_model.get_parameter_values()) del old_model else: # Initialize parameters for brick in model.get_top_bricks(): brick.initialize() if sample: assert old_model_name and old_model_name != 'continue' Sample(generator, steps=max_length, path=old_model_name).do(None) exit(0) #------------------------------------------------------------ # Define the training algorithm. cg = ComputationGraph(cost) if dropout > 0.: from blocks.roles import INPUT, OUTPUT dropout_target = VariableFilter(roles=[OUTPUT], bricks=transitions, name_regex='states')(cg.variables) print('# dropout %d' % len(dropout_target)) cg = apply_dropout(cg, dropout_target, dropout) opt_cost = cg.outputs[0] else: opt_cost = cost if step_method == 'adam': step_rule = Adam(learning_rate) elif step_method == 'rmsprop': step_rule = RMSProp(learning_rate, decay_rate=0.95) elif step_method == 'adagrad': step_rule = AdaGrad(learning_rate) elif step_method == 'adadelta': step_rule = AdaDelta() elif step_method == 'scale': step_rule = Scale(learning_rate) else: raise Exception('Unknown sttep method %s'%step_method) step_rule = CompositeRule([StepClipping(max_grad), step_rule]) algorithm = GradientDescent( cost=opt_cost, parameters=cg.parameters, step_rule=step_rule) #------------------------------------------------------------ observables = [cost] # Fetch variables useful for debugging (energies,) = VariableFilter( applications=[generator.readout.readout], name_regex="output")(cg.variables) min_energy = named_copy(energies.min(), "min_energy") max_energy = named_copy(energies.max(), "max_energy") observables += [min_energy, max_energy] # (activations,) = VariableFilter( # applications=[generator.transition.apply], # name=generator.transition.apply.states[0])(cg.variables) # mean_activation = named_copy(abs(activations).mean(), # "mean_activation") # observables.append(mean_activation) observables += [algorithm.total_step_norm, algorithm.total_gradient_norm] for name, param in params.items(): observables.append(named_copy( param.norm(2), name + "_norm")) observables.append(named_copy( algorithm.gradients[param].norm(2), name + "_grad_norm")) #------------------------------------------------------------ datasource_fname = os.path.join(fuel.config.data_path, datasource, datasource+'.hdf5') train_ds = H5PYDataset(datasource_fname, #max_length=max_length, which_sets=['train'], sources=('features',), load_in_memory=True) train_stream = DataStream(train_ds, iteration_scheme=ShuffledScheme( train_ds.num_examples, batch_size)) test_ds = H5PYDataset(datasource_fname, #max_length=max_length, which_sets=['test'], sources=('features',), load_in_memory=True) test_stream = DataStream(test_ds, iteration_scheme=SequentialScheme( test_ds.num_examples, batch_size)) train_stream = Mapping(train_stream, _transpose) test_stream = Mapping(test_stream, _transpose) def stream_stats(ds, label): itr = ds.get_epoch_iterator(as_dict=True) batch_count = 0 examples_count = 0 for batch in itr: batch_count += 1 examples_count += batch['features'].shape[1] print('%s #batch %d #examples %d' % (label, batch_count, examples_count)) stream_stats(train_stream, 'train') stream_stats(test_stream, 'test') extensions += [Timing(every_n_batches=10), TrainingDataMonitoring( observables, prefix="train", every_n_batches=10), DataStreamMonitoring( [cost], # without dropout test_stream, prefix="test", on_resumption=True, after_epoch=False, # by default this is True every_n_batches=100), # all monitored data is ready so print it... # (next steps may take more time and we want to see the # results as soon as possible so print as soon as you can) Printing(every_n_batches=10), # perform multiple dumps at different intervals # so if one of them breaks (has nan) we can hopefully # find a model from few batches ago in the other Checkpoint(jobname, before_training=False, after_epoch=True, save_separately=['log', 'model']), Sample(generator, steps=max_length, path=jobname+'.test', every_n_batches=100), ProgressBar(), FinishAfter(after_n_epochs=epochs) # This shows a way to handle NaN emerging during # training: simply finish it. .add_condition(["after_batch"], _is_nan), ] if bokeh: from blocks.extras.extensions.plot import Plot extensions.append(Plot( 'sketch', channels=[['cost']], every_n_batches=10)) # Construct the main loop and start training! main_loop = MainLoop( model=model, data_stream=train_stream, algorithm=algorithm, extensions=extensions ) main_loop.run()
DataStreamMonitoring(valid_monitored, valid_stream, prefix='valid', every_n_batches=1000), Printing(every_n_batches=1000), FinishAfter(every_n_batches=10000000), SaveLoadParams( dump_path, cg, before_training=True, # before training -> load params every_n_batches=1000, # every N batches -> save params after_epoch=True, # after epoch -> save params after_training=True, # after training -> save params ), RunOnTest(model_name, model, stream, every_n_batches=1000), ] if use_plot: extensions.append( Plot(model_name, channels=plot_vars, every_n_batches=500, server_url='http://eos6:5006/')) main_loop = MainLoop(model=cg, data_stream=train_stream, algorithm=algorithm, extensions=extensions) main_loop.run() main_loop.profile.report()
def main(config, tr_stream, dev_stream, use_bokeh=False, slim_iteration_state=False, switch_controller=None, reset_epoch=False): """This method largely corresponds to the ``main`` method in the original Blocks implementation in blocks-examples and most of the code is copied from there. Following modifications have been made: - Support fixing word embedding during training - Dropout fix https://github.com/mila-udem/blocks-examples/issues/46 - If necessary, add the exp3s extension Args: config (dict): NMT config tr_stream (DataStream): Training data stream dev_stream (DataStream): Validation data stream use_bokeh (bool): Whether to use bokeh for plotting slim_iteration_state (bool): Whether to store the full iteration state or only the epoch iterator without data stream state switch_controller (SourceSwitchController): Controlling strategy if monolingual data is used as well reset_epoch (bool): Set epoch_started in main loop status to false. Sometimes required if you change training parameters such as mono_data_integration """ nmt_model = NMTModel(config) nmt_model.set_up() # Set extensions logging.info("Initializing extensions") extensions = [ FinishAfter(after_n_batches=config['finish_after']), TrainingDataMonitoring([nmt_model.cost], after_batch=True), Printing(after_batch=True), CheckpointNMT(config['saveto'], slim_iteration_state, every_n_batches=config['save_freq']) ] # Add early stopping based on bleu if config['bleu_script'] is not None: logging.info("Building bleu validator") extensions.append( BleuValidator(nmt_model.sampling_input, samples=nmt_model.samples, config=config, model=nmt_model.search_model, data_stream=dev_stream, normalize=config['normalized_bleu'], store_full_main_loop=config['store_full_main_loop'], every_n_batches=config['bleu_val_freq'])) if switch_controller: switch_controller.beam_search = BeamSearch(samples=nmt_model.samples) switch_controller.src_sentence = nmt_model.sampling_input extensions.append(switch_controller) # Reload model if necessary if config['reload']: extensions.append( LoadNMT(config['saveto'], slim_iteration_state, reset_epoch)) # Plot cost in bokeh if necessary if use_bokeh and BOKEH_AVAILABLE: extensions.append( Plot('Decoding cost', channels=[['decoder_cost_cost']], after_batch=True)) # Add an extension for correct handling of SIGTERM and SIGINT extensions.append(AlwaysEpochInterrupt(every_n_batches=1)) # Set up training algorithm logging.info("Initializing training algorithm") # https://github.com/mila-udem/blocks-examples/issues/46 train_params = nmt_model.cg.parameters # fs439: fix embeddings? if config['fix_embeddings']: train_params = [] embedding_params = [ 'softmax1', 'softmax0', 'maxout_bias', 'embeddings', 'lookuptable', 'transform_feedback' ] for p in nmt_model.cg.parameters: add_param = True for ann in p.tag.annotations: if ann.name in embedding_params: logging.info("Do not train %s due to annotation %s" % (p, ann)) add_param = False break if add_param: train_params.append(p) # Change cost=cost to cg.outputs[0] ? algorithm = GradientDescent(cost=nmt_model.cg.outputs[0] if config['dropout'] < 1.0 else nmt_model.cost, parameters=train_params, step_rule=CompositeRule([ StepClipping(config['step_clipping']), eval(config['step_rule'])() ])) # Initialize main loop logging.info("Initializing main loop") main_loop = MainLoop(model=nmt_model.training_model, algorithm=algorithm, data_stream=tr_stream, extensions=extensions) # Reset epoch if reset_epoch: main_loop.status['epoch_started'] = False # Train! main_loop.run()
def main(mode, config, use_bokeh=False): # Construct model logger.info('Building RNN encoder-decoder') encoder = BidirectionalEncoder(config['src_vocab_size'], config['enc_embed'], config['enc_nhids']) decoder = Decoder(config['trg_vocab_size'], config['dec_embed'], config['dec_nhids'], config['enc_nhids'] * 2, config['topical_embedding_dim']) topical_transformer = topicalq_transformer(config['topical_vocab_size'], config['topical_embedding_dim'], config['enc_nhids'], config['topical_word_num'], config['batch_size']) if mode == "train": # Create Theano variables logger.info('Creating theano variables') source_sentence = tensor.lmatrix('source') source_sentence_mask = tensor.matrix('source_mask') target_sentence = tensor.lmatrix('target') target_sentence_mask = tensor.matrix('target_mask') sampling_input = tensor.lmatrix('input') source_topical_word = tensor.lmatrix('source_topical') source_topical_mask = tensor.matrix('source_topical_mask') # Get training and development set streams tr_stream = get_tr_stream_with_topicalq(**config) dev_stream = get_dev_stream_with_topicalq(**config) topic_embedding = topical_transformer.apply(source_topical_word) # Get cost of the model representation = encoder.apply(source_sentence, source_sentence_mask) tw_representation = topical_transformer.look_up.apply( source_topical_word.T) content_embedding = representation[0, :, (representation.shape[2] / 2):] cost = decoder.cost(representation, source_sentence_mask, tw_representation, source_topical_mask, target_sentence, target_sentence_mask, topic_embedding, content_embedding) logger.info('Creating computational graph') cg = ComputationGraph(cost) # Initialize model logger.info('Initializing model') encoder.weights_init = decoder.weights_init = IsotropicGaussian( config['weight_scale']) encoder.biases_init = decoder.biases_init = Constant(0) encoder.push_initialization_config() decoder.push_initialization_config() encoder.bidir.prototype.weights_init = Orthogonal() decoder.transition.weights_init = Orthogonal() encoder.initialize() decoder.initialize() topical_transformer.weights_init = IsotropicGaussian( config['weight_scale']) topical_transformer.biases_init = Constant(0) topical_transformer.push_allocation_config() #don't know whether the initialize is for topical_transformer.look_up.weights_init = Orthogonal() topical_transformer.transformer.weights_init = Orthogonal() topical_transformer.initialize() word_topical_embedding = cPickle.load( open(config['topical_embeddings'], 'rb')) np_word_topical_embedding = numpy.array(word_topical_embedding, dtype='float32') topical_transformer.look_up.W.set_value(np_word_topical_embedding) topical_transformer.look_up.W.tag.role = [] # apply dropout for regularization if config['dropout'] < 1.0: # dropout is applied to the output of maxout in ghog logger.info('Applying dropout') dropout_inputs = [ x for x in cg.intermediary_variables if x.name == 'maxout_apply_output' ] cg = apply_dropout(cg, dropout_inputs, config['dropout']) # Apply weight noise for regularization if config['weight_noise_ff'] > 0.0: logger.info('Applying weight noise to ff layers') enc_params = Selector(encoder.lookup).get_params().values() enc_params += Selector(encoder.fwd_fork).get_params().values() enc_params += Selector(encoder.back_fork).get_params().values() dec_params = Selector( decoder.sequence_generator.readout).get_params().values() dec_params += Selector( decoder.sequence_generator.fork).get_params().values() dec_params += Selector(decoder.state_init).get_params().values() cg = apply_noise(cg, enc_params + dec_params, config['weight_noise_ff']) # Print shapes shapes = [param.get_value().shape for param in cg.parameters] logger.info("Parameter shapes: ") for shape, count in Counter(shapes).most_common(): logger.info(' {:15}: {}'.format(shape, count)) logger.info("Total number of parameters: {}".format(len(shapes))) # Print parameter names enc_dec_param_dict = merge( Selector(encoder).get_parameters(), Selector(decoder).get_parameters()) logger.info("Parameter names: ") for name, value in enc_dec_param_dict.items(): logger.info(' {:15}: {}'.format(value.get_value().shape, name)) logger.info("Total number of parameters: {}".format( len(enc_dec_param_dict))) # Set up training model logger.info("Building model") training_model = Model(cost) # Set extensions logger.info("Initializing extensions") extensions = [ FinishAfter(after_n_batches=config['finish_after']), TrainingDataMonitoring([cost], after_batch=True), Printing(after_batch=True), CheckpointNMT(config['saveto'], every_n_batches=config['save_freq']) ] ''' # Set up beam search and sampling computation graphs if necessary if config['hook_samples'] >= 1 or config['bleu_script'] is not None: logger.info("Building sampling model") sampling_representation = encoder.apply( sampling_input, tensor.ones(sampling_input.shape)) generated = decoder.generate( sampling_input, sampling_representation) search_model = Model(generated) _, samples = VariableFilter( bricks=[decoder.sequence_generator], name="outputs")( ComputationGraph(generated[1])) # Add sampling if config['hook_samples'] >= 1: logger.info("Building sampler") extensions.append( Sampler(model=search_model, data_stream=tr_stream, hook_samples=config['hook_samples'], every_n_batches=config['sampling_freq'], src_vocab_size=config['src_vocab_size'])) # Add early stopping based on bleu if config['bleu_script'] is not None: logger.info("Building bleu validator") extensions.append( BleuValidator(sampling_input, samples=samples, config=config, model=search_model, data_stream=dev_stream, normalize=config['normalized_bleu'], every_n_batches=config['bleu_val_freq'])) ''' # Reload model if necessary if config['reload']: extensions.append(LoadNMT(config['saveto'])) # Plot cost in bokeh if necessary if use_bokeh and BOKEH_AVAILABLE: extensions.append( Plot('Cs-En', channels=[['decoder_cost_cost']], after_batch=True)) # Set up training algorithm logger.info("Initializing training algorithm") algorithm = GradientDescent(cost=cost, parameters=cg.parameters, on_unused_sources='warn', step_rule=CompositeRule([ StepClipping(config['step_clipping']), eval(config['step_rule'])() ])) # Initialize main loop logger.info("Initializing main loop") main_loop = MainLoop(model=training_model, algorithm=algorithm, data_stream=tr_stream, extensions=extensions) # Train! main_loop.run() elif mode == 'translate': # Create Theano variables logger.info('Creating theano variables') source_sentence = tensor.lmatrix('source') source_topical_word = tensor.lmatrix('source_topical') # Get test set stream test_stream = get_dev_stream_with_topicalq( config['test_set'], config['src_vocab'], config['src_vocab_size'], config['topical_test_set'], config['topical_vocab'], config['topical_vocab_size'], config['unk_id']) ftrans = open(config['test_set'] + '.trans.out', 'w') # Helper utilities sutils = SamplingBase() unk_idx = config['unk_id'] src_eos_idx = config['src_vocab_size'] - 1 trg_eos_idx = config['trg_vocab_size'] - 1 # Get beam search logger.info("Building sampling model") topic_embedding = topical_transformer.apply(source_topical_word) representation = encoder.apply(source_sentence, tensor.ones(source_sentence.shape)) tw_representation = topical_transformer.look_up.apply( source_topical_word.T) content_embedding = representation[0, :, (representation.shape[2] / 2):] generated = decoder.generate(source_sentence, representation, tw_representation, topical_embedding=topic_embedding, content_embedding=content_embedding) _, samples = VariableFilter( bricks=[decoder.sequence_generator], name="outputs")( ComputationGraph(generated[1])) # generated[1] is next_outputs beam_search = BeamSearch(samples=samples) logger.info("Loading the model..") model = Model(generated) loader = LoadNMT(config['saveto']) loader.set_model_parameters(model, loader.load_parameters()) # Get target vocabulary trg_vocab = _ensure_special_tokens(pickle.load( open(config['trg_vocab'], 'rb')), bos_idx=0, eos_idx=trg_eos_idx, unk_idx=unk_idx) trg_ivocab = {v: k for k, v in trg_vocab.items()} logger.info("Started translation: ") total_cost = 0.0 for i, line in enumerate(test_stream.get_epoch_iterator()): seq = sutils._oov_to_unk(line[0], config['src_vocab_size'], unk_idx) seq2 = line[1] input_ = numpy.tile(seq, (config['beam_size'], 1)) input_topical = numpy.tile(seq2, (config['beam_size'], 1)) # draw sample, checking to ensure we don't get an empty string back trans, costs = \ beam_search.search( input_values={source_sentence: input_,source_topical_word:input_topical}, max_length=10*len(seq), eol_symbol=src_eos_idx, ignore_first_eol=True) ''' # normalize costs according to the sequence lengths if config['normalized_bleu']: lengths = numpy.array([len(s) for s in trans]) costs = costs / lengths ''' #best = numpy.argsort(costs)[0] best = numpy.argsort(costs)[0:config['beam_size']] for b in best: try: total_cost += costs[b] trans_out = trans[b] # convert idx to words trans_out = sutils._idx_to_word(trans_out, trg_ivocab) except ValueError: logger.info( "Can NOT find a translation for line: {}".format(i + 1)) trans_out = '<UNK>' print(trans_out, file=ftrans) if i != 0 and i % 100 == 0: logger.info("Translated {} lines of test set...".format(i)) logger.info("Total cost of the test: {}".format(total_cost)) ftrans.close() elif mode == 'rerank': # Create Theano variables ftrans = open(config['val_set'] + '.scores.out', 'w') logger.info('Creating theano variables') source_sentence = tensor.lmatrix('source') source_sentence_mask = tensor.matrix('source_mask') target_sentence = tensor.lmatrix('target') target_sentence_mask = tensor.matrix('target_mask') config['src_data'] = config['val_set'] config['trg_data'] = config['val_set_grndtruth'] config['batch_size'] = 1 config['sort_k_batches'] = 1 test_stream = get_tr_stream_unsorted(**config) logger.info("Building sampling model") representations = encoder.apply(source_sentence, source_sentence_mask) costs = decoder.cost(representations, source_sentence_mask, target_sentence, target_sentence_mask) logger.info("Loading the model..") model = Model(costs) loader = LoadNMT(config['saveto']) loader.set_model_parameters(model, loader.load_parameters()) costs_computer = function([ source_sentence, source_sentence_mask, target_sentence, target_sentence_mask ], costs) iterator = test_stream.get_epoch_iterator() scores = [] for i, (src, src_mask, trg, trg_mask) in enumerate(iterator): costs = costs_computer(*[src, src_mask, trg, trg_mask]) cost = costs.sum() print(i, cost) scores.append(cost) ftrans.write(str(cost) + "\n") ftrans.close()
def main(config, tr_stream, dev_stream, use_bokeh=False): # Create Theano variables logger.info('Creating theano variables') source_sentence = tensor.lmatrix('source') source_sentence_mask = tensor.matrix('source_mask') target_sentence = tensor.lmatrix('target') target_sentence_mask = tensor.matrix('target_mask') sampling_input = tensor.lmatrix('input') # Construct model logger.info('Building RNN encoder-decoder') encoder = BidirectionalEncoder( config['src_vocab_size'], config['enc_embed'], config['enc_nhids']) decoder = Decoder( config['trg_vocab_size'], config['dec_embed'], config['dec_nhids'], config['enc_nhids'] * 2) cost = decoder.cost( encoder.apply(source_sentence, source_sentence_mask), source_sentence_mask, target_sentence, target_sentence_mask) logger.info('Creating computational graph') cg = ComputationGraph(cost) # Initialize model logger.info('Initializing model') encoder.weights_init = decoder.weights_init = IsotropicGaussian( config['weight_scale']) encoder.biases_init = decoder.biases_init = Constant(0) encoder.push_initialization_config() decoder.push_initialization_config() encoder.bidir.prototype.weights_init = Orthogonal() decoder.transition.weights_init = Orthogonal() encoder.initialize() decoder.initialize() # apply dropout for regularization if config['dropout'] < 1.0: # dropout is applied to the output of maxout in ghog logger.info('Applying dropout') dropout_inputs = [x for x in cg.intermediary_variables if x.name == 'maxout_apply_output'] cg = apply_dropout(cg, dropout_inputs, config['dropout']) # Apply weight noise for regularization if config['weight_noise_ff'] > 0.0: logger.info('Applying weight noise to ff layers') enc_params = Selector(encoder.lookup).get_params().values() enc_params += Selector(encoder.fwd_fork).get_params().values() enc_params += Selector(encoder.back_fork).get_params().values() dec_params = Selector( decoder.sequence_generator.readout).get_params().values() dec_params += Selector( decoder.sequence_generator.fork).get_params().values() dec_params += Selector(decoder.state_init).get_params().values() cg = apply_noise(cg, enc_params+dec_params, config['weight_noise_ff']) # Print shapes shapes = [param.get_value().shape for param in cg.parameters] logger.info("Parameter shapes: ") for shape, count in Counter(shapes).most_common(): logger.info(' {:15}: {}'.format(shape, count)) logger.info("Total number of parameters: {}".format(len(shapes))) # Print parameter names enc_dec_param_dict = merge(Selector(encoder).get_parameters(), Selector(decoder).get_parameters()) logger.info("Parameter names: ") for name, value in enc_dec_param_dict.items(): logger.info(' {:15}: {}'.format(value.get_value().shape, name)) logger.info("Total number of parameters: {}" .format(len(enc_dec_param_dict))) # Set up training model logger.info("Building model") training_model = Model(cost) # Set extensions logger.info("Initializing extensions") extensions = [ FinishAfter(after_n_batches=config['finish_after']), TrainingDataMonitoring([cost], after_batch=True), Printing(after_batch=True), CheckpointNMT(config['saveto'], every_n_batches=config['save_freq']) ] # Set up beam search and sampling computation graphs if necessary if config['hook_samples'] >= 1 or config['bleu_script'] is not None: logger.info("Building sampling model") sampling_representation = encoder.apply( sampling_input, tensor.ones(sampling_input.shape)) generated = decoder.generate(sampling_input, sampling_representation) search_model = Model(generated) _, samples = VariableFilter( bricks=[decoder.sequence_generator], name="outputs")( ComputationGraph(generated[1])) # generated[1] is next_outputs # Add sampling if config['hook_samples'] >= 1: logger.info("Building sampler") extensions.append( Sampler(model=search_model, data_stream=tr_stream, hook_samples=config['hook_samples'], every_n_batches=config['sampling_freq'], src_vocab_size=config['src_vocab_size'])) # Add early stopping based on bleu if config['bleu_script'] is not None: logger.info("Building bleu validator") extensions.append( BleuValidator(sampling_input, samples=samples, config=config, model=search_model, data_stream=dev_stream, normalize=config['normalized_bleu'], every_n_batches=config['bleu_val_freq'])) # Reload model if necessary if config['reload']: extensions.append(LoadNMT(config['saveto'])) # Plot cost in bokeh if necessary if use_bokeh and BOKEH_AVAILABLE: extensions.append( Plot('Cs-En', channels=[['decoder_cost_cost']], after_batch=True)) # Set up training algorithm logger.info("Initializing training algorithm") algorithm = GradientDescent( cost=cost, parameters=cg.parameters, step_rule=CompositeRule([StepClipping(config['step_clipping']), eval(config['step_rule'])()]) ) # Initialize main loop logger.info("Initializing main loop") main_loop = MainLoop( model=training_model, algorithm=algorithm, data_stream=tr_stream, extensions=extensions ) # Train! main_loop.run()
def construct_monitors(algorithm, task, n_patches, x, x_shape, graph, name, ram, model, cost, n_spatial_dims, plot_url, patchmonitor_interval=100, **kwargs): location, scale, savings = util.get_recurrent_auxiliaries( "location scale savings".split(), graph, n_patches) channels = util.Channels() channels.extend(task.monitor_channels(graph)) channels.append(util.named(savings.mean(), "savings.mean")) for variable_name in "location scale".split(): variable = locals()[variable_name] channels.append(variable.mean(axis=0), "%s.mean" % variable_name) channels.append(variable.var(axis=0), "%s.variance" % variable_name) channels.append(algorithm.total_gradient_norm, "total_gradient_norm") step_norms = util.Channels() step_norms.extend( util.named(l2_norm([algorithm.steps[param]]), "%s.step_norm" % name) for name, param in model.get_parameter_dict().items()) step_channels = step_norms.get_channels() #for activation in VariableFilter(roles=[OUTPUT])(graph.variables): # quantity = activation.mean() # quantity.name = "%s.mean" % util.get_path(activation) # channels.append(quantity) data_independent_channels = util.Channels() for parameter in graph.parameters: if parameter.name in "gamma beta".split(): quantity = parameter.mean() quantity.name = "%s.mean" % util.get_path(parameter) data_independent_channels.append(quantity) extensions = [] extensions.append( TrainingDataMonitoring(step_channels, prefix="train", after_epoch=True)) extensions.append( DataStreamMonitoring(data_independent_channels.get_channels(), data_stream=None, after_epoch=True)) extensions.extend( DataStreamMonitoring((channels.get_channels() + [cost]), data_stream=task.get_stream(which, monitor=True), prefix=which, after_epoch=True) for which in "train valid test".split()) patchmonitor = None if n_spatial_dims == 2: patchmonitor_klass = PatchMonitoring elif n_spatial_dims == 3: patchmonitor_klass = VideoPatchMonitoring if patchmonitor_klass: patch = T.stack(*[ ram.crop(x, x_shape, location[:, i, :], scale[:, i, :]) for i in xrange(n_patches) ]) patch = patch.dimshuffle(1, 0, *range(2, patch.ndim)) patch_extractor = theano.function([x, x_shape], [location, scale, patch]) for which in "train valid".split(): patchmonitor = patchmonitor_klass( save_to="%s_patches_%s" % (name, which), data_stream=task.get_stream(which, shuffle=False, num_examples=5), every_n_batches=patchmonitor_interval, extractor=patch_extractor, map_to_input_space=attention.static_map_to_input_space) patchmonitor.save_patches("patchmonitor_test.png") extensions.append(patchmonitor) if plot_url: plot_channels = [] plot_channels.extend(task.plot_channels()) plot_channels.append(["train_cost"]) #plot_channels.append(["train_%s" % step_channel.name for step_channel in step_channels]) from blocks.extras.extensions.plot import Plot extensions.append( Plot(name, channels=plot_channels, after_epoch=True, server_url=plot_url)) return extensions
def main(save_to, num_epochs): mlp = MLP([Tanh(), Softmax()], [784, 100, 10], weights_init=IsotropicGaussian(0.01), biases_init=Constant(0)) mlp.initialize() x = tensor.matrix('features') y = tensor.lmatrix('targets') #attention ---> patch_shape = (16, 16) image_shape = (784, 100) import numpy import theano.tensor as T n_spatial_dims = 2 cropper = SoftRectangularCropper(n_spatial_dims=n_spatial_dims, patch_shape=patch_shape, image_shape=image_shape, kernel=Gaussian()) batch_size = 10 scales = 1.3**numpy.arange(-7, 6) n_patches = len(scales) locations = (numpy.ones( (n_patches, batch_size, 2)) * image_shape / 2).astype(numpy.float32) scales = numpy.tile(scales[:, numpy.newaxis, numpy.newaxis], (1, batch_size, 2)).astype(numpy.float32) Tpatches = T.stack(*[ cropper.apply(x, T.constant(location), T.constant(scale))[0] for location, scale in zip(locations, scales) ]) patches = theano.function([x], Tpatches)(batch['features']) import ipdb as pdb pdb.set_trace() probs = mlp.apply(tensor.flatten(patches, outdim=2)) cost = CategoricalCrossEntropy().apply(y.flatten(), probs) error_rate = MisclassificationRate().apply(y.flatten(), probs) cg = ComputationGraph([cost]) W1, W2 = VariableFilter(roles=[WEIGHT])(cg.variables) cost = cost + .00005 * (W1**2).sum() + .00005 * (W2**2).sum() cost.name = 'final_cost' mnist_train = MNIST(("train", )) mnist_test = MNIST(("test", )) algorithm = GradientDescent(cost=cost, parameters=cg.parameters, step_rule=Scale(learning_rate=0.1)) extensions = [ Timing(), FinishAfter(after_n_epochs=num_epochs), DataStreamMonitoring([cost, error_rate], Flatten(DataStream.default_stream( mnist_test, iteration_scheme=SequentialScheme( mnist_test.num_examples, 500)), which_sources=('features', )), prefix="test"), TrainingDataMonitoring([ cost, error_rate, aggregation.mean(algorithm.total_gradient_norm) ], prefix="train", after_epoch=True), Checkpoint(save_to), Printing() ] if BLOCKS_EXTRAS_AVAILABLE: extensions.append( Plot('MNIST example', channels=[[ 'test_final_cost', 'test_misclassificationrate_apply_error_rate' ], ['train_total_gradient_norm']])) main_loop = MainLoop(algorithm, Flatten(DataStream.default_stream( mnist_train, iteration_scheme=SequentialScheme( mnist_train.num_examples, 50)), which_sources=('features', )), model=Model(cost), extensions=extensions) main_loop.run()
def construct_monitors(algorithm, task, model, graphs, outputs, plot_url, hyperparameters, **kwargs): from blocks.extensions.monitoring import TrainingDataMonitoring, DataStreamMonitoring from patchmonitor import PatchMonitoring, VideoPatchMonitoring extensions = [] if True: extensions.append( TrainingDataMonitoring([ algorithm.steps[param].norm(2).copy(name="step_norm:%s" % name) for name, param in model.get_parameter_dict().items() ], prefix="train", after_epoch=True)) if True: data_independent_channels = [] for parameter in graphs["train"].parameters: if parameter.name in "gamma beta W b".split(): quantity = parameter.norm(2) quantity.name = "parameter.norm:%s" % util.get_path(parameter) data_independent_channels.append(quantity) extensions.append( DataStreamMonitoring(data_independent_channels, data_stream=None, after_epoch=True)) for which_set in "train valid test".split(): channels = [] channels.extend(outputs[which_set][key] for key in "cost".split()) channels.extend(outputs[which_set][key] for key in task.monitor_outputs()) if which_set == "train": if True: from blocks.roles import has_roles, OUTPUT cnn_outputs = OrderedDict() for var in theano.gof.graph.ancestors( graphs[which_set].outputs): if (has_roles(var, [OUTPUT]) and util.annotated_by_a( util.get_convolution_classes(), var)): cnn_outputs.setdefault(util.get_path(var), []).append(var) for path, vars in cnn_outputs.items(): vars = util.dedup(vars, equal=util.equal_computations) for i, var in enumerate(vars): channels.append(var.mean().copy( name="activation[%i].mean:%s" % (i, path))) channels.append( algorithm.total_gradient_norm.copy(name="total_gradient_norm")) extensions.append( DataStreamMonitoring(channels, prefix=which_set, after_epoch=True, data_stream=task.get_stream(which_set, monitor=True))) if plot_url: plot_channels = [] plot_channels.extend(task.plot_channels()) plot_channels.append(["train_cost"]) #plot_channels.append(["train_%s" % step_channel.name for step_channel in step_channels]) from blocks.extras.extensions.plot import Plot extensions.append( Plot(name, channels=plot_channels, after_epoch=True, server_url=plot_url)) return extensions
def main(job_id, params): config = ConfigParser.ConfigParser() config.readfp(open('./params')) max_epoch = int(config.get('hyperparams', 'max_iter', 100)) base_lr = float(config.get('hyperparams', 'base_lr', 0.01)) train_batch = int(config.get('hyperparams', 'train_batch', 256)) valid_batch = int(config.get('hyperparams', 'valid_batch', 512)) test_batch = int(config.get('hyperparams', 'valid_batch', 512)) hidden_units = int(config.get('hyperparams', 'hidden_units', 16)) W_sd = float(config.get('hyperparams', 'W_sd', 0.01)) W_mu = float(config.get('hyperparams', 'W_mu', 0.0)) b_sd = float(config.get('hyperparams', 'b_sd', 0.01)) b_mu = float(config.get('hyperparams', 'b_mu', 0.0)) dropout_ratio = float(config.get('hyperparams', 'dropout_ratio', 0.2)) weight_decay = float(config.get('hyperparams', 'weight_decay', 0.001)) max_norm = float(config.get('hyperparams', 'max_norm', 100.0)) solver = config.get('hyperparams', 'solver_type', 'rmsprop') data_file = config.get('hyperparams', 'data_file') fine_tune = config.getboolean('hyperparams', 'fine_tune') # Spearmint optimization parameters: if params: base_lr = float(params['base_lr'][0]) dropout_ratio = float(params['dropout_ratio'][0]) hidden_units = params['hidden_units'][0] weight_decay = params['weight_decay'][0] if 'adagrad' in solver: solver_type = CompositeRule([ AdaGrad(learning_rate=base_lr), VariableClipping(threshold=max_norm) ]) else: solver_type = CompositeRule([ RMSProp(learning_rate=base_lr), VariableClipping(threshold=max_norm) ]) rn_file = '/projects/francisco/repositories/NI-ML/models/deepnets/blocks/ff/models/rnet/2015-06-25-18:13' ln_file = '/projects/francisco/repositories/NI-ML/models/deepnets/blocks/ff/models/lnet/2015-06-29-11:45' right_dim = 10519 left_dim = 11427 train = H5PYDataset(data_file, which_set='train') valid = H5PYDataset(data_file, which_set='valid') test = H5PYDataset(data_file, which_set='test') l_x = tensor.matrix('l_features') r_x = tensor.matrix('r_features') y = tensor.lmatrix('targets') lnet = load(ln_file).model.get_top_bricks()[0] rnet = load(rn_file).model.get_top_bricks()[0] # Pre-trained layers: # Inputs -> hidden_1 -> hidden 2 for side, net in zip(['l', 'r'], [lnet, rnet]): for child in net.children: child.name = side + '_' + child.name ll1 = lnet.children[0] lr1 = lnet.children[1] ll2 = lnet.children[2] lr2 = lnet.children[3] rl1 = rnet.children[0] rr1 = rnet.children[1] rl2 = rnet.children[2] rr2 = rnet.children[3] l_h = lr2.apply(ll2.apply(lr1.apply(ll1.apply(l_x)))) r_h = rr2.apply(rl2.apply(rr1.apply(rl1.apply(r_x)))) input_dim = ll2.output_dim + rl2.output_dim # hidden_2 -> hidden_3 -> hidden_4 -> Logistic output output_mlp = MLP(activations=[ Rectifier(name='h3'), Rectifier(name='h4'), Softmax(name='output'), ], dims=[ input_dim, hidden_units, hidden_units, 2, ], weights_init=IsotropicGaussian(std=W_sd, mean=W_mu), biases_init=IsotropicGaussian(std=W_sd, mean=W_mu)) output_mlp.initialize() # # Concatenate the inputs from the two hidden subnets into a single variable # # for input into the next layer. merge = tensor.concatenate([l_h, r_h], axis=1) # y_hat = output_mlp.apply(merge) # Define a cost function to optimize, and a classification error rate. # Also apply the outputs from the net and corresponding targets: cost = CategoricalCrossEntropy().apply(y.flatten(), y_hat) error = MisclassificationRate().apply(y.flatten(), y_hat) error.name = 'error' # This is the model: before applying dropout model = Model(cost) # Need to define the computation graph for the cost func: cost_graph = ComputationGraph([cost]) # This returns a list of weight vectors for each layer W = VariableFilter(roles=[WEIGHT])(cost_graph.variables) # Add some regularization to this model: cost += weight_decay * l2_norm(W) cost.name = 'entropy' # computational graph with l2 reg cost_graph = ComputationGraph([cost]) # Apply dropout to inputs: inputs = VariableFilter([INPUT])(cost_graph.variables) dropout_inputs = [ input for input in inputs if input.name.startswith('linear_') ] dropout_graph = apply_dropout(cost_graph, [dropout_inputs[0]], 0.2) dropout_graph = apply_dropout(dropout_graph, dropout_inputs[1:], dropout_ratio) dropout_cost = dropout_graph.outputs[0] dropout_cost.name = 'dropout_entropy' # If no fine-tuning of l-r models is wanted, find the params for only # the joint layers: if fine_tune: params_to_update = dropout_graph.parameters else: params_to_update = VariableFilter( [PARAMETER], bricks=output_mlp.children)(cost_graph) # Learning Algorithm: algo = GradientDescent(step_rule=solver_type, params=params_to_update, cost=dropout_cost) # algo.step_rule.learning_rate.name = 'learning_rate' # Data stream used for training model: training_stream = Flatten( DataStream.default_stream(dataset=train, iteration_scheme=ShuffledScheme( train.num_examples, batch_size=train_batch))) training_monitor = TrainingDataMonitoring([ dropout_cost, aggregation.mean(error), aggregation.mean(algo.total_gradient_norm) ], after_batch=True) # Use the 'valid' set for validation during training: validation_stream = Flatten( DataStream.default_stream(dataset=valid, iteration_scheme=ShuffledScheme( valid.num_examples, batch_size=valid_batch))) validation_monitor = DataStreamMonitoring(variables=[cost, error], data_stream=validation_stream, prefix='validation', after_epoch=True) test_stream = Flatten( DataStream.default_stream( dataset=test, iteration_scheme=ShuffledScheme(test.num_examples, batch_size=test_batch))) test_monitor = DataStreamMonitoring(variables=[error], data_stream=test_stream, prefix='test', after_training=True) plotting = Plot( 'AdniNet_LeftRight', channels=[ ['dropout_entropy'], ['error', 'validation_error'], ], ) # Checkpoint class used to save model and log: stamp = datetime.datetime.fromtimestamp( time.time()).strftime('%Y-%m-%d-%H:%M') checkpoint = Checkpoint('./models/{}'.format(stamp), save_separately=['model', 'log'], every_n_epochs=1) # The main loop will train the network and output reports, etc main_loop = MainLoop(data_stream=training_stream, model=model, algorithm=algo, extensions=[ validation_monitor, training_monitor, plotting, FinishAfter(after_n_epochs=max_epoch), FinishIfNoImprovementAfter( notification_name='validation_error', epochs=1), Printing(), ProgressBar(), checkpoint, test_monitor, ]) main_loop.run() ve = float(main_loop.log.last_epoch_row['validation_error']) te = float(main_loop.log.last_epoch_row['error']) spearmint_loss = ve + abs(te - ve) print 'Spearmint Loss: {}'.format(spearmint_loss) return spearmint_loss
def construct_monitors(algorithm, task, model, graphs, outputs, updates, monitor_options, n_spatial_dims, plot_url, hyperparameters, **kwargs): from blocks.extensions.monitoring import TrainingDataMonitoring, DataStreamMonitoring extensions = [] if "steps" in monitor_options: extensions.append( TrainingDataMonitoring([ algorithm.steps[param].norm(2).copy(name="step_norm:%s" % name) for name, param in model.get_parameter_dict().items() ], prefix="train", after_epoch=True)) if "parameters" in monitor_options: data_independent_channels = [] for parameter in graphs["train"].parameters: if parameter.name in "gamma beta W b".split(): quantity = parameter.norm(2) quantity.name = "parameter.norm:%s" % util.get_path(parameter) data_independent_channels.append(quantity) extensions.append( DataStreamMonitoring(data_independent_channels, data_stream=None, after_epoch=True)) for which_set in "train valid test".split(): channels = [] channels.extend(outputs[which_set][key] for key in "cost".split()) channels.extend(outputs[which_set][key] for key in task.monitor_outputs()) if which_set == "train": if "activations" in monitor_options: from blocks.roles import has_roles, OUTPUT cnn_outputs = OrderedDict() for var in theano.gof.graph.ancestors( graphs[which_set].outputs): if (has_roles(var, [OUTPUT]) and util.annotated_by_a( util.get_convolution_classes(), var)): cnn_outputs.setdefault(util.get_path(var), []).append(var) for path, vars in cnn_outputs.items(): vars = util.dedup(vars, equal=util.equal_computations) for i, var in enumerate(vars): channels.append(var.mean().copy( name="activation[%i].mean:%s" % (i, path))) channels.append( algorithm.total_gradient_norm.copy(name="total_gradient_norm")) if "batch_normalization" in monitor_options: errors = [] for population_stat, update in updates[which_set]: if population_stat.name.startswith("population"): # this is a super robust way to get the # corresponding batch statistic from the # exponential moving average expression batch_stat = update.owner.inputs[1].owner.inputs[1] errors.append(((population_stat - batch_stat)**2).mean()) if errors: channels.append( T.stack(errors).mean().copy( name="population_statistic_mse")) extensions.append( DataStreamMonitoring(channels, prefix=which_set, after_epoch=True, data_stream=task.get_stream(which_set, monitor=True))) if plot_url: plot_channels = [] plot_channels.extend(task.plot_channels()) plot_channels.append(["train_cost"]) #plot_channels.append(["train_%s" % step_channel.name for step_channel in step_channels]) from blocks.extras.extensions.plot import Plot extensions.append( Plot(name, channels=plot_channels, after_epoch=True, server_url=plot_url)) return extensions
def main(job_id, params): config = ConfigParser.ConfigParser() config.readfp(open('./params')) max_epoch = int(config.get('hyperparams', 'max_iter', 100)) base_lr = float(config.get('hyperparams', 'base_lr', 0.01)) train_batch = int(config.get('hyperparams', 'train_batch', 256)) valid_batch = int(config.get('hyperparams', 'valid_batch', 512)) test_batch = int(config.get('hyperparams', 'valid_batch', 512)) W_sd = float(config.get('hyperparams', 'W_sd', 0.01)) W_mu = float(config.get('hyperparams', 'W_mu', 0.0)) b_sd = float(config.get('hyperparams', 'b_sd', 0.01)) b_mu = float(config.get('hyperparams', 'b_mu', 0.0)) hidden_units = int(config.get('hyperparams', 'hidden_units', 32)) input_dropout_ratio = float( config.get('hyperparams', 'input_dropout_ratio', 0.2)) dropout_ratio = float(config.get('hyperparams', 'dropout_ratio', 0.2)) weight_decay = float(config.get('hyperparams', 'weight_decay', 0.001)) max_norm = float(config.get('hyperparams', 'max_norm', 100.0)) solver = config.get('hyperparams', 'solver_type', 'rmsprop') data_file = config.get('hyperparams', 'data_file') side = config.get('hyperparams', 'side', 'b') # Spearmint optimization parameters: if params: base_lr = float(params['base_lr'][0]) dropout_ratio = float(params['dropout_ratio'][0]) hidden_units = params['hidden_units'][0] weight_decay = params['weight_decay'][0] if 'adagrad' in solver: solver_type = CompositeRule([ AdaGrad(learning_rate=base_lr), VariableClipping(threshold=max_norm) ]) else: solver_type = CompositeRule([ RMSProp(learning_rate=base_lr), VariableClipping(threshold=max_norm) ]) input_dim = {'l': 11427, 'r': 10519, 'b': 10519 + 11427} data_file = config.get('hyperparams', 'data_file') if 'b' in side: train = H5PYDataset(data_file, which_set='train') valid = H5PYDataset(data_file, which_set='valid') test = H5PYDataset(data_file, which_set='test') x_l = tensor.matrix('l_features') x_r = tensor.matrix('r_features') x = tensor.concatenate([x_l, x_r], axis=1) else: train = H5PYDataset(data_file, which_set='train', sources=['{}_features'.format(side), 'targets']) valid = H5PYDataset(data_file, which_set='valid', sources=['{}_features'.format(side), 'targets']) test = H5PYDataset(data_file, which_set='test', sources=['{}_features'.format(side), 'targets']) x = tensor.matrix('{}_features'.format(side)) y = tensor.lmatrix('targets') # Define a feed-forward net with an input, two hidden layers, and a softmax output: model = MLP(activations=[ Rectifier(name='h1'), Rectifier(name='h2'), Softmax(name='output'), ], dims=[input_dim[side], hidden_units, hidden_units, 2], weights_init=IsotropicGaussian(std=W_sd, mean=W_mu), biases_init=IsotropicGaussian(b_sd, b_mu)) # Don't forget to initialize params: model.initialize() # y_hat is the output of the neural net with x as its inputs y_hat = model.apply(x) # Define a cost function to optimize, and a classification error rate. # Also apply the outputs from the net and corresponding targets: cost = CategoricalCrossEntropy().apply(y.flatten(), y_hat) error = MisclassificationRate().apply(y.flatten(), y_hat) error.name = 'error' # This is the model: before applying dropout model = Model(cost) # Need to define the computation graph for the cost func: cost_graph = ComputationGraph([cost]) # This returns a list of weight vectors for each layer W = VariableFilter(roles=[WEIGHT])(cost_graph.variables) # Add some regularization to this model: cost += weight_decay * l2_norm(W) cost.name = 'entropy' # computational graph with l2 reg cost_graph = ComputationGraph([cost]) # Apply dropout to inputs: inputs = VariableFilter([INPUT])(cost_graph.variables) dropout_inputs = [ input for input in inputs if input.name.startswith('linear_') ] dropout_graph = apply_dropout(cost_graph, [dropout_inputs[0]], input_dropout_ratio) dropout_graph = apply_dropout(dropout_graph, dropout_inputs[1:], dropout_ratio) dropout_cost = dropout_graph.outputs[0] dropout_cost.name = 'dropout_entropy' # Learning Algorithm (notice: we use the dropout cost for learning): algo = GradientDescent(step_rule=solver_type, params=dropout_graph.parameters, cost=dropout_cost) # algo.step_rule.learning_rate.name = 'learning_rate' # Data stream used for training model: training_stream = Flatten( DataStream.default_stream(dataset=train, iteration_scheme=ShuffledScheme( train.num_examples, batch_size=train_batch))) training_monitor = TrainingDataMonitoring([ dropout_cost, aggregation.mean(error), aggregation.mean(algo.total_gradient_norm) ], after_batch=True) # Use the 'valid' set for validation during training: validation_stream = Flatten( DataStream.default_stream(dataset=valid, iteration_scheme=ShuffledScheme( valid.num_examples, batch_size=valid_batch))) validation_monitor = DataStreamMonitoring(variables=[cost, error], data_stream=validation_stream, prefix='validation', after_epoch=True) test_stream = Flatten( DataStream.default_stream( dataset=test, iteration_scheme=ShuffledScheme(test.num_examples, batch_size=test_batch))) test_monitor = DataStreamMonitoring(variables=[error], data_stream=test_stream, prefix='test', after_training=True) plotting = Plot('AdniNet_{}'.format(side), channels=[ ['dropout_entropy', 'validation_entropy'], ['error', 'validation_error'], ], after_batch=False) # Checkpoint class used to save model and log: stamp = datetime.datetime.fromtimestamp( time.time()).strftime('%Y-%m-%d-%H:%M') checkpoint = Checkpoint('./models/{}net/{}'.format(side, stamp), save_separately=['model', 'log'], every_n_epochs=1) # Home-brewed class for early stopping when we detect we have started to overfit early_stopper = FinishIfOverfitting(error_name='error', validation_name='validation_error', threshold=0.1, epochs=5, burn_in=100) # The main loop will train the network and output reports, etc main_loop = MainLoop(data_stream=training_stream, model=model, algorithm=algo, extensions=[ validation_monitor, training_monitor, plotting, FinishAfter(after_n_epochs=max_epoch), early_stopper, Printing(), ProgressBar(), checkpoint, test_monitor, ]) main_loop.run() ve = float(main_loop.log.last_epoch_row['validation_error']) te = float(main_loop.log.last_epoch_row['error']) spearmint_loss = ve + abs(te - ve) print 'Spearmint Loss: {}'.format(spearmint_loss) return spearmint_loss
def main(mode, config, use_bokeh=False): # Construct model logger.info('Building RNN encoder-decoder') encoder = BidirectionalEncoder(config['src_vocab_size'], config['enc_embed'], config['enc_nhids']) topical_transformer = topicalq_transformer( config['source_topic_vocab_size'], config['topical_embedding_dim'], config['enc_nhids'], config['topical_word_num'], config['batch_size']) decoder = Decoder(vocab_size=config['trg_vocab_size'], topicWord_size=config['trg_topic_vocab_size'], embedding_dim=config['dec_embed'], topical_dim=config['topical_embedding_dim'], state_dim=config['dec_nhids'], representation_dim=config['enc_nhids'] * 2, match_function=config['match_function'], use_doubly_stochastic=config['use_doubly_stochastic'], lambda_ds=config['lambda_ds'], use_local_attention=config['use_local_attention'], window_size=config['window_size'], use_step_decay_cost=config['use_step_decay_cost'], use_concentration_cost=config['use_concentration_cost'], lambda_ct=config['lambda_ct'], use_stablilizer=config['use_stablilizer'], lambda_st=config['lambda_st']) # here attended dim (representation_dim) of decoder is 2*enc_nhinds # because the context given by the encoder is a bidirectional context if mode == "train": # Create Theano variables logger.info('Creating theano variables') source_sentence = tensor.lmatrix('source') source_sentence_mask = tensor.matrix('source_mask') target_sentence = tensor.lmatrix('target') target_sentence_mask = tensor.matrix('target_mask') target_topic_sentence = tensor.lmatrix('target_topic') target_topic_binary_sentence = tensor.lmatrix('target_binary_topic') #target_topic_sentence_mask=tensor.lmatrix('target_topic_mask'); sampling_input = tensor.lmatrix('input') source_topical_word = tensor.lmatrix('source_topical') source_topical_mask = tensor.matrix('source_topical_mask') topic_embedding = topical_transformer.apply(source_topical_word) # Get training and development set streams tr_stream = get_tr_stream_with_topic_target(**config) #dev_stream = get_dev_tr_stream_with_topic_target(**config) # Get cost of the model representations = encoder.apply(source_sentence, source_sentence_mask) tw_representation = topical_transformer.look_up.apply( source_topical_word.T) content_embedding = representations[0, :, (representations.shape[2] / 2):] cost = decoder.cost(representations, source_sentence_mask, tw_representation, source_topical_mask, target_sentence, target_sentence_mask, target_topic_sentence, target_topic_binary_sentence, topic_embedding, content_embedding) logger.info('Creating computational graph') perplexity = tensor.exp(cost) perplexity.name = 'perplexity' cg = ComputationGraph(cost) costs_computer = function([ target_sentence, target_sentence_mask, source_sentence, source_sentence_mask, source_topical_word, target_topic_sentence, target_topic_binary_sentence ], (perplexity), on_unused_input='ignore') # Initialize model logger.info('Initializing model') encoder.weights_init = decoder.weights_init = IsotropicGaussian( config['weight_scale']) encoder.biases_init = decoder.biases_init = Constant(0) encoder.push_initialization_config() decoder.push_initialization_config() encoder.bidir.prototype.weights_init = Orthogonal() decoder.transition.weights_init = Orthogonal() encoder.initialize() decoder.initialize() topical_transformer.weights_init = IsotropicGaussian( config['weight_scale']) topical_transformer.biases_init = Constant(0) topical_transformer.push_allocation_config() #don't know whether the initialize is for topical_transformer.look_up.weights_init = Orthogonal() topical_transformer.transformer.weights_init = Orthogonal() topical_transformer.initialize() word_topical_embedding = cPickle.load( open(config['topical_embeddings'], 'rb')) np_word_topical_embedding = numpy.array(word_topical_embedding, dtype='float32') topical_transformer.look_up.W.set_value(np_word_topical_embedding) topical_transformer.look_up.W.tag.role = [] # apply dropout for regularization if config['dropout'] < 1.0: # dropout is applied to the output of maxout in ghog logger.info('Applying dropout') dropout_inputs = [ x for x in cg.intermediary_variables if x.name == 'maxout_apply_output' ] cg = apply_dropout(cg, dropout_inputs, config['dropout']) # Apply weight noise for regularization if config['weight_noise_ff'] > 0.0: logger.info('Applying weight noise to ff layers') enc_params = Selector(encoder.lookup).get_params().values() enc_params += Selector(encoder.fwd_fork).get_params().values() enc_params += Selector(encoder.back_fork).get_params().values() dec_params = Selector( decoder.sequence_generator.readout).get_params().values() dec_params += Selector( decoder.sequence_generator.fork).get_params().values() dec_params += Selector(decoder.state_init).get_params().values() cg = apply_noise(cg, enc_params + dec_params, config['weight_noise_ff']) # Print shapes shapes = [param.get_value().shape for param in cg.parameters] logger.info("Parameter shapes: ") for shape, count in Counter(shapes).most_common(): logger.info(' {:15}: {}'.format(shape, count)) logger.info("Total number of parameters: {}".format(len(shapes))) # Print parameter names enc_dec_param_dict = merge( Selector(encoder).get_parameters(), Selector(decoder).get_parameters()) logger.info("Parameter names: ") for name, value in enc_dec_param_dict.items(): logger.info(' {:15}: {}'.format(value.get_value().shape, name)) logger.info("Total number of parameters: {}".format( len(enc_dec_param_dict))) # Set up training model logger.info("Building model") training_model = Model(cost) # Set extensions logger.info("Initializing extensions") extensions = [ FinishAfter(after_n_batches=config['finish_after']), TrainingDataMonitoring([perplexity], after_batch=True), CheckpointNMT(config['saveto'], config['model_name'], every_n_batches=config['save_freq']) ] # # Set up beam search and sampling computation graphs if necessary # if config['hook_samples'] >= 1 or config['bleu_script'] is not None: # logger.info("Building sampling model") # sampling_representation = encoder.apply( # sampling_input, tensor.ones(sampling_input.shape)) # generated = decoder.generate( # sampling_input, sampling_representation) # search_model = Model(generated) # _, samples = VariableFilter( # bricks=[decoder.sequence_generator], name="outputs")( # ComputationGraph(generated[1])) # # # Add sampling # if config['hook_samples'] >= 1: # logger.info("Building sampler") # extensions.append( # Sampler(model=search_model, data_stream=tr_stream, # model_name=config['model_name'], # hook_samples=config['hook_samples'], # every_n_batches=config['sampling_freq'], # src_vocab_size=config['src_vocab_size'])) # # # Add early stopping based on bleu # if False: # logger.info("Building bleu validator") # extensions.append( # BleuValidator(sampling_input, samples=samples, config=config, # model=search_model, data_stream=dev_stream, # normalize=config['normalized_bleu'], # every_n_batches=config['bleu_val_freq'], # n_best=3, # track_n_models=6)) # # logger.info("Building perplexity validator") # extensions.append( # pplValidation( config=config, # model=costs_computer, data_stream=dev_stream, # model_name=config['model_name'], # every_n_batches=config['sampling_freq'])) # Plot cost in bokeh if necessary if use_bokeh and BOKEH_AVAILABLE: extensions.append( Plot('Cs-En', channels=[['decoder_cost_cost']], after_batch=True)) # Reload model if necessary if config['reload']: extensions.append(LoadNMT(config['saveto'])) initial_learning_rate = config['initial_learning_rate'] log_path = os.path.join(config['saveto'], 'log') if config['reload'] and os.path.exists(log_path): with open(log_path, 'rb') as source: log = cPickle.load(source) last = max(log.keys()) - 1 if 'learning_rate' in log[last]: initial_learning_rate = log[last]['learning_rate'] # Set up training algorithm logger.info("Initializing training algorithm") algorithm = GradientDescent(cost=cost, parameters=cg.parameters, step_rule=CompositeRule([ Scale(initial_learning_rate), StepClipping(config['step_clipping']), eval(config['step_rule'])() ]), on_unused_sources='ignore') _learning_rate = algorithm.step_rule.components[0].learning_rate if config['learning_rate_decay']: extensions.append( LearningRateHalver(record_name='validation_cost', comparator=lambda x, y: x > y, learning_rate=_learning_rate, patience_default=3)) else: extensions.append(OldModelRemover(saveto=config['saveto'])) if config['learning_rate_grow']: extensions.append( LearningRateDoubler(record_name='validation_cost', comparator=lambda x, y: x < y, learning_rate=_learning_rate, patience_default=3)) extensions.append( SimplePrinting(config['model_name'], after_batch=True)) # Initialize main loop logger.info("Initializing main loop") main_loop = MainLoop(model=training_model, algorithm=algorithm, data_stream=tr_stream, extensions=extensions) # Train! main_loop.run() elif mode == 'translate': logger.info('Creating theano variables') sampling_input = tensor.lmatrix('source') source_topical_word = tensor.lmatrix('source_topical') tw_vocab_overlap = tensor.lmatrix('tw_vocab_overlap') tw_vocab_overlap_matrix = cPickle.load( open(config['tw_vocab_overlap'], 'rb')) tw_vocab_overlap_matrix = numpy.array(tw_vocab_overlap_matrix, dtype='int32') #tw_vocab_overlap=shared(tw_vocab_overlap_matrix); topic_embedding = topical_transformer.apply(source_topical_word) sutils = SamplingBase() unk_idx = config['unk_id'] src_eos_idx = config['src_vocab_size'] - 1 trg_eos_idx = config['trg_vocab_size'] - 1 trg_vocab = _ensure_special_tokens(cPickle.load( open(config['trg_vocab'], 'rb')), bos_idx=0, eos_idx=trg_eos_idx, unk_idx=unk_idx) trg_ivocab = {v: k for k, v in trg_vocab.items()} logger.info("Building sampling model") sampling_representation = encoder.apply( sampling_input, tensor.ones(sampling_input.shape)) topic_embedding = topical_transformer.apply(source_topical_word) tw_representation = topical_transformer.look_up.apply( source_topical_word.T) content_embedding = sampling_representation[0, :, ( sampling_representation.shape[2] / 2):] generated = decoder.generate(sampling_input, sampling_representation, tw_representation, topical_embedding=topic_embedding, content_embedding=content_embedding) _, samples = VariableFilter( bricks=[decoder.sequence_generator], name="outputs")( ComputationGraph(generated[1])) # generated[1] is next_outputs beam_search = BeamSearch(samples=samples) logger.info("Loading the model..") model = Model(generated) #loader = LoadNMT(config['saveto']) loader = LoadNMT(config['validation_load']) loader.set_model_parameters(model, loader.load_parameters_default()) logger.info("Started translation: ") test_stream = get_dev_stream_with_topicalq(**config) ts = test_stream.get_epoch_iterator() rts = open(config['val_set_source']).readlines() ftrans_original = open(config['val_output_orig'], 'w') saved_weights = [] total_cost = 0.0 pbar = ProgressBar(max_value=len(rts)).start() for i, (line, line_raw) in enumerate(zip(ts, rts)): trans_in = line_raw.split() seq = sutils._oov_to_unk(line[0], config['src_vocab_size'], unk_idx) seq1 = line[1] input_topical = numpy.tile(seq1, (config['beam_size'], 1)) input_ = numpy.tile(seq, (config['beam_size'], 1)) # draw sample, checking to ensure we don't get an empty string back trans, costs, attendeds, weights = \ beam_search.search( input_values={sampling_input: input_,source_topical_word:input_topical,tw_vocab_overlap:tw_vocab_overlap_matrix}, tw_vocab_overlap=tw_vocab_overlap_matrix, max_length=3*len(seq), eol_symbol=trg_eos_idx, ignore_first_eol=True) # normalize costs according to the sequence lengths if config['normalized_bleu']: lengths = numpy.array([len(s) for s in trans]) costs = costs / lengths best = numpy.argsort(costs)[0] try: total_cost += costs[best] trans_out = trans[best] weight = weights[best][:, :len(trans_in)] trans_out = sutils._idx_to_word(trans_out, trg_ivocab) except ValueError: logger.info( "Can NOT find a translation for line: {}".format(i + 1)) trans_out = '<UNK>' saved_weights.append(weight) print(' '.join(trans_out), file=ftrans_original) pbar.update(i + 1) pbar.finish() logger.info("Total cost of the test: {}".format(total_cost)) cPickle.dump(saved_weights, open(config['attention_weights'], 'wb')) ftrans_original.close() # ap = afterprocesser(config) # ap.main() elif mode == 'score': logger.info('Creating theano variables') source_sentence = tensor.lmatrix('source') source_sentence_mask = tensor.matrix('source_mask') target_sentence = tensor.lmatrix('target') target_sentence_mask = tensor.matrix('target_mask') target_topic_sentence = tensor.lmatrix('target_topic') target_topic_binary_sentence = tensor.lmatrix('target_binary_topic') source_topical_word = tensor.lmatrix('source_topical') topic_embedding = topical_transformer.apply(source_topical_word) # Get cost of the model representations = encoder.apply(source_sentence, source_sentence_mask) costs = decoder.cost(representations, source_sentence_mask, target_sentence, target_sentence_mask, target_topic_sentence, target_topic_binary_sentence, topic_embedding) config['batch_size'] = 1 config['sort_k_batches'] = 1 # Get test set stream test_stream = get_tr_stream_with_topic_target(**config) logger.info("Building sampling model") logger.info("Loading the model..") model = Model(costs) loader = LoadNMT(config['validation_load']) loader.set_model_parameters(model, loader.load_parameters_default()) costs_computer = function([ target_sentence, target_sentence_mask, source_sentence, source_sentence_mask, source_topical_word, target_topic_sentence, target_topic_binary_sentence ], (costs), on_unused_input='ignore') iterator = test_stream.get_epoch_iterator() scores = [] att_weights = [] for i, (src, src_mask, trg, trg_mask, te, te_mask, tt, tt_mask, tb, tb_mask) in enumerate(iterator): costs = costs_computer(*[trg, trg_mask, src, src_mask, te, tt, tb]) cost = costs.sum() print(i, cost) scores.append(cost) print(sum(scores) / 10007)
monitor_valid = DataStreamMonitoring([cost, error_rate], data_stream=valid_stream, prefix="valid", after_epoch=True) plot = Plot( document= 'dreem_conv F%d,%d,%d ConvEEG%s%s%s Conv%s%s%s Out%s,dropout%s Noise%s %s' % ( eeg_gaussian_filter_width, eeg_gaussian_filter_sigma, eeg_gaussian_filter_step, repr([x['filter_size'] for x in conv_eeg]), repr([x['num_filters'] for x in conv_eeg]), repr([x['pool_size'] for x in conv_eeg]), repr([x['filter_size'] for x in conv_all]), repr([x['num_filters'] for x in conv_all]), repr([x['pool_size'] for x in conv_all]), repr(out_hidden), repr(out_dropout), repr(weight_noise), step_rule.__class__.__name__, ), channels=[['train_cost', 'valid_cost'], ['train_error_rate', 'valid_error_rate']], every_n_batches=monitor_freq, after_epoch=True) model = Model(cost) main_loop = MainLoop( data_stream=stream, algorithm=algorithm,
def main(save_to, cost_name, learning_rate, momentum, num_epochs): mlp = MLP([None], [784, 10], weights_init=IsotropicGaussian(0.01), biases_init=Constant(0)) mlp.initialize() x = tensor.matrix('features') y = tensor.lmatrix('targets') scores = mlp.apply(x) batch_size = y.shape[0] indices = tensor.arange(y.shape[0]) target_scores = tensor.set_subtensor( tensor.zeros((batch_size, 10))[indices, y.flatten()], 1) score_diff = scores - target_scores # Logistic Regression if cost_name == 'lr': cost = Softmax().categorical_cross_entropy(y.flatten(), scores).mean() # MSE elif cost_name == 'mse': cost = (score_diff**2).mean() # Perceptron elif cost_name == 'perceptron': cost = (scores.max(axis=1) - scores[indices, y.flatten()]).mean() # TLE elif cost_name == 'minmin': cost = abs(score_diff[indices, y.flatten()]).mean() cost += abs(score_diff[indices, scores.argmax(axis=1)]).mean() # TLEcut elif cost_name == 'minmin_cut': # Score of the groundtruth should be greater or equal than its target score cost = tensor.maximum(0, -score_diff[indices, y.flatten()]).mean() # Score of the prediction should be less or equal than its actual score cost += tensor.maximum(0, score_diff[indices, scores.argmax(axis=1)]).mean() # TLE2 elif cost_name == 'minmin2': cost = ((score_diff[tensor.arange(y.shape[0]), y.flatten()])**2).mean() cost += ((score_diff[tensor.arange(y.shape[0]), scores.argmax(axis=1)])**2).mean() # Direct loss minimization elif cost_name == 'direct': epsilon = 0.1 cost = (-scores[indices, (scores + epsilon * target_scores).argmax(axis=1)] + scores[indices, scores.argmax(axis=1)]).mean() cost /= epsilon elif cost_name == 'svm': cost = (scores[indices, (scores - 1 * target_scores).argmax(axis=1)] - scores[indices, y.flatten()]).mean() else: raise ValueError("Unknown cost " + cost) error_rate = MisclassificationRate().apply(y.flatten(), scores) error_rate.name = 'error_rate' cg = ComputationGraph([cost]) cost.name = 'cost' mnist_train = MNIST(("train", )) mnist_test = MNIST(("test", )) if learning_rate == None: learning_rate = 0.0001 if momentum == None: momentum = 0.0 rule = Momentum(learning_rate=learning_rate, momentum=momentum) algorithm = GradientDescent(cost=cost, parameters=cg.parameters, step_rule=rule) extensions = [ Timing(), FinishAfter(after_n_epochs=num_epochs), DataStreamMonitoring([cost, error_rate], Flatten(DataStream.default_stream( mnist_test, iteration_scheme=SequentialScheme( mnist_test.num_examples, 500)), which_sources=('features', )), prefix="test"), # CallbackExtension( # lambda: rule.learning_rate.set_value(rule.learning_rate.get_value() * 0.9), # after_epoch=True), TrainingDataMonitoring([ cost, error_rate, aggregation.mean(algorithm.total_gradient_norm), rule.learning_rate ], prefix="train", after_epoch=True), Checkpoint(save_to), Printing() ] if BLOCKS_EXTRAS_AVAILABLE: extensions.append( Plot('MNIST example', channels=[['test_cost', 'test_error_rate'], ['train_total_gradient_norm']])) main_loop = MainLoop(algorithm, Flatten(DataStream.default_stream( mnist_train, iteration_scheme=SequentialScheme( mnist_train.num_examples, 50)), which_sources=('features', )), model=Model(cost), extensions=extensions) main_loop.run() df = pandas.DataFrame.from_dict(main_loop.log, orient='index') res = { 'cost': cost_name, 'learning_rate': learning_rate, 'momentum': momentum, 'train_cost': df.train_cost.iloc[-1], 'test_cost': df.test_cost.iloc[-1], 'best_test_cost': df.test_cost.min(), 'train_error': df.train_error_rate.iloc[-1], 'test_error': df.test_error_rate.iloc[-1], 'best_test_error': df.test_error_rate.min() } res = { k: float(v) if isinstance(v, numpy.ndarray) else v for k, v in res.items() } json.dump(res, sys.stdout) sys.stdout.flush()
prefix='train', every_n_batches=config.print_freq), DataStreamMonitoring( [v for l in m.monitor_vars for v in l], valid_stream, prefix='valid', every_n_batches=config.valid_freq), Printing(every_n_batches=config.print_freq, after_epoch=False), ] extensions.append(FinishAfter(after_n_epochs=200)) #after_n_batches if plot_avail: plot_channels = [['valid_' + v.name for v in p]for p in m.monitor_vars]+[['train_' + v.name for v in p] for p in m.monitor_vars] extensions.append( Plot(document='CFM_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s' %(config.name,config.couches,config.hidden_dim, config.activation_function_name,config.batch_size,config.w_noise_std, config.i_dropout, config.algo,config.learning_rate_value, config.momentum_value,config.decay_rate_value,config.StepClipping_value), channels=plot_channels, every_n_batches=config.print_freq, after_epoch=False) ) if config.save_freq is not None and dump_path is not None: extensions.append( SaveLoadParams(path=dump_path+'CFM_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s_%s.pkl' %(config.name,config.couches,config.hidden_dim, config.activation_function_name,config.batch_size,config.w_noise_std, config.i_dropout, config.algo,config.learning_rate_value, config.momentum_value,config.decay_rate_value,config.StepClipping_value), model=model, before_training=True, after_training=True,
def construct_monitors(algorithm, task, n_patches, x, x_uncentered, hs, graph, plot_url, name, ram, model, cost, n_spatial_dims, patchmonitor_interval=100, **kwargs): location, scale, savings = util.get_recurrent_auxiliaries( "location scale savings".split(), graph, n_patches) channels = util.Channels() channels.extend(task.monitor_channels(graph)) #for i in xrange(n_patches): # channels.append(hs[:, i].mean(), "h%i.mean" % i) channels.append(util.named(savings.mean(), "savings.mean")) for variable_name in "location scale".split(): variable = locals()[variable_name] channels.append( variable.var(axis=0).mean(), "%s.batch_variance" % variable_name) channels.append( variable.var(axis=1).mean(), "%s.time_variance" % variable_name) #step_norms = util.Channels() #step_norms.extend(util.named(l2_norm([algorithm.steps[param]]), # "%s.step_norm" % name) # for name, param in model.get_parameter_dict().items()) #step_channels = step_norms.get_channels() #for activation in VariableFilter(roles=[OUTPUT])(graph.variables): # quantity = activation.mean() # quantity.name = "%s.mean" % util.get_path(activation) # channels.append(quantity) for parameter in graph.parameters: if parameter.name in "gamma beta".split(): quantity = parameter.mean() quantity.name = "%s.mean" % util.get_path(parameter) channels.append(quantity) extensions = [] #extensions.append(TrainingDataMonitoring( # step_channels, # prefix="train", after_epoch=True)) extensions.extend( DataStreamMonitoring((channels.get_channels() + [cost]), data_stream=task.get_stream(which), prefix=which, after_epoch=True) for which in "train valid test".split()) patchmonitor = None if n_spatial_dims == 2: patchmonitor_klass = PatchMonitoring elif n_spatial_dims == 3: patchmonitor_klass = VideoPatchMonitoring if patchmonitor_klass: # get patches from original (uncentered) images patch = T.stack(*[ ram.attention.crop(x_uncentered, location[:, i, :], scale[:, i, :]) for i in xrange(n_patches) ]) patch = patch.dimshuffle(1, 0, *range(2, patch.ndim)) patchmonitor = patchmonitor_klass( task.get_stream("valid", SequentialScheme(5, 5)), every_n_batches=patchmonitor_interval, extractor=theano.function([x_uncentered], [location, scale, patch]), map_to_input_space=masonry.static_map_to_input_space) patchmonitor.save_patches("test.png") extensions.append(patchmonitor) plot_channels = [] plot_channels.extend(task.plot_channels()) plot_channels.append(["train_cost"]) #plot_channels.append(["train_%s" % step_channel.name for step_channel in step_channels]) extensions.append( Plot(name, channels=plot_channels, after_epoch=True, server_url=plot_url)) return extensions
parameters=ComputationGraph(cost).parameters, step_rule=step_rule) monitor_cost = TrainingDataMonitoring([cost_reg, error_rate_reg], prefix="train", every_n_batches=monitor_freq, after_epoch=False) monitor_valid = DataStreamMonitoring([cost, error_rate], data_stream=valid_stream, prefix="valid", after_epoch=True) plot = Plot(document='dreem_conv', channels=[['train_cost', 'valid_cost'], ['train_error_rate', 'valid_error_rate']], every_n_batches=monitor_freq, after_epoch=True) model = Model(cost) main_loop = MainLoop(data_stream=stream, algorithm=algorithm, extensions=[ ProgressBar(), monitor_cost, monitor_valid, plot, Printing(every_n_batches=monitor_freq, after_epoch=True), SaveLoadParams('conv_params.pkl', Model(cost), before_training=True, after_epoch=True),
def initialize_all(config, save_path, bokeh_name, params, bokeh_server, bokeh, test_tag, use_load_ext, load_log, fast_start): root_path, extension = os.path.splitext(save_path) data = Data(**config['data']) train_conf = config['training'] recognizer = create_model(config, data, test_tag) # Separate attention_params to be handled differently # when regularization is applied attention = recognizer.generator.transition.attention attention_params = Selector(attention).get_parameters().values() logger.info( "Initialization schemes for all bricks.\n" "Works well only in my branch with __repr__ added to all them,\n" "there is an issue #463 in Blocks to do that properly.") def show_init_scheme(cur): result = dict() for attr in dir(cur): if attr.endswith('_init'): result[attr] = getattr(cur, attr) for child in cur.children: result[child.name] = show_init_scheme(child) return result logger.info(pprint.pformat(show_init_scheme(recognizer))) prediction, prediction_mask = add_exploration(recognizer, data, train_conf) # # Observables: # primary_observables = [] # monitored each batch secondary_observables = [] # monitored every 10 batches validation_observables = [] # monitored on the validation set cg = recognizer.get_cost_graph(batch=True, prediction=prediction, prediction_mask=prediction_mask) labels, = VariableFilter(applications=[recognizer.cost], name='labels')(cg) labels_mask, = VariableFilter(applications=[recognizer.cost], name='labels_mask')(cg) gain_matrix = VariableFilter( theano_name=RewardRegressionEmitter.GAIN_MATRIX)(cg) if len(gain_matrix): gain_matrix, = gain_matrix primary_observables.append(named_copy(gain_matrix.min(), 'min_gain')) primary_observables.append(named_copy(gain_matrix.max(), 'max_gain')) batch_cost = cg.outputs[0].sum() batch_size = named_copy(recognizer.recordings.shape[1], "batch_size") # Assumes constant batch size. `aggregation.mean` is not used because # of Blocks #514. cost = batch_cost / batch_size cost.name = "sequence_total_cost" logger.info("Cost graph is built") # Fetch variables useful for debugging. # It is important not to use any aggregation schemes here, # as it's currently impossible to spread the effect of # regularization on their variables, see Blocks #514. cost_cg = ComputationGraph(cost) r = recognizer energies, = VariableFilter(applications=[r.generator.readout.readout], name="output_0")(cost_cg) bottom_output = VariableFilter(applications=[r.bottom.apply], name="output")(cost_cg)[-1] attended, = VariableFilter(applications=[r.generator.transition.apply], name="attended")(cost_cg) attended_mask, = VariableFilter(applications=[ r.generator.transition.apply ], name="attended_mask")(cost_cg) weights, = VariableFilter(applications=[r.generator.evaluate], name="weights")(cost_cg) max_recording_length = named_copy(r.recordings.shape[0], "max_recording_length") # To exclude subsampling related bugs max_attended_mask_length = named_copy(attended_mask.shape[0], "max_attended_mask_length") max_attended_length = named_copy(attended.shape[0], "max_attended_length") max_num_phonemes = named_copy(labels.shape[0], "max_num_phonemes") min_energy = named_copy(energies.min(), "min_energy") max_energy = named_copy(energies.max(), "max_energy") mean_attended = named_copy(abs(attended).mean(), "mean_attended") mean_bottom_output = named_copy( abs(bottom_output).mean(), "mean_bottom_output") weights_penalty = named_copy(monotonicity_penalty(weights, labels_mask), "weights_penalty") weights_entropy = named_copy(entropy(weights, labels_mask), "weights_entropy") mask_density = named_copy(labels_mask.mean(), "mask_density") cg = ComputationGraph([ cost, weights_penalty, weights_entropy, min_energy, max_energy, mean_attended, mean_bottom_output, batch_size, max_num_phonemes, mask_density ]) # Regularization. It is applied explicitly to all variables # of interest, it could not be applied to the cost only as it # would not have effect on auxiliary variables, see Blocks #514. reg_config = config['regularization'] regularized_cg = cg if reg_config.get('dropout'): logger.info('apply dropout') regularized_cg = apply_dropout(cg, [bottom_output], 0.5) if reg_config.get('noise'): logger.info('apply noise') noise_subjects = [ p for p in cg.parameters if p not in attention_params ] regularized_cg = apply_noise(cg, noise_subjects, reg_config['noise']) train_cost = regularized_cg.outputs[0] if reg_config.get("penalty_coof", .0) > 0: # big warning!!! # here we assume that: # regularized_weights_penalty = regularized_cg.outputs[1] train_cost = (train_cost + reg_config.get("penalty_coof", .0) * regularized_cg.outputs[1] / batch_size) if reg_config.get("decay", .0) > 0: train_cost = ( train_cost + reg_config.get("decay", .0) * l2_norm(VariableFilter(roles=[WEIGHT])(cg.parameters))**2) train_cost = named_copy(train_cost, 'train_cost') gradients = None if reg_config.get('adaptive_noise'): logger.info('apply adaptive noise') if ((reg_config.get("penalty_coof", .0) > 0) or (reg_config.get("decay", .0) > 0)): logger.error('using adaptive noise with alignment weight panalty ' 'or weight decay is probably stupid') train_cost, regularized_cg, gradients, noise_brick = apply_adaptive_noise( cg, cg.outputs[0], variables=cg.parameters, num_examples=data.get_dataset('train').num_examples, parameters=SpeechModel( regularized_cg.outputs[0]).get_parameter_dict().values(), **reg_config.get('adaptive_noise')) train_cost.name = 'train_cost' adapt_noise_cg = ComputationGraph(train_cost) model_prior_mean = named_copy( VariableFilter(applications=[noise_brick.apply], name='model_prior_mean')(adapt_noise_cg)[0], 'model_prior_mean') model_cost = named_copy( VariableFilter(applications=[noise_brick.apply], name='model_cost')(adapt_noise_cg)[0], 'model_cost') model_prior_variance = named_copy( VariableFilter(applications=[noise_brick.apply], name='model_prior_variance')(adapt_noise_cg)[0], 'model_prior_variance') regularized_cg = ComputationGraph( [train_cost, model_cost] + regularized_cg.outputs + [model_prior_mean, model_prior_variance]) primary_observables += [ regularized_cg.outputs[1], # model cost regularized_cg.outputs[2], # task cost regularized_cg.outputs[-2], # model prior mean regularized_cg.outputs[-1] ] # model prior variance # Model is weird class, we spend lots of time arguing with Bart # what it should be. However it can already nice things, e.g. # one extract all the parameters from the computation graphs # and give them hierahical names. This help to notice when a # because of some bug a parameter is not in the computation # graph. model = SpeechModel(train_cost) if params: logger.info("Load parameters from " + params) # please note: we cannot use recognizer.load_params # as it builds a new computation graph that dies not have # shapred variables added by adaptive weight noise param_values = load_parameter_values(params) model.set_parameter_values(param_values) parameters = model.get_parameter_dict() logger.info("Parameters:\n" + pprint.pformat([(key, parameters[key].get_value().shape) for key in sorted(parameters.keys())], width=120)) # Define the training algorithm. clipping = StepClipping(train_conf['gradient_threshold']) clipping.threshold.name = "gradient_norm_threshold" rule_names = train_conf.get('rules', ['momentum']) core_rules = [] if 'momentum' in rule_names: logger.info("Using scaling and momentum for training") core_rules.append(Momentum(train_conf['scale'], train_conf['momentum'])) if 'adadelta' in rule_names: logger.info("Using AdaDelta for training") core_rules.append( AdaDelta(train_conf['decay_rate'], train_conf['epsilon'])) max_norm_rules = [] if reg_config.get('max_norm', False) > 0: logger.info("Apply MaxNorm") maxnorm_subjects = VariableFilter(roles=[WEIGHT])(cg.parameters) if reg_config.get('max_norm_exclude_lookup', False): maxnorm_subjects = [ v for v in maxnorm_subjects if not isinstance(get_brick(v), LookupTable) ] logger.info("Parameters covered by MaxNorm:\n" + pprint.pformat( [name for name, p in parameters.items() if p in maxnorm_subjects])) logger.info("Parameters NOT covered by MaxNorm:\n" + pprint.pformat([ name for name, p in parameters.items() if not p in maxnorm_subjects ])) max_norm_rules = [ Restrict(VariableClipping(reg_config['max_norm'], axis=0), maxnorm_subjects) ] burn_in = [] if train_conf.get('burn_in_steps', 0): burn_in.append(BurnIn(num_steps=train_conf['burn_in_steps'])) algorithm = GradientDescent( cost=train_cost, parameters=parameters.values(), gradients=gradients, step_rule=CompositeRule( [clipping] + core_rules + max_norm_rules + # Parameters are not changed at all # when nans are encountered. [RemoveNotFinite(0.0)] + burn_in), on_unused_sources='warn') logger.debug("Scan Ops in the gradients") gradient_cg = ComputationGraph(algorithm.gradients.values()) for op in ComputationGraph(gradient_cg).scans: logger.debug(op) # More variables for debugging: some of them can be added only # after the `algorithm` object is created. secondary_observables += list(regularized_cg.outputs) if not 'train_cost' in [v.name for v in secondary_observables]: secondary_observables += [train_cost] secondary_observables += [ algorithm.total_step_norm, algorithm.total_gradient_norm, clipping.threshold ] for name, param in parameters.items(): num_elements = numpy.product(param.get_value().shape) norm = param.norm(2) / num_elements**0.5 grad_norm = algorithm.gradients[param].norm(2) / num_elements**0.5 step_norm = algorithm.steps[param].norm(2) / num_elements**0.5 stats = tensor.stack(norm, grad_norm, step_norm, step_norm / grad_norm) stats.name = name + '_stats' secondary_observables.append(stats) primary_observables += [ train_cost, algorithm.total_gradient_norm, algorithm.total_step_norm, clipping.threshold, max_recording_length, max_attended_length, max_attended_mask_length ] validation_observables += [ rename(aggregation.mean(batch_cost, batch_size), cost.name), rename(aggregation.sum_(batch_size), 'num_utterances'), weights_entropy, weights_penalty ] def attach_aggregation_schemes(variables): # Aggregation specification has to be factored out as a separate # function as it has to be applied at the very last stage # separately to training and validation observables. result = [] for var in variables: if var.name == 'weights_penalty': result.append( rename(aggregation.mean(var, batch_size), 'weights_penalty_per_recording')) elif var.name == 'weights_entropy': result.append( rename(aggregation.mean(var, labels_mask.sum()), 'weights_entropy_per_label')) else: result.append(var) return result mon_conf = config['monitoring'] # Build main loop. logger.info("Initialize extensions") extensions = [] if use_load_ext and params: extensions.append( Load(params, load_iteration_state=True, load_log=True)) if load_log and params: extensions.append(LoadLog(params)) extensions += [ Timing(after_batch=True), CGStatistics(), #CodeVersion(['lvsr']), ] extensions.append( TrainingDataMonitoring(primary_observables, after_batch=True)) average_monitoring = TrainingDataMonitoring( attach_aggregation_schemes(secondary_observables), prefix="average", every_n_batches=10) extensions.append(average_monitoring) validation = DataStreamMonitoring( attach_aggregation_schemes(validation_observables), data.get_stream("valid", shuffle=False), prefix="valid").set_conditions( before_first_epoch=not fast_start, every_n_epochs=mon_conf['validate_every_epochs'], every_n_batches=mon_conf['validate_every_batches'], after_training=False) extensions.append(validation) per = PhonemeErrorRate(recognizer, data, **config['monitoring']['search']) per_monitoring = DataStreamMonitoring( [per], data.get_stream("valid", batches=False, shuffle=False), prefix="valid").set_conditions( before_first_epoch=not fast_start, every_n_epochs=mon_conf['search_every_epochs'], every_n_batches=mon_conf['search_every_batches'], after_training=False) extensions.append(per_monitoring) track_the_best_per = TrackTheBest( per_monitoring.record_name(per)).set_conditions( before_first_epoch=True, after_epoch=True) track_the_best_cost = TrackTheBest( validation.record_name(cost)).set_conditions(before_first_epoch=True, after_epoch=True) extensions += [track_the_best_cost, track_the_best_per] extensions.append( AdaptiveClipping(algorithm.total_gradient_norm.name, clipping, train_conf['gradient_threshold'], decay_rate=0.998, burnin_period=500)) extensions += [ SwitchOffLengthFilter( data.length_filter, after_n_batches=train_conf.get('stop_filtering')), FinishAfter(after_n_batches=train_conf['num_batches'], after_n_epochs=train_conf['num_epochs']).add_condition( ["after_batch"], _gradient_norm_is_none), ] channels = [ # Plot 1: training and validation costs [ average_monitoring.record_name(train_cost), validation.record_name(cost) ], # Plot 2: gradient norm, [ average_monitoring.record_name(algorithm.total_gradient_norm), average_monitoring.record_name(clipping.threshold) ], # Plot 3: phoneme error rate [per_monitoring.record_name(per)], # Plot 4: training and validation mean weight entropy [ average_monitoring._record_name('weights_entropy_per_label'), validation._record_name('weights_entropy_per_label') ], # Plot 5: training and validation monotonicity penalty [ average_monitoring._record_name('weights_penalty_per_recording'), validation._record_name('weights_penalty_per_recording') ] ] if bokeh: extensions += [ Plot(bokeh_name if bokeh_name else os.path.basename(save_path), channels, every_n_batches=10, server_url=bokeh_server), ] extensions += [ Checkpoint(save_path, before_first_epoch=not fast_start, after_epoch=True, every_n_batches=train_conf.get('save_every_n_batches'), save_separately=["model", "log"], use_cpickle=True).add_condition( ['after_epoch'], OnLogRecord(track_the_best_per.notification_name), (root_path + "_best" + extension, )).add_condition( ['after_epoch'], OnLogRecord(track_the_best_cost.notification_name), (root_path + "_best_ll" + extension, )), ProgressBar() ] extensions.append(EmbedIPython(use_main_loop_run_caller_env=True)) if config['net']['criterion']['name'].startswith('mse'): extensions.append( LogInputsGains(labels, cg, recognizer.generator.readout.emitter, data)) if train_conf.get('patience'): patience_conf = train_conf['patience'] if not patience_conf.get('notification_names'): # setdefault will not work for empty list patience_conf['notification_names'] = [ track_the_best_per.notification_name, track_the_best_cost.notification_name ] extensions.append(Patience(**patience_conf)) extensions.append( Printing(every_n_batches=1, attribute_filter=PrintingFilterList())) return model, algorithm, data, extensions
def construct_monitors(algorithm, task, model, graphs, outputs, updates, monitor_options, n_spatial_dims, plot_url, hyperparameters, patchmonitor_interval, **kwargs): from blocks.extensions.monitoring import TrainingDataMonitoring, DataStreamMonitoring extensions = [] if "steps" in monitor_options: step_channels = [] step_channels.extend([ algorithm.steps[param].norm(2).copy(name="step_norm:%s" % name) for name, param in model.get_parameter_dict().items() ]) step_channels.append( algorithm.total_step_norm.copy(name="total_step_norm")) step_channels.append( algorithm.total_gradient_norm.copy(name="total_gradient_norm")) from extensions import Compressor for step_rule in algorithm.step_rule.components: if isinstance(step_rule, Compressor): step_channels.append( step_rule.norm.copy(name="compressor.norm")) step_channels.append( step_rule.newnorm.copy(name="compressor.newnorm")) step_channels.append( step_rule.median.copy(name="compressor.median")) step_channels.append( step_rule.ratio.copy(name="compressor.ratio")) step_channels.extend( outputs["train"][key] for key in "cost emitter_cost excursion_cost cross_entropy error_rate".split( )) step_channels.extend( util.uniqueify_names_last_resort( util.dedup(( var.mean().copy(name="bn_stat:%s" % util.get_path(var)) for var in graph.deep_ancestors([outputs["train"]["cost"]]) if hasattr(var.tag, "batch_normalization_brick")), equal=util.equal_computations))) logger.warning("constructing training data monitor") extensions.append( TrainingDataMonitoring(step_channels, prefix="iteration", after_batch=True)) if "parameters" in monitor_options: data_independent_channels = [] for parameter in graphs["train"].parameters: if parameter.name in "gamma beta W b".split(): quantity = parameter.norm(2) quantity.name = "parameter.norm:%s" % util.get_path(parameter) data_independent_channels.append(quantity) for key in "location_std scale_std".split(): data_independent_channels.append( hyperparameters[key].copy(name="parameter:%s" % key)) extensions.append( DataStreamMonitoring(data_independent_channels, data_stream=None, after_epoch=True)) for which_set in "train valid test".split(): channels = [] channels.extend(outputs[which_set][key] for key in "cost emitter_cost excursion_cost".split()) channels.extend(outputs[which_set][key] for key in task.monitor_outputs()) channels.append( outputs[which_set]["savings"].mean().copy(name="mean_savings")) if "theta" in monitor_options: for key in "true_scale raw_location raw_scale".split(): for stat in "mean var".split(): channels.append( getattr(outputs[which_set][key], stat)(axis=1).copy(name="%s.%s" % (key, stat))) if which_set == "train": if "activations" in monitor_options: from blocks.roles import has_roles, OUTPUT cnn_outputs = OrderedDict() for var in theano.gof.graph.ancestors( graphs[which_set].outputs): if (has_roles(var, [OUTPUT]) and util.annotated_by_a( util.get_convolution_classes(), var)): cnn_outputs.setdefault(util.get_path(var), []).append(var) for path, vars in cnn_outputs.items(): vars = util.dedup(vars, equal=util.equal_computations) for i, var in enumerate(vars): channels.append(var.mean().copy( name="activation[%i].mean:%s" % (i, path))) if "batch_normalization" in monitor_options: errors = [] for population_stat, update in updates[which_set]: if population_stat.name.startswith("population"): # this is a super robust way to get the # corresponding batch statistic from the # exponential moving average expression batch_stat = update.owner.inputs[1].owner.inputs[1] errors.append(((population_stat - batch_stat)**2).mean()) if errors: channels.append( T.stack(errors).mean().copy( name="population_statistic_mse")) logger.warning("constructing %s monitor" % which_set) extensions.append( DataStreamMonitoring(channels, prefix=which_set, after_epoch=True, data_stream=task.get_stream(which_set, monitor=True))) if "patches" in monitor_options: from patchmonitor import PatchMonitoring, VideoPatchMonitoring patchmonitor = None if n_spatial_dims == 2: patchmonitor_klass = PatchMonitoring elif n_spatial_dims == 3: patchmonitor_klass = VideoPatchMonitoring if patchmonitor_klass: for which in "train valid".split(): patch = outputs[which]["patch"] patch = patch.dimshuffle(1, 0, *range(2, patch.ndim)) patch_extractor = theano.function( [outputs[which][key] for key in "x x_shape".split()], [ outputs[which][key] for key in "raw_location raw_scale".split() ] + [patch]) patchmonitor = patchmonitor_klass( save_to="%s_patches_%s" % (hyperparameters["name"], which), data_stream=task.get_stream(which, shuffle=False, num_examples=10), every_n_batches=patchmonitor_interval, extractor=patch_extractor, map_to_input_space=attention.static_map_to_input_space) patchmonitor.save_patches("patchmonitor_test.png") extensions.append(patchmonitor) if plot_url: plot_channels = [] plot_channels.extend(task.plot_channels()) plot_channels.append(["train_cost"]) #plot_channels.append(["train_%s" % step_channel.name for step_channel in step_channels]) from blocks.extras.extensions.plot import Plot extensions.append( Plot(name, channels=plot_channels, after_epoch=True, server_url=plot_url)) return extensions
def main(mode, config, use_bokeh=False): # Construct model logger.info('Building RNN encoder-decoder') encoder = BidirectionalEncoder( config['src_vocab_size'], config['enc_embed'], config['enc_nhids'],name='word_encoder') decoder = Decoder(vocab_size=config['trg_vocab_size'], embedding_dim=config['dec_embed'], state_dim=config['dec_nhids'], representation_dim=config['enc_nhids'] * 2, match_function=config['match_function'], use_doubly_stochastic=config['use_doubly_stochastic'], lambda_ds=config['lambda_ds'], use_local_attention=config['use_local_attention'], window_size=config['window_size'], use_step_decay_cost=config['use_step_decay_cost'], use_concentration_cost=config['use_concentration_cost'], lambda_ct=config['lambda_ct'], use_stablilizer=config['use_stablilizer'], lambda_st=config['lambda_st']) # here attended dim (representation_dim) of decoder is 2*enc_nhinds # because the context given by the encoder is a bidirectional context if mode == "train": # Create Theano variables logger.info('Creating theano variables') context_sentences=[]; context_sentence_masks=[]; for i in range(config['ctx_num']): context_sentences.append(tensor.lmatrix('context_'+str(i))); context_sentence_masks.append(tensor.matrix('context_'+str(i)+'_mask')); source_sentence = tensor.lmatrix('source') source_sentence_mask = tensor.matrix('source_mask') target_sentence = tensor.lmatrix('target') target_sentence_mask = tensor.matrix('target_mask') sampling_input = tensor.lmatrix('input') dev_source = tensor.lmatrix('dev_source') dev_target=tensor.lmatrix('dev_target') # Get training and development set streams tr_stream = get_tr_stream_withContext(**config) dev_stream = get_dev_stream_with_grdTruth(**config) # Get cost of the model sentence_representations_list=encoder.apply(source_sentence, source_sentence_mask); sentence_representations_list=sentence_representations_list.dimshuffle(['x',0,1,2]); sentence_masks_list=source_sentence_mask.T.dimshuffle(['x',0,1]); for i in range(config['ctx_num']): tmp_rep=encoder.apply(context_sentences[i],context_sentence_masks[i]); tmp_rep=tmp_rep.dimshuffle(['x',0,1,2]); sentence_representations_list=tensor.concatenate([sentence_representations_list,tmp_rep],axis=0); sentence_masks_list=tensor.concatenate([sentence_masks_list,context_sentence_masks[i].T.dimshuffle(['x',0,1])],axis=0); cost = decoder.cost(sentence_representations_list, sentence_masks_list, target_sentence, target_sentence_mask) logger.info('Creating computational graph') perplexity = tensor.exp(cost) perplexity.name = 'perplexity' costs_computer = function(context_sentences+context_sentence_masks+[target_sentence, target_sentence_mask, source_sentence, source_sentence_mask], (perplexity)) cg = ComputationGraph(cost) # Initialize model logger.info('Initializing model') encoder.weights_init =decoder.weights_init = IsotropicGaussian( config['weight_scale']) encoder.biases_init =decoder.biases_init = Constant(0) encoder.push_initialization_config() decoder.push_initialization_config() encoder.bidir.prototype.weights_init = Orthogonal() decoder.transition.weights_init = Orthogonal() encoder.initialize() decoder.initialize() # apply dropout for regularization if config['dropout'] < 1.0: # dropout is applied to the output of maxout in ghog logger.info('Applying dropout') dropout_inputs = [x for x in cg.intermediary_variables if x.name == 'maxout_apply_output'] cg = apply_dropout(cg, dropout_inputs, config['dropout']) # Apply weight noise for regularization if config['weight_noise_ff'] > 0.0: logger.info('Applying weight noise to ff layers') enc_params = Selector(encoder.lookup).get_params().values() enc_params += Selector(encoder.fwd_fork).get_params().values() enc_params += Selector(encoder.back_fork).get_params().values() dec_params = Selector( decoder.sequence_generator.readout).get_params().values() dec_params += Selector( decoder.sequence_generator.fork).get_params().values() dec_params += Selector(decoder.state_init).get_params().values() cg = apply_noise( cg, enc_params+dec_params, config['weight_noise_ff']) # Print shapes shapes = [param.get_value().shape for param in cg.parameters] logger.info("Parameter shapes: ") for shape, count in Counter(shapes).most_common(): logger.info(' {:15}: {}'.format(shape, count)) logger.info("Total number of parameters: {}".format(len(shapes))) # Print parameter names enc_dec_param_dict = merge(Selector(encoder).get_parameters(), Selector(decoder).get_parameters()) logger.info("Parameter names: ") for name, value in enc_dec_param_dict.items(): logger.info(' {:15}: {}'.format(value.get_value().shape, name)) logger.info("Total number of parameters: {}" .format(len(enc_dec_param_dict))) # Set up training model logger.info("Building model") training_model = Model(cost) # Set extensions logger.info("Initializing extensions") extensions = [ FinishAfter(after_n_batches=config['finish_after']), TrainingDataMonitoring([perplexity], after_batch=True), CheckpointNMT(config['saveto'], config['model_name'], every_n_batches=config['save_freq']) ] # Set up beam search and sampling computation graphs if necessary if config['hook_samples'] >= 1 or config['bleu_script'] is not None: logger.info("Building sampling model") sampling_representation = encoder.apply( sampling_input, tensor.ones(sampling_input.shape)) generated = decoder.generate( sampling_input, sampling_representation) search_model = Model(generated) _, samples = VariableFilter( bricks=[decoder.sequence_generator], name="outputs")( ComputationGraph(generated[1])) # Add sampling if config['hook_samples'] >= 1: logger.info("Building sampler") extensions.append( Sampler(model=search_model, data_stream=tr_stream, model_name=config['model_name'], hook_samples=config['hook_samples'], every_n_batches=config['sampling_freq'], src_vocab_size=config['src_vocab_size'])) # Add early stopping based on bleu if False: logger.info("Building bleu validator") extensions.append( BleuValidator(sampling_input, samples=samples, config=config, model=search_model, data_stream=dev_stream, normalize=config['normalized_bleu'], every_n_batches=config['bleu_val_freq'], n_best=3, track_n_models=6)) logger.info("Building perplexity validator") extensions.append( pplValidation(dev_source,dev_target, config=config, model=costs_computer, data_stream=dev_stream, model_name=config['model_name'], every_n_batches=config['sampling_freq'])) # Plot cost in bokeh if necessary if use_bokeh and BOKEH_AVAILABLE: extensions.append( Plot('Cs-En', channels=[['decoder_cost_cost']], after_batch=True)) # Reload model if necessary if config['reload']: extensions.append(LoadNMT(config['saveto'])) initial_learning_rate = config['initial_learning_rate'] log_path = os.path.join(config['saveto'], 'log') if config['reload'] and os.path.exists(log_path): with open(log_path, 'rb') as source: log = cPickle.load(source) last = max(log.keys()) - 1 if 'learning_rate' in log[last]: initial_learning_rate = log[last]['learning_rate'] # Set up training algorithm logger.info("Initializing training algorithm") algorithm = GradientDescent( cost=cost, parameters=cg.parameters, step_rule=CompositeRule([Scale(initial_learning_rate), StepClipping(config['step_clipping']), eval(config['step_rule'])()])) _learning_rate = algorithm.step_rule.components[0].learning_rate if config['learning_rate_decay']: extensions.append( LearningRateHalver(record_name='validation_cost', comparator=lambda x, y: x > y, learning_rate=_learning_rate, patience_default=3)) else: extensions.append(OldModelRemover(saveto=config['saveto'])) if config['learning_rate_grow']: extensions.append( LearningRateDoubler(record_name='validation_cost', comparator=lambda x, y: x < y, learning_rate=_learning_rate, patience_default=3)) extensions.append( SimplePrinting(config['model_name'], after_batch=True)) # Initialize main loop logger.info("Initializing main loop") main_loop = MainLoop( model=training_model, algorithm=algorithm, data_stream=tr_stream, extensions=extensions ) # Train! main_loop.run() elif mode == 'ppl': # Create Theano variables # Create Theano variables logger.info('Creating theano variables') context_sentences=[]; context_sentence_masks=[]; for i in range(config['ctx_num']): context_sentences.append(tensor.lmatrix('context_'+str(i))); context_sentence_masks.append(tensor.matrix('context_'+str(i)+'_mask')); source_sentence = tensor.lmatrix('source') source_sentence_mask = tensor.matrix('source_mask') target_sentence = tensor.lmatrix('target') target_sentence_mask = tensor.matrix('target_mask') # Get training and development set streams #tr_stream = get_tr_stream_withContext(**config) dev_stream = get_dev_stream_withContext_grdTruth(**config) # Get cost of the model sentence_representations_list=encoder.apply(source_sentence, source_sentence_mask); sentence_representations_list=sentence_representations_list.dimshuffle(['x',0,1,2]); sentence_masks_list=source_sentence_mask.T.dimshuffle(['x',0,1]); for i in range(config['ctx_num']): tmp_rep=encoder.apply(context_sentences[i],context_sentence_masks[i]); tmp_rep=tmp_rep.dimshuffle(['x',0,1,2]); sentence_representations_list=tensor.concatenate([sentence_representations_list,tmp_rep],axis=0); sentence_masks_list=tensor.concatenate([sentence_masks_list,context_sentence_masks[i].T.dimshuffle(['x',0,1])],axis=0); cost = decoder.cost(sentence_representations_list, sentence_masks_list, target_sentence, target_sentence_mask) logger.info('Creating computational graph') costs_computer = function(context_sentences+context_sentence_masks+[target_sentence, target_sentence_mask, source_sentence, source_sentence_mask], (cost)) logger.info("Loading the model..") model = Model(cost) #loader = LoadNMT(config['saveto']) loader = LoadNMT(config['validation_load']); loader.set_model_parameters(model, loader.load_parameters_default()) logger.info("Started Validation: ") ts = dev_stream.get_epoch_iterator() total_cost = 0.0 total_tokens=0.0 #pbar = ProgressBar(max_value=len(ts)).start()#modified pbar = ProgressBar(max_value=10000).start(); for i, (ctx_0,ctx_0_mask,ctx_1,ctx_1_mask,ctx_2,ctx_2_mask,src, src_mask, trg, trg_mask) in enumerate(ts): costs = costs_computer(*[ctx_0,ctx_1,ctx_2,ctx_0_mask,ctx_1_mask,ctx_2_mask,trg, trg_mask,src, src_mask]) cost = costs.sum() total_cost+=cost total_tokens+=trg_mask.sum() pbar.update(i + 1) total_cost/=total_tokens; pbar.finish() #dev_stream.reset() # run afterprocess # self.ap.main() total_cost=2**total_cost; print("Average validation cost: " + str(total_cost)); elif mode == 'translate': logger.info('Creating theano variables') context_sentences=[]; context_sentence_masks=[]; for i in range(config['ctx_num']): context_sentences.append(tensor.lmatrix('context_'+str(i))); context_sentence_masks.append(tensor.matrix('context_'+str(i)+'_mask')); source_sentence = tensor.lmatrix('source') source_sentence_mask = tensor.matrix('source_mask') sutils = SamplingBase() unk_idx = config['unk_id'] src_eos_idx = config['src_vocab_size'] - 1 trg_eos_idx = config['trg_vocab_size'] - 1 trg_vocab = _ensure_special_tokens( cPickle.load(open(config['trg_vocab'], 'rb')), bos_idx=0, eos_idx=trg_eos_idx, unk_idx=unk_idx) trg_ivocab = {v: k for k, v in trg_vocab.items()} config['batch_size'] = 1 sentence_representations_list=encoder.apply(source_sentence, source_sentence_mask); sentence_representations_list=sentence_representations_list.dimshuffle(['x',0,1,2]); sentence_masks_list=source_sentence_mask.T.dimshuffle(['x',0,1]); for i in range(config['ctx_num']): tmp_rep=encoder.apply(context_sentences[i],context_sentence_masks[i]); tmp_rep=tmp_rep.dimshuffle(['x',0,1,2]); sentence_representations_list=tensor.concatenate([sentence_representations_list,tmp_rep],axis=0); sentence_masks_list=tensor.concatenate([sentence_masks_list,context_sentence_masks[i].T.dimshuffle(['x',0,1])],axis=0); generated = decoder.generate(sentence_representations_list,sentence_masks_list) _, samples = VariableFilter( bricks=[decoder.sequence_generator], name="outputs")( ComputationGraph(generated[1])) # generated[1] is next_outputs beam_search = BeamSearch(samples=samples) logger.info("Loading the model..") model = Model(generated) #loader = LoadNMT(config['saveto']) loader = LoadNMT(config['validation_load']); loader.set_model_parameters(model, loader.load_parameters_default()) logger.info("Started translation: ") test_stream = get_dev_stream_withContext(**config) ts = test_stream.get_epoch_iterator() rts = open(config['val_set_source']).readlines() ftrans_original = open(config['val_output_orig'], 'w') saved_weights = [] total_cost = 0.0 pbar = ProgressBar(max_value=len(rts)).start() for i, (line, line_raw) in enumerate(zip(ts, rts)): trans_in = line_raw[3].split() seqs=[]; input_=[]; input_mask=[]; for j in range(config['ctx_num']+1): seqs.append(sutils._oov_to_unk( line[2*j][0], config['src_vocab_size'], unk_idx)) input_mask.append(numpy.tile(line[2*j+1][0],(config['beam_size'], 1))) input_.append(numpy.tile(seqs[j], (config['beam_size'], 1))) #v=costs_computer(input_[0]); # draw sample, checking to ensure we don't get an empty string back trans, costs, attendeds, weights = \ beam_search.search( input_values={source_sentence: input_[3],source_sentence_mask:input_mask[3], context_sentences[0]: input_[0],context_sentence_masks[0]:input_mask[0], context_sentences[1]: input_[1],context_sentence_masks[1]:input_mask[1], context_sentences[2]: input_[2],context_sentence_masks[2]:input_mask[2]}, max_length=3*len(seqs[2]), eol_symbol=trg_eos_idx, ignore_first_eol=True) # normalize costs according to the sequence lengths if config['normalized_bleu']: lengths = numpy.array([len(s) for s in trans]) costs = costs / lengths b = numpy.argsort(costs)[0] #best=numpy.argsort(costs)[0:config['beam_size']]; #for b in best: try: total_cost += costs[b] trans_out = trans[b] totalLen=4*len(line[0][0]); #weight = weights[b][:, :totalLen] weight=weights trans_out = sutils._idx_to_word(trans_out, trg_ivocab) except ValueError: logger.info( "Can NOT find a translation for line: {}".format(i+1)) trans_out = '<UNK>' saved_weights.append(weight) print(' '.join(trans_out), file=ftrans_original) pbar.update(i + 1) pbar.finish() logger.info("Total cost of the test: {}".format(total_cost)) cPickle.dump(saved_weights, open(config['attention_weights'], 'wb')) ftrans_original.close() ap = afterprocesser(config) ap.main()
] if valid_stream is not None and config.valid_freq != -1: extensions += [ DataStreamMonitoring([v for l in m.monitor_vars_valid for v in l], valid_stream, prefix='valid'), ] if plot_avail: plot_channels = [ ['train_' + v.name for v in lt] + ['valid_' + v.name for v in lv] for lt, lv in zip(m.monitor_vars, m.monitor_vars_valid) ] extensions += [ Plot( document='deepmind_qa_' + model_name, channels=plot_channels, # server_url='http://localhost:5006/', # If you need, change this every_n_batches=config.print_freq) ] extensions += [ Printing(after_epoch=True), # EvaluateModel(path="", model=test_model, data_stream=valid_stream, vocab_size = ds.vocab_size, vocab = ds.vocab, eval_mode='batch', quiet=True, after_epoch=True), ProgressBar() ] main_loop = MainLoop(model=model, data_stream=train_stream, algorithm=algorithm, extensions=extensions) # Run the model !
def train_model(m, train_stream, valid_stream, load_location=None, save_location=None): # Define the model model = Model(m.cost_reg) ae_excl_vars = set() if hasattr(m, 'ae_costs'): for i, cost in enumerate(m.ae_costs): print "Trianing stacked AE layer", i + 1 # train autoencoder component separately cost.name = 'ae_cost%d' % i cg = ComputationGraph(cost) params = set(cg.parameters) - ae_excl_vars ae_excl_vars = ae_excl_vars | params algorithm = GradientDescent(cost=cost, step_rule=config.step_rule, params=list(params)) main_loop = MainLoop(data_stream=NoData(train_stream), algorithm=algorithm, extensions=[ TrainingDataMonitoring([cost], prefix='train', every_n_epochs=1), Printing(every_n_epochs=1), FinishAfter(every_n_epochs=1000), ]) main_loop.run() cg = ComputationGraph(m.cost_reg) params = list(set(cg.parameters) - ae_excl_vars) algorithm = GradientDescent(cost=m.cost_reg, step_rule=config.step_rule, params=params) main_loop = MainLoop( model=model, data_stream=train_stream, algorithm=algorithm, extensions=[ TrainingDataMonitoring([m.cost_reg, m.ber_reg, m.cost, m.ber], prefix='train', every_n_epochs=1 * config.pt_freq), DataStreamMonitoring([m.cost, m.ber], valid_stream, prefix='valid', after_epoch=False, every_n_epochs=5 * config.pt_freq), Printing(every_n_epochs=1 * config.pt_freq, after_epoch=False), Plot(document='tr_' + model_name + '_' + config.param_desc, channels=[['train_cost', 'train_cost_reg', 'valid_cost'], ['train_ber', 'train_ber_reg', 'valid_ber']], server_url='http://eos21:4201', every_n_epochs=1 * config.pt_freq, after_epoch=False), FinishAfter(every_n_epochs=10000) ]) main_loop.run()