def test_serialization(): # Create a simple MLP to dump. mlp = MLP(activations=[None, None], dims=[10, 10, 10], weights_init=Constant(1.), use_bias=False) mlp.initialize() W = mlp.linear_transformations[1].W W.set_value(W.get_value() * 2) # Ensure warnings are raised when __main__ namespace objects are dumped. foo.__module__ = '__main__' import __main__ __main__.__dict__['foo'] = foo mlp.foo = foo with NamedTemporaryFile(delete=False) as f: with warnings.catch_warnings(record=True) as w: dump(mlp.foo, f) assert len(w) == 1 assert '__main__' in str(w[-1].message) # Check the parameters. with NamedTemporaryFile(delete=False) as f: dump(mlp, f, parameters=[mlp.children[0].W, mlp.children[1].W]) with open(f.name, 'rb') as ff: numpy_data = load_parameters(ff) assert set(numpy_data.keys()) == \ set(['/mlp/linear_0.W', '/mlp/linear_1.W']) assert_allclose(numpy_data['/mlp/linear_0.W'], numpy.ones((10, 10))) assert numpy_data['/mlp/linear_0.W'].dtype == theano.config.floatX # Ensure that it can be unpickled. with open(f.name, 'rb') as ff: mlp = load(ff) assert_allclose(mlp.linear_transformations[1].W.get_value(), numpy.ones((10, 10)) * 2) # Ensure that duplicate names are dealt with. for child in mlp.children: child.name = 'linear' with NamedTemporaryFile(delete=False) as f: dump(mlp, f, parameters=[mlp.children[0].W, mlp.children[1].W]) with open(f.name, 'rb') as ff: numpy_data = load_parameters(ff) assert set(numpy_data.keys()) == \ set(['/mlp/linear.W', '/mlp/linear.W_2']) # Check when we don't dump the main object. with NamedTemporaryFile(delete=False) as f: dump(None, f, parameters=[mlp.children[0].W, mlp.children[1].W]) with tarfile.open(f.name, 'r') as tarball: assert set(tarball.getnames()) == set(['_parameters'])
def load_to(self, main_loop): with open(self.path, "rb") as source: main_loop.model.set_parameter_values(load_parameters(source)) if self.load_iteration_state: main_loop.iteration_state = load(source, name='iteration_state') if self.load_log: main_loop.log = load(source, name='log')
def create_act_table(self, save_to, act_table): batch_size = 500 image_size = (28, 28) output_size = 10 convnet = create_lenet_5() layers = convnet.layers x = tensor.tensor4('features') y = tensor.lmatrix('targets') # Normalize input and apply the convnet probs = convnet.apply(x) cg = ComputationGraph([probs]) def full_brick_name(brick): return '/'.join([''] + [b.name for b in brick.get_unique_path()]) # Find layer outputs to probe outmap = OrderedDict((full_brick_name(get_brick(out)), out) for out in VariableFilter( roles=[OUTPUT], bricks=[Convolutional, Linear])( cg.variables)) # Generate pics for biases biases = VariableFilter(roles=[BIAS])(cg.parameters) # Generate parallel array, in the same order, for outputs outs = [outmap[full_brick_name(get_brick(b))] for b in biases] # Figure work count error_rate = (MisclassificationRate().apply(y.flatten(), probs) .copy(name='error_rate')) max_activation_table = (MaxActivationTable().apply( outs).copy(name='max_activation_table')) max_activation_table.tag.aggregation_scheme = ( Concatenate(max_activation_table)) model = Model([ error_rate, max_activation_table]) # Load it with trained parameters params = load_parameters(open(save_to, 'rb')) model.set_parameter_values(params) mnist_test_stream = DataStream.default_stream( self.mnist_test, iteration_scheme=SequentialScheme( self.mnist_test.num_examples, batch_size)) evaluator = DatasetEvaluator([ error_rate, max_activation_table ]) results = evaluator.evaluate(mnist_test_stream) table = results['max_activation_table'] pickle.dump(table, open(act_table, 'wb')) return table
def load_to(self, main_loop): with open(self.path, "rb") as source: main_loop.model.set_parameter_values(load_parameters(source)) if self.load_iteration_state or self.load_log: loaded_main_loop = load(source) if self.load_log: main_loop.log = loaded_main_loop.log if self.load_iteration_state: main_loop.iteration_state = \ loaded_main_loop.iteration_state
def create_act_table(self, save_to, act_table): batch_size = 500 image_size = (28, 28) output_size = 10 convnet = create_lenet_5() layers = convnet.layers x = tensor.tensor4('features') y = tensor.lmatrix('targets') # Normalize input and apply the convnet probs = convnet.apply(x) cg = ComputationGraph([probs]) def full_brick_name(brick): return '/'.join([''] + [b.name for b in brick.get_unique_path()]) # Find layer outputs to probe outmap = OrderedDict( (full_brick_name(get_brick(out)), out) for out in VariableFilter( roles=[OUTPUT], bricks=[Convolutional, Linear])(cg.variables)) # Generate pics for biases biases = VariableFilter(roles=[BIAS])(cg.parameters) # Generate parallel array, in the same order, for outputs outs = [outmap[full_brick_name(get_brick(b))] for b in biases] # Figure work count error_rate = (MisclassificationRate().apply( y.flatten(), probs).copy(name='error_rate')) max_activation_table = (MaxActivationTable().apply(outs).copy( name='max_activation_table')) max_activation_table.tag.aggregation_scheme = ( Concatenate(max_activation_table)) model = Model([error_rate, max_activation_table]) # Load it with trained parameters params = load_parameters(open(save_to, 'rb')) model.set_parameter_values(params) mnist_test_stream = DataStream.default_stream( self.mnist_test, iteration_scheme=SequentialScheme(self.mnist_test.num_examples, batch_size)) evaluator = DatasetEvaluator([error_rate, max_activation_table]) results = evaluator.evaluate(mnist_test_stream) table = results['max_activation_table'] pickle.dump(table, open(act_table, 'wb')) return table
def train(self): error = tensor.neq(self.y.flatten(), self.y_hat.flatten() > 0.5).mean() error.name = 'error' self.error = error experiment = Experiment(self.params['model_name'], self.train_stream) experiment.cost = self.cost experiment.set_adam(self.params['learning_rate']) experiment.add_printing(after_epoch=True) experiment.monitor_f_score(self.y, self.y_hat, average='macro', threshold=self.params['threshold']) experiment.monitor_auc_score(self.y, self.y_hat, average='macro') experiment.add_timing() experiment.extensions.append( EarlyStopping('dev_f_score', epochs=self.params['n_epochs'], choose_best=max)) weights = VariableFilter(theano_name='W')(experiment.cg.variables) experiment.regularize_max_norm(self.params['max_norms'], weights) experiment.apply_dropout(self.params['dropout']) experiment.track_best('dev_f_score', save_path=self.params['model_name'] + '.tar', choose_best=max) experiment.track_best('dev_cost', save_path=self.params['model_name'] + '_cost.tar') experiment.plot_channels(channels=[ ['tra_f_score', 'dev_f_score'], ['tra_cost', 'dev_cost'], ], url_bokeh='http://localhost:5006/', before_first_epoch=True, after_epoch=True) experiment.add_monitored_vars([error]) experiment.add_norm_grads_vars() experiment.monitor_stream(self.train_stream, prefix='tra', after_epoch=True) experiment.monitor_stream(self.dev_stream, prefix='dev') self.experiment = experiment print('# of params for the model: {0}'.format( experiment.get_num_params())) main_loop = experiment.get_main_loop() if not os.path.isfile(self.params['model_name'] + '.tar'): main_loop.run() with open(self.params['model_name'] + '.tar', "rb") as f: print('loading saved model...') main_loop.model.set_parameter_values(load_parameters(f))
def __init__(self, model_path='vgg.tar', synset_words='synset_words.txt'): self.vgg_net = VGGNet() x = theano.tensor.tensor4('x') y_hat = self.vgg_net.apply(x) cg = ComputationGraph(y_hat) self.model = Model(y_hat) with open(model_path, 'rb') as f: self.model.set_parameter_values(load_parameters(f)) with open(synset_words) as f: self.classes = numpy.array(f.read().splitlines()) self.predict = cg.get_theano_function() fc15 = VariableFilter( theano_name_regex='fc_15_apply_output')(cg.variables)[0] self.fe_extractor = ComputationGraph(fc15).get_theano_function()
def do(self, callback_name, *args): current_value = self.main_loop.log.current_row.get(self.track_var) if current_value is None: return if current_value < self.best_value: self.best_value = current_value self.counter = 0 else: self.counter += 1 # If nan, skip all the steps necessary to update the weights. if numpy.isnan(current_value): self.counter = self.patience + 1 if self.algorithm_buffers is None: self.algorithm_buffers = [ x for x, y in self.main_loop.algorithm.step_rule_updates ] self.algorithm_buffers = VariableFilter(roles=[ALGORITHM_BUFFER])( self.algorithm_buffers) if self.counter >= self.patience: self.counter = 0 self.count_cuts += 1 with open(self.path, "rb") as source: self.main_loop.model.set_parameter_values( load_parameters(source)) self.main_loop.log.current_row[LOADED_FROM] = self.path # Reset algorithm buffer for var in self.algorithm_buffers: var_val = var.get_value() var.set_value(numpy.zeros(var_val.shape, dtype=var_val.dtype)) self.lr.set_value(float(self.cut_size * self.lr.get_value())) if self.count_cuts >= self.num_cuts: self.main_loop.log.current_row[ 'training_finish_requested'] = True
def do(self, callback_name, *args): current_value = self.main_loop.log.current_row.get(self.track_var) if current_value is None: return if current_value < self.best_value: self.best_value = current_value self.counter = 0 else: self.counter += 1 # If nan, skip all the steps necessary to update the weights. if numpy.isnan(current_value): self.counter = self.patience + 1 if self.algorithm_buffers is None: self.algorithm_buffers = [ x for x, y in self.main_loop.algorithm.step_rule_updates] self.algorithm_buffers = VariableFilter( roles=[ALGORITHM_BUFFER])(self.algorithm_buffers) if self.counter >= self.patience: self.counter = 0 self.count_cuts += 1 with open(self.path, "rb") as source: self.main_loop.model.set_parameter_values( load_parameters(source)) self.main_loop.log.current_row[LOADED_FROM] = self.path # Reset algorithm buffer for var in self.algorithm_buffers: var_val = var.get_value() var.set_value(numpy.zeros(var_val.shape, dtype=var_val.dtype)) self.lr.set_value(float(self.cut_size * self.lr.get_value())) if self.count_cuts >= self.num_cuts: self.main_loop.log.current_row[ 'training_finish_requested'] = True
def __init__(self, save_to): batch_size = 500 image_size = (28, 28) output_size = 10 convnet = create_lenet_5() layers = convnet.layers logging.info("Input dim: {} {} {}".format( *convnet.children[0].get_dim('input_'))) for i, layer in enumerate(convnet.layers): if isinstance(layer, Activation): logging.info("Layer {} ({})".format( i, layer.__class__.__name__)) else: logging.info("Layer {} ({}) dim: {} {} {}".format( i, layer.__class__.__name__, *layer.get_dim('output'))) mnist_test = MNIST(("test",), sources=['features', 'targets']) basis = create_fair_basis(mnist_test, 10, 10) x = tensor.tensor4('features') y = tensor.lmatrix('targets') # Normalize input and apply the convnet probs = convnet.apply(x) cg = ComputationGraph([probs]) def full_brick_name(brick): return '/'.join([''] + [b.name for b in brick.get_unique_path()]) # Find layer outputs to probe outs = OrderedDict((full_brick_name(get_brick(out)), out) for out in VariableFilter( roles=[OUTPUT], bricks=[Convolutional, Linear])( cg.variables)) # Normalize input and apply the convnet error_rate = (MisclassificationRate().apply(y.flatten(), probs) .copy(name='error_rate')) confusion = (ConfusionMatrix().apply(y.flatten(), probs) .copy(name='confusion')) confusion.tag.aggregation_scheme = Sum(confusion) confusion_image = (ConfusionImage().apply(y.flatten(), probs, x) .copy(name='confusion_image')) confusion_image.tag.aggregation_scheme = Sum(confusion_image) model = Model( [error_rate, confusion, confusion_image] + list(outs.values())) # Load it with trained parameters params = load_parameters(open(save_to, 'rb')) model.set_parameter_values(params) mnist_test = MNIST(("test",)) mnist_test_stream = DataStream.default_stream( mnist_test, iteration_scheme=SequentialScheme( mnist_test.num_examples, batch_size)) self.model = model self.mnist_test_stream = mnist_test_stream self.evaluator = DatasetEvaluator( [error_rate, confusion, confusion_image]) self.base_results = self.evaluator.evaluate(mnist_test_stream) # TODO: allow target layer to be parameterized self.target_layer = '/lenet/mlp/linear_0' self.next_layer_param = '/lenet/mlp/linear_1.W' self.base_sample = extract_sample( outs[self.target_layer], mnist_test_stream) self.base_param_value = ( model.get_parameter_dict()[ self.next_layer_param].get_value().copy())
def main(save_to): batch_size = 365 feature_maps = [6, 16] mlp_hiddens = [120, 84] conv_sizes = [5, 5] pool_sizes = [2, 2] image_size = (28, 28) output_size = 10 # The above are from LeCun's paper. The blocks example had: # feature_maps = [20, 50] # mlp_hiddens = [500] # Use ReLUs everywhere and softmax for the final prediction conv_activations = [Rectifier() for _ in feature_maps] mlp_activations = [Rectifier() for _ in mlp_hiddens] + [Softmax()] convnet = LeNet(conv_activations, 1, image_size, filter_sizes=zip(conv_sizes, conv_sizes), feature_maps=feature_maps, pooling_sizes=zip(pool_sizes, pool_sizes), top_mlp_activations=mlp_activations, top_mlp_dims=mlp_hiddens + [output_size], border_mode='valid', weights_init=Uniform(width=.2), biases_init=Constant(0)) # We push initialization config to set different initialization schemes # for convolutional layers. convnet.push_initialization_config() convnet.layers[0].weights_init = Uniform(width=.2) convnet.layers[1].weights_init = Uniform(width=.09) convnet.top_mlp.linear_transformations[0].weights_init = Uniform(width=.08) convnet.top_mlp.linear_transformations[1].weights_init = Uniform(width=.11) convnet.initialize() layers = convnet.layers logging.info("Input dim: {} {} {}".format( *convnet.children[0].get_dim('input_'))) for i, layer in enumerate(convnet.layers): if isinstance(layer, Activation): logging.info("Layer {} ({})".format( i, layer.__class__.__name__)) else: logging.info("Layer {} ({}) dim: {} {} {}".format( i, layer.__class__.__name__, *layer.get_dim('output'))) random_init = (numpy.random.rand(100, 1, 28, 28) * 128).astype('float32') mnist_test = MNIST(("test",), sources=['features', 'targets']) basis = create_fair_basis(mnist_test, 10, 10) # state = mnist_test.open() # # basis = numpy.zeros((100, 1, 28, 28), dtype=theano.config.floatX) # counters = [0] * 10 # index = 0 # while min(counters) < 10: # feature, target = mnist_test.get_data(state=state, request=[index]) # target = target[0, 0] # feature = feature / 256 # if counters[target] < 10: # basis[target + counters[target] * 10, :, :, :] = feature[0, :, :, :] # counters[target] += 1 # index += 1 # mnist_test.close(state=state) # b = shared_floatx(basis) # random_init = numpy.rand.random(100, 1000) # r = shared_floatx(random_init) # rn = r / r.norm(axis=1) # x = tensor.dot(rn, tensor.shape_padright(b)) x = tensor.tensor4('features') # Normalize input and apply the convnet probs = convnet.apply(x) cg = ComputationGraph([probs]) outs = VariableFilter( roles=[OUTPUT], bricks=[Convolutional, Linear])(cg.variables) # Create an interior activation model model = Model([probs] + outs) # Load it with trained parameters params = load_parameters(open(save_to, 'rb')) model.set_parameter_values(params) fn = theano.function([x], outs) results = fn(basis) for snapshots, output in zip(results, outs): layer = get_brick(output) filmstrip = Filmstrip( basis.shape[-2:], (snapshots.shape[1], snapshots.shape[0]), background='purple') if layer in layers: fieldmap = layerarray_fieldmap(layers[0:layers.index(layer) + 1]) for unit in range(snapshots.shape[1]): for index in range(snapshots.shape[0]): mask = make_mask(basis.shape[-2:], fieldmap, numpy.clip( snapshots[index, unit, :, :], 0, numpy.inf)) filmstrip.set_image((unit, index), basis[index, :, :, :], mask) filmstrip.save(layer.name + '_show.jpg')
ix_to_char, char_to_ix, vocab_size = get_metadata(hdf5_file) if not args.primetext or len(args.primetext) == 0: args.primetext = ix_to_char[numpy.random.randint(vocab_size)] primetext = ''.join([ch for ch in args.primetext if ch in char_to_ix.keys()]) if len(primetext) == 0: raise Exception('primetext characters are not in the vocabulary') x_curr = numpy.expand_dims( numpy.array([char_to_ix[ch] for ch in primetext], dtype='uint8'), axis=1) print('Loading model from {0}...'.format(args.model)) x = tensor.matrix('features', dtype='uint8') y = tensor.matrix('targets', dtype='uint8') y_hat, cost, cells = nn_fprop(x, y, vocab_size, hidden_size, num_layers, model) main_loop = MainLoop(algorithm=None, data_stream=None, model=Model(cost)) with open(args.model) as f: main_loop.model.set_parameter_values(load_parameters(f)) bin_model = main_loop.model activations = [] initial_states = [] for i in range(num_layers): brick = [b for b in bin_model.get_top_bricks() if b.name==model+str(i)][0] activations.extend(VariableFilter(theano_name=brick.name+'_apply_states')(bin_model.variables)) activations.extend(VariableFilter(theano_name=brick.name+'_apply_cells')(cells)) initial_states.extend(VariableFilter(roles=[roles.INITIAL_STATE])(brick.parameters)) #take activations of last element activations = [act[-1].flatten() for act in activations] states_as_params = [tensor.vector(dtype=initial.dtype) for initial in initial_states] #Get prob. distribution of the last element in the last seq of the batch fprop = theano.function([x] + states_as_params, activations + [y_hat[-1, -1, :]], givens=zip(initial_states, states_as_params))
def __init__(self, save_to): batch_size = 500 image_size = (28, 28) output_size = 10 convnet = create_lenet_5() layers = convnet.layers mnist_test = MNIST(("test", ), sources=['features', 'targets']) x = tensor.tensor4('features') y = tensor.lmatrix('targets') # Normalize input and apply the convnet probs = convnet.apply(x) cg = ComputationGraph([probs]) def full_brick_name(brick): return '/'.join([''] + [b.name for b in brick.get_unique_path()]) # Find layer outputs to probe outmap = OrderedDict( (full_brick_name(get_brick(out)), out) for out in VariableFilter( roles=[OUTPUT], bricks=[Convolutional, Linear])(cg.variables)) # Generate pics for biases biases = VariableFilter(roles=[BIAS])(cg.parameters) # Generate parallel array, in the same order, for outputs outs = [outmap[full_brick_name(get_brick(b))] for b in biases] # Figure work count error_rate = (MisclassificationRate().apply( y.flatten(), probs).copy(name='error_rate')) sensitive_unit_count = (SensitiveUnitCount().apply( y.flatten(), probs, biases).copy(name='sensitive_unit_count')) sensitive_unit_count.tag.aggregation_scheme = ( Concatenate(sensitive_unit_count)) active_unit_count = (ActiveUnitCount().apply(outs).copy( name='active_unit_count')) active_unit_count.tag.aggregation_scheme = ( Concatenate(active_unit_count)) ignored_unit_count = (IgnoredUnitCount().apply( y.flatten(), probs, biases, outs).copy(name='ignored_unit_count')) ignored_unit_count.tag.aggregation_scheme = ( Concatenate(ignored_unit_count)) model = Model([ error_rate, sensitive_unit_count, active_unit_count, ignored_unit_count ]) # Load it with trained parameters params = load_parameters(open(save_to, 'rb')) model.set_parameter_values(params) mnist_test = MNIST(("test", )) mnist_test_stream = DataStream.default_stream( mnist_test, iteration_scheme=SequentialScheme(mnist_test.num_examples, batch_size)) evaluator = DatasetEvaluator([ error_rate, sensitive_unit_count, active_unit_count, ignored_unit_count ]) results = evaluator.evaluate(mnist_test_stream) def save_ranked_image(scores, filename): sorted_instances = scores.argsort() filmstrip = Filmstrip(image_shape=(28, 28), grid_shape=(100, 100)) for i, index in enumerate(sorted_instances): filmstrip.set_image((i // 100, i % 100), mnist_test.get_data(request=index)[0]) filmstrip.save(filename) save_ranked_image(results['sensitive_unit_count'], 'sensitive.jpg') save_ranked_image(results['active_unit_count'], 'active.jpg') save_ranked_image(results['ignored_unit_count'], 'ignored.jpg')
order = 34 alpha = 0.4 stage = 2 gamma = -1.0 / stage save_dir = os.environ['RESULTS_DIR'] save_dir = os.path.join(save_dir,'blizzard/') experiment_name = "baseline_sp_no_feedback" num_sample = "06" print "Sampling: " + experiment_name with open(save_dir+"pkl/best_"+experiment_name+".tar", 'rb') as src: parameters = load_parameters(src) ##################################### # Model Construction ##################################### from blocks.bricks import (Tanh, MLP, Rectifier, Activation, Identity) from blocks.bricks.sequence_generators import ( Readout, SequenceGenerator) from blocks.bricks.recurrent import LSTM, RecurrentStack, GatedRecurrent from play.bricks.custom import (DeepTransitionFeedback, GMMEmitter, SPF0Emitter)
def evaluate_lm(config, tar_path, part, num_examples, dest_path, **kwargs): c = config if part not in ['valid', 'test_unseen', 'test']: raise ValueError() data, lm, _ = initialize_data_and_model(c) words = T.ltensor3('words') words_mask = T.matrix('words_mask') costs = lm.apply(words, words_mask) cg = Model(costs) with open(tar_path) as src: cg.set_parameter_values(load_parameters(src)) perplexities = VariableFilter(name_regex='perplexity.*')(cg) mask_sums = [p.tag.aggregation_scheme.denominator for p in perplexities] CEs = [p.tag.aggregation_scheme.numerator for p in perplexities] proba_out, = VariableFilter(name='proba_out')(cg) unk_ratios = VariableFilter(name_regex='unk_ratio.*')(cg) #num_definitions, = VariableFilter(name='num_definitions')(cg) print perplexities print CEs print mask_sums name_to_aggregate = [p.name for p in perplexities] for CE, mask_sum, name in zip(CEs, mask_sums, name_to_aggregate): CE.name = name + "_num" mask_sum.name = name + "_denom" compute_l = CEs + mask_sums + unk_ratios if part == 'test_unseen': compute_l.append(proba_out) compute = dict({p.name: p for p in compute_l}) print "to compute:", compute.keys() predict_f = theano.function([words, words_mask], compute) if part == 'test_unseen': batch_size = 1 else: batch_size = 128 # size of test_unseen stream = data.get_stream(part, batch_size=batch_size, max_length=100) raw_data = [] # list of dicts containing the inputs and computed outputs i = 0 print "start computing" for input_data in stream.get_epoch_iterator(as_dict=True): if i and i % 100 == 0: print "iteration:", i words = input_data['words'] words_mask = input_data['words_mask'] to_save = predict_f(words, words_mask) to_save.update(input_data) raw_data.append(to_save) i += 1 # aggregate in the log space aggregated = Counter() sum_mask_track = Counter() for d in raw_data: coef = d['words_mask'].sum() # over timesteps and batches for name in name_to_aggregate: aggregated[name] += d[name + "_num"] sum_mask_track[name] += d[name + "_denom"] for k, v in aggregated.iteritems(): print "k, v, m:", k, v, sum_mask_track[k] aggregated[k] = np.exp(v / sum_mask_track[k]) n_params = sum([np.prod(p.shape.eval()) for p in cg.parameters]) aggregated['n_params'] = n_params print "aggregated stats:", aggregated print "# of parameters {}".format(n_params) #TODO: check that different batch_size yields same validation error than # end of training validation error. # TODO: I think blocks aggreg is simply mean which should break # when we use masks??? investigate if not os.path.exists(dest_path): os.makedirs(dest_path) if part == 'test_unseen': np.savez( os.path.join(dest_path, "predictions"), words=input_data['words'], words_mask=input_data['words_mask'], #unk_ratio = to_save['unk_ratio'], #def_unk_ratio = to_save['def_unk_ratio'], proba_out=to_save['languagemodel_apply_proba_out'], vocab_in=lm._vocab.words[:c['num_input_words']], vocab_out=lm._vocab.words[:c['num_output_words']]) json.dump(aggregated, open(os.path.join(dest_path, "aggregates.json"), "w"), sort_keys=True, indent=2)
def load_params(self, path): generated = self.get_generate_graph() with open(path, 'r') as src: param_values = load_parameters(src) Model(generated['outputs']).set_parameter_values(param_values)
def main(save_to): batch_size = 500 image_size = (28, 28) output_size = 10 # The above are from LeCun's paper. The blocks example had: # feature_maps = [20, 50] # mlp_hiddens = [500] # Use ReLUs everywhere and softmax for the final prediction convnet = create_lenet_5() mnist_test = MNIST(("test",), sources=['features', 'targets']) basis_init = create_fair_basis(mnist_test, 10, 2) # b = shared_floatx(basis) # random_init = numpy.rand.random(100, 1000) # r = shared_floatx(random_init) # rn = r / r.norm(axis=1) # x = tensor.dot(rn, tensor.shape_padright(b)) x = shared_floatx(basis_init) # Normalize input and apply the convnet probs = convnet.apply(x) cg = ComputationGraph([probs]) outs = VariableFilter( roles=[OUTPUT], bricks=[Convolutional, Linear])(cg.variables) # Create an interior activation model model = Model([probs] + outs) # Load it with trained parameters params = load_parameters(open(save_to, 'rb')) model.set_parameter_values(params) learning_rate = shared_floatx(0.01, 'learning_rate') unit = shared_floatx(0, 'unit', dtype='int64') negate = False suffix = '_negsynth.jpg' if negate else '_synth.jpg' for output in outs: layer = get_brick(output) # For now, skip masks -for some reason they are always NaN iterations = 10000 layername = layer.parents[0].name + '-' + layer.name # if layername != 'noisylinear_2-linear': # continue dims = layer.get_dims(['output'])[0] if negate: measure = -output else: measure = output measure = measure[(slice(0, basis_init.shape[0]), ) + (slice(None),) * (measure.ndim - 1)] if isinstance(dims, numbers.Integral): dims = (dims, ) costvec = -tensor.log(tensor.nnet.softmax( measure)[:,unit].flatten()) else: flatout = measure.flatten(ndim=3) maxout = flatout.max(axis=2) costvec = -tensor.log(tensor.nnet.softmax( maxout)[:,unit].flatten()) # Add a regularization to favor gray images. # cost = costvec.sum() + (x - 0.5).norm(2) * ( # 10.0 / basis_init.shape[0]) cost = costvec.sum() grad = gradient.grad(cost, x) stepx = x - learning_rate * grad normx = stepx / tensor.shape_padright( stepx.flatten(ndim=2).max(axis=1), n_ones=3) newx = tensor.clip(normx, 0, 1) newx = newx[(slice(0, basis_init.shape[0]), ) + (slice(None),) * (newx.ndim - 1)] fn = theano.function([], [cost], updates=[(x, newx)]) filmstrip = Filmstrip( basis_init.shape[-2:], (dims[0], basis_init.shape[0]), background='red') for u in range(dims[0]): unit.set_value(u) x.set_value(basis_init) print('layer', layername, 'unit', u) for index in range(iterations): c = fn()[0] if index % 1000 == 0: print('cost', c) result = x.get_value() for i2 in range(basis_init.shape[0]): filmstrip.set_image((u, i2), result[i2,:,:,:]) filmstrip.save(layername + suffix) result = x.get_value() for index in range(basis_init.shape[0]): filmstrip.set_image((u, index), result[index,:,:,:]) filmstrip.save(layername + suffix)
def initialize_all(config, save_path, bokeh_name, params, bokeh_server, bokeh, test_tag, use_load_ext, load_log, fast_start): root_path, extension = os.path.splitext(save_path) data = Data(**config['data']) train_conf = config['training'] recognizer = create_model(config, data, test_tag) # Separate attention_params to be handled differently # when regularization is applied attention = recognizer.generator.transition.attention attention_params = Selector(attention).get_parameters().values() logger.info( "Initialization schemes for all bricks.\n" "Works well only in my branch with __repr__ added to all them,\n" "there is an issue #463 in Blocks to do that properly.") def show_init_scheme(cur): result = dict() for attr in dir(cur): if attr.endswith('_init'): result[attr] = getattr(cur, attr) for child in cur.children: result[child.name] = show_init_scheme(child) return result logger.info(pprint.pformat(show_init_scheme(recognizer))) prediction, prediction_mask = add_exploration(recognizer, data, train_conf) # # Observables: # primary_observables = [] # monitored each batch secondary_observables = [] # monitored every 10 batches validation_observables = [] # monitored on the validation set cg = recognizer.get_cost_graph( batch=True, prediction=prediction, prediction_mask=prediction_mask) labels, = VariableFilter( applications=[recognizer.cost], name='labels')(cg) labels_mask, = VariableFilter( applications=[recognizer.cost], name='labels_mask')(cg) gain_matrix = VariableFilter( theano_name=RewardRegressionEmitter.GAIN_MATRIX)(cg) if len(gain_matrix): gain_matrix, = gain_matrix primary_observables.append( rename(gain_matrix.min(), 'min_gain')) primary_observables.append( rename(gain_matrix.max(), 'max_gain')) batch_cost = cg.outputs[0].sum() batch_size = rename(recognizer.labels.shape[1], "batch_size") # Assumes constant batch size. `aggregation.mean` is not used because # of Blocks #514. cost = batch_cost / batch_size cost.name = "sequence_total_cost" logger.info("Cost graph is built") # Fetch variables useful for debugging. # It is important not to use any aggregation schemes here, # as it's currently impossible to spread the effect of # regularization on their variables, see Blocks #514. cost_cg = ComputationGraph(cost) r = recognizer energies, = VariableFilter( applications=[r.generator.readout.readout], name="output_0")( cost_cg) bottom_output = VariableFilter( # We need name_regex instead of name because LookupTable calls itsoutput output_0 applications=[r.bottom.apply], name_regex="output")( cost_cg)[-1] attended, = VariableFilter( applications=[r.generator.transition.apply], name="attended")( cost_cg) attended_mask, = VariableFilter( applications=[r.generator.transition.apply], name="attended_mask")( cost_cg) weights, = VariableFilter( applications=[r.generator.evaluate], name="weights")( cost_cg) max_recording_length = rename(bottom_output.shape[0], "max_recording_length") # To exclude subsampling related bugs max_attended_mask_length = rename(attended_mask.shape[0], "max_attended_mask_length") max_attended_length = rename(attended.shape[0], "max_attended_length") max_num_phonemes = rename(labels.shape[0], "max_num_phonemes") min_energy = rename(energies.min(), "min_energy") max_energy = rename(energies.max(), "max_energy") mean_attended = rename(abs(attended).mean(), "mean_attended") mean_bottom_output = rename(abs(bottom_output).mean(), "mean_bottom_output") weights_penalty = rename(monotonicity_penalty(weights, labels_mask), "weights_penalty") weights_entropy = rename(entropy(weights, labels_mask), "weights_entropy") mask_density = rename(labels_mask.mean(), "mask_density") cg = ComputationGraph([ cost, weights_penalty, weights_entropy, min_energy, max_energy, mean_attended, mean_bottom_output, batch_size, max_num_phonemes, mask_density]) # Regularization. It is applied explicitly to all variables # of interest, it could not be applied to the cost only as it # would not have effect on auxiliary variables, see Blocks #514. reg_config = config.get('regularization', dict()) regularized_cg = cg if reg_config.get('dropout'): logger.info('apply dropout') regularized_cg = apply_dropout(cg, [bottom_output], 0.5) if reg_config.get('noise'): logger.info('apply noise') noise_subjects = [p for p in cg.parameters if p not in attention_params] regularized_cg = apply_noise(cg, noise_subjects, reg_config['noise']) train_cost = regularized_cg.outputs[0] if reg_config.get("penalty_coof", .0) > 0: # big warning!!! # here we assume that: # regularized_weights_penalty = regularized_cg.outputs[1] train_cost = (train_cost + reg_config.get("penalty_coof", .0) * regularized_cg.outputs[1] / batch_size) if reg_config.get("decay", .0) > 0: train_cost = (train_cost + reg_config.get("decay", .0) * l2_norm(VariableFilter(roles=[WEIGHT])(cg.parameters)) ** 2) train_cost = rename(train_cost, 'train_cost') gradients = None if reg_config.get('adaptive_noise'): logger.info('apply adaptive noise') if ((reg_config.get("penalty_coof", .0) > 0) or (reg_config.get("decay", .0) > 0)): logger.error('using adaptive noise with alignment weight panalty ' 'or weight decay is probably stupid') train_cost, regularized_cg, gradients, noise_brick = apply_adaptive_noise( cg, cg.outputs[0], variables=cg.parameters, num_examples=data.get_dataset('train').num_examples, parameters=Model(regularized_cg.outputs[0]).get_parameter_dict().values(), **reg_config.get('adaptive_noise') ) train_cost.name = 'train_cost' adapt_noise_cg = ComputationGraph(train_cost) model_prior_mean = rename( VariableFilter(applications=[noise_brick.apply], name='model_prior_mean')(adapt_noise_cg)[0], 'model_prior_mean') model_cost = rename( VariableFilter(applications=[noise_brick.apply], name='model_cost')(adapt_noise_cg)[0], 'model_cost') model_prior_variance = rename( VariableFilter(applications=[noise_brick.apply], name='model_prior_variance')(adapt_noise_cg)[0], 'model_prior_variance') regularized_cg = ComputationGraph( [train_cost, model_cost] + regularized_cg.outputs + [model_prior_mean, model_prior_variance]) primary_observables += [ regularized_cg.outputs[1], # model cost regularized_cg.outputs[2], # task cost regularized_cg.outputs[-2], # model prior mean regularized_cg.outputs[-1]] # model prior variance model = Model(train_cost) if params: logger.info("Load parameters from " + params) # please note: we cannot use recognizer.load_params # as it builds a new computation graph that dies not have # shapred variables added by adaptive weight noise with open(params, 'r') as src: param_values = load_parameters(src) model.set_parameter_values(param_values) parameters = model.get_parameter_dict() logger.info("Parameters:\n" + pprint.pformat( [(key, parameters[key].get_value().shape) for key in sorted(parameters.keys())], width=120)) # Define the training algorithm. clipping = StepClipping(train_conf['gradient_threshold']) clipping.threshold.name = "gradient_norm_threshold" rule_names = train_conf.get('rules', ['momentum']) core_rules = [] if 'momentum' in rule_names: logger.info("Using scaling and momentum for training") core_rules.append(Momentum(train_conf['scale'], train_conf['momentum'])) if 'adadelta' in rule_names: logger.info("Using AdaDelta for training") core_rules.append(AdaDelta(train_conf['decay_rate'], train_conf['epsilon'])) max_norm_rules = [] if reg_config.get('max_norm', False) > 0: logger.info("Apply MaxNorm") maxnorm_subjects = VariableFilter(roles=[WEIGHT])(cg.parameters) if reg_config.get('max_norm_exclude_lookup', False): maxnorm_subjects = [v for v in maxnorm_subjects if not isinstance(get_brick(v), LookupTable)] logger.info("Parameters covered by MaxNorm:\n" + pprint.pformat([name for name, p in parameters.items() if p in maxnorm_subjects])) logger.info("Parameters NOT covered by MaxNorm:\n" + pprint.pformat([name for name, p in parameters.items() if not p in maxnorm_subjects])) max_norm_rules = [ Restrict(VariableClipping(reg_config['max_norm'], axis=0), maxnorm_subjects)] burn_in = [] if train_conf.get('burn_in_steps', 0): burn_in.append( BurnIn(num_steps=train_conf['burn_in_steps'])) algorithm = GradientDescent( cost=train_cost, parameters=parameters.values(), gradients=gradients, step_rule=CompositeRule( [clipping] + core_rules + max_norm_rules + # Parameters are not changed at all # when nans are encountered. [RemoveNotFinite(0.0)] + burn_in), on_unused_sources='warn') logger.debug("Scan Ops in the gradients") gradient_cg = ComputationGraph(algorithm.gradients.values()) for op in ComputationGraph(gradient_cg).scans: logger.debug(op) # More variables for debugging: some of them can be added only # after the `algorithm` object is created. secondary_observables += list(regularized_cg.outputs) if not 'train_cost' in [v.name for v in secondary_observables]: secondary_observables += [train_cost] secondary_observables += [ algorithm.total_step_norm, algorithm.total_gradient_norm, clipping.threshold] for name, param in parameters.items(): num_elements = numpy.product(param.get_value().shape) norm = param.norm(2) / num_elements ** 0.5 grad_norm = algorithm.gradients[param].norm(2) / num_elements ** 0.5 step_norm = algorithm.steps[param].norm(2) / num_elements ** 0.5 stats = tensor.stack(norm, grad_norm, step_norm, step_norm / grad_norm) stats.name = name + '_stats' secondary_observables.append(stats) primary_observables += [ train_cost, algorithm.total_gradient_norm, algorithm.total_step_norm, clipping.threshold, max_recording_length, max_attended_length, max_attended_mask_length] validation_observables += [ rename(aggregation.mean(batch_cost, batch_size), cost.name), rename(aggregation.sum_(batch_size), 'num_utterances'), weights_entropy, weights_penalty] def attach_aggregation_schemes(variables): # Aggregation specification has to be factored out as a separate # function as it has to be applied at the very last stage # separately to training and validation observables. result = [] for var in variables: if var.name == 'weights_penalty': result.append(rename(aggregation.mean(var, batch_size), 'weights_penalty_per_recording')) elif var.name == 'weights_entropy': result.append(rename(aggregation.mean(var, labels_mask.sum()), 'weights_entropy_per_label')) else: result.append(var) return result mon_conf = config['monitoring'] # Build main loop. logger.info("Initialize extensions") extensions = [] if use_load_ext and params: extensions.append(Load(params, load_iteration_state=True, load_log=True)) if load_log and params: extensions.append(LoadLog(params)) extensions += [ Timing(after_batch=True), CGStatistics(), #CodeVersion(['lvsr']), ] extensions.append(TrainingDataMonitoring( primary_observables, after_batch=True)) average_monitoring = TrainingDataMonitoring( attach_aggregation_schemes(secondary_observables), prefix="average", every_n_batches=10) extensions.append(average_monitoring) validation = DataStreamMonitoring( attach_aggregation_schemes(validation_observables), data.get_stream("valid", shuffle=False), prefix="valid").set_conditions( before_first_epoch=not fast_start, every_n_epochs=mon_conf['validate_every_epochs'], every_n_batches=mon_conf['validate_every_batches'], after_training=False) extensions.append(validation) per = PhonemeErrorRate(recognizer, data, **config['monitoring']['search']) per_monitoring = DataStreamMonitoring( [per], data.get_stream("valid", batches=False, shuffle=False), prefix="valid").set_conditions( before_first_epoch=not fast_start, every_n_epochs=mon_conf['search_every_epochs'], every_n_batches=mon_conf['search_every_batches'], after_training=False) extensions.append(per_monitoring) track_the_best_per = TrackTheBest( per_monitoring.record_name(per)).set_conditions( before_first_epoch=True, after_epoch=True) track_the_best_cost = TrackTheBest( validation.record_name(cost)).set_conditions( before_first_epoch=True, after_epoch=True) extensions += [track_the_best_cost, track_the_best_per] extensions.append(AdaptiveClipping( algorithm.total_gradient_norm.name, clipping, train_conf['gradient_threshold'], decay_rate=0.998, burnin_period=500)) extensions += [ SwitchOffLengthFilter( data.length_filter, after_n_batches=train_conf.get('stop_filtering')), FinishAfter(after_n_batches=train_conf.get('num_batches'), after_n_epochs=train_conf.get('num_epochs')) .add_condition(["after_batch"], _gradient_norm_is_none), ] channels = [ # Plot 1: training and validation costs [average_monitoring.record_name(train_cost), validation.record_name(cost)], # Plot 2: gradient norm, [average_monitoring.record_name(algorithm.total_gradient_norm), average_monitoring.record_name(clipping.threshold)], # Plot 3: phoneme error rate [per_monitoring.record_name(per)], # Plot 4: training and validation mean weight entropy [average_monitoring._record_name('weights_entropy_per_label'), validation._record_name('weights_entropy_per_label')], # Plot 5: training and validation monotonicity penalty [average_monitoring._record_name('weights_penalty_per_recording'), validation._record_name('weights_penalty_per_recording')]] if bokeh: extensions += [ Plot(bokeh_name if bokeh_name else os.path.basename(save_path), channels, every_n_batches=10, server_url=bokeh_server),] extensions += [ Checkpoint(save_path, before_first_epoch=not fast_start, after_epoch=True, every_n_batches=train_conf.get('save_every_n_batches'), save_separately=["model", "log"], use_cpickle=True) .add_condition( ['after_epoch'], OnLogRecord(track_the_best_per.notification_name), (root_path + "_best" + extension,)) .add_condition( ['after_epoch'], OnLogRecord(track_the_best_cost.notification_name), (root_path + "_best_ll" + extension,)), ProgressBar()] extensions.append(EmbedIPython(use_main_loop_run_caller_env=True)) if config['net']['criterion']['name'].startswith('mse'): extensions.append( LogInputsGains( labels, cg, recognizer.generator.readout.emitter, data)) if train_conf.get('patience'): patience_conf = train_conf['patience'] if not patience_conf.get('notification_names'): # setdefault will not work for empty list patience_conf['notification_names'] = [ track_the_best_per.notification_name, track_the_best_cost.notification_name] extensions.append(Patience(**patience_conf)) extensions.append(Printing(every_n_batches=1, attribute_filter=PrintingFilterList())) return model, algorithm, data, extensions
def main(save_to, hist_file): batch_size = 365 feature_maps = [6, 16] mlp_hiddens = [120, 84] conv_sizes = [5, 5] pool_sizes = [2, 2] image_size = (28, 28) output_size = 10 # The above are from LeCun's paper. The blocks example had: # feature_maps = [20, 50] # mlp_hiddens = [500] # Use ReLUs everywhere and softmax for the final prediction conv_activations = [Rectifier() for _ in feature_maps] mlp_activations = [Rectifier() for _ in mlp_hiddens] + [Softmax()] convnet = LeNet(conv_activations, 1, image_size, filter_sizes=zip(conv_sizes, conv_sizes), feature_maps=feature_maps, pooling_sizes=zip(pool_sizes, pool_sizes), top_mlp_activations=mlp_activations, top_mlp_dims=mlp_hiddens + [output_size], border_mode='valid', weights_init=Uniform(width=.2), biases_init=Constant(0)) # We push initialization config to set different initialization schemes # for convolutional layers. convnet.push_initialization_config() convnet.layers[0].weights_init = Uniform(width=.2) convnet.layers[1].weights_init = Uniform(width=.09) convnet.top_mlp.linear_transformations[0].weights_init = Uniform(width=.08) convnet.top_mlp.linear_transformations[1].weights_init = Uniform(width=.11) convnet.initialize() logging.info( "Input dim: {} {} {}".format(*convnet.children[0].get_dim('input_'))) for i, layer in enumerate(convnet.layers): if isinstance(layer, Activation): logging.info("Layer {} ({})".format(i, layer.__class__.__name__)) else: logging.info("Layer {} ({}) dim: {} {} {}".format( i, layer.__class__.__name__, *layer.get_dim('output'))) mnist_test = MNIST(("test", ), sources=['features', 'targets']) x = tensor.tensor4('features') y = tensor.lmatrix('targets') # Normalize input and apply the convnet probs = convnet.apply(x) error_rate = (MisclassificationRate().apply(y.flatten(), probs).copy(name='error_rate')) confusion = (ConfusionMatrix().apply(y.flatten(), probs).copy(name='confusion')) confusion.tag.aggregation_scheme = Sum(confusion) model = Model([error_rate, confusion]) # Load it with trained parameters params = load_parameters(open(save_to, 'rb')) model.set_parameter_values(params) def full_brick_name(brick): return '/'.join([''] + [b.name for b in brick.get_unique_path()]) # Find layer outputs to probe outs = OrderedDict( (full_brick_name(get_brick(out)), out) for out in VariableFilter( roles=[OUTPUT], bricks=[Convolutional, Linear])(model.variables)) # Load histogram information with open(hist_file, 'rb') as handle: histograms = pickle.load(handle) # Corpora mnist_train = MNIST(("train", )) mnist_train_stream = DataStream.default_stream( mnist_train, iteration_scheme=ShuffledScheme(mnist_train.num_examples, batch_size)) mnist_test = MNIST(("test", )) mnist_test_stream = DataStream.default_stream( mnist_test, iteration_scheme=ShuffledScheme(mnist_test.num_examples, batch_size)) # Probe the given layer target_layer = '/lenet/mlp/linear_0' next_layer_param = '/lenet/mlp/linear_1.W' sample = extract_sample(outs[target_layer], mnist_test_stream) print('sample shape', sample.shape) # Figure neurons to ablate hist = histograms[('linear_1', 'b')] targets = [i for i in range(hist.shape[1]) if hist[2, i] * hist[7, i] < 0] print('ablating', len(targets), ':', targets) # Now adjust the next layer weights based on the probe param = model.get_parameter_dict()[next_layer_param] print('param shape', param.get_value().shape) new_weights = ablate_inputs(targets, sample, param.get_value(), compensate=False) param.set_value(new_weights) # Evaluation pass evaluator = DatasetEvaluator([error_rate, confusion]) print(evaluator.evaluate(mnist_test_stream))
def main(save_to): batch_size = 365 feature_maps = [6, 16] mlp_hiddens = [120, 84] conv_sizes = [5, 5] pool_sizes = [2, 2] image_size = (28, 28) output_size = 10 # The above are from LeCun's paper. The blocks example had: # feature_maps = [20, 50] # mlp_hiddens = [500] # Use ReLUs everywhere and softmax for the final prediction conv_activations = [Rectifier() for _ in feature_maps] mlp_activations = [Rectifier() for _ in mlp_hiddens] + [Softmax()] convnet = LeNet(conv_activations, 1, image_size, filter_sizes=zip(conv_sizes, conv_sizes), feature_maps=feature_maps, pooling_sizes=zip(pool_sizes, pool_sizes), top_mlp_activations=mlp_activations, top_mlp_dims=mlp_hiddens + [output_size], border_mode='valid', weights_init=Uniform(width=.2), biases_init=Constant(0)) # We push initialization config to set different initialization schemes # for convolutional layers. convnet.push_initialization_config() convnet.layers[0].weights_init = Uniform(width=.2) convnet.layers[1].weights_init = Uniform(width=.09) convnet.top_mlp.linear_transformations[0].weights_init = Uniform(width=.08) convnet.top_mlp.linear_transformations[1].weights_init = Uniform(width=.11) convnet.initialize() logging.info("Input dim: {} {} {}".format( *convnet.children[0].get_dim('input_'))) for i, layer in enumerate(convnet.layers): if isinstance(layer, Activation): logging.info("Layer {} ({})".format( i, layer.__class__.__name__)) else: logging.info("Layer {} ({}) dim: {} {} {}".format( i, layer.__class__.__name__, *layer.get_dim('output'))) random_init = (numpy.random.rand(100, 1, 28, 28) * 128).astype('float32') layers = [l for l in convnet.layers if isinstance(l, Convolutional)] mnist_test = MNIST(("test",), sources=['features', 'targets']) basis_init = create_fair_basis(mnist_test, 10, 50) basis_set = make_shifted_basis(basis_init, convnet, layers) for layer, basis in zip(layers, basis_set): # basis is 5d: # (probed_units, base_cases, 1-c, 28-y, 28-x) b = shared_floatx(basis) # coefficients is 2d: # (probed_units, base_cases) coefficients = shared_floatx( numpy.ones(basis.shape[0:2], dtype=theano.config.floatX)) # prod is 5d: (probed_units, base_cases, 1-c, 28-y, 28-x) prod = tensor.shape_padright(coefficients, 3) * b # x is 4d: (probed_units, 1-c, 28-y, 28-x) ux = prod.sum(axis=1) x = tensor.clip(ux / tensor.shape_padright(ux.flatten(ndim=2).max(axis=1), 3), 0, 1) # Normalize input and apply the convnet probs = convnet.apply(x) cg = ComputationGraph([probs]) outs = VariableFilter( roles=[OUTPUT], bricks=[layer])(cg.variables) # Create an interior activation model model = Model([probs] + outs) # Load it with trained parameters params = load_parameters(open(save_to, 'rb')) model.set_parameter_values(params) learning_rate = shared_floatx(0.03, 'learning_rate') # We will try to do all units at once. # unit = shared_floatx(0, 'unit', dtype='int64') # But we are only doing one layer at once. output = outs[0] dims = layer.get_dims(['output'])[0] if isinstance(dims, numbers.Integral): # FC case: output is 2d: (probed_units, units) dims = (dims, ) unitrange = tensor.arange(dims[0]) costvec = -tensor.log( tensor.nnet.softmax(output)[unitrange, unitrage]. flatten()) else: # Conv case: output is 4d: (probed_units, units, y, x) unitrange = tensor.arange(dims[0]) print('dims is', dims) costvec = -tensor.log(tensor.nnet.softmax(output[ unitrange, unitrange, dims[1] // 2, dims[2] // 2]). flatten()) cost = costvec.sum() # grad is dims (probed_units, basis_size) grad = gradient.grad(cost, coefficients) stepc = coefficients # - learning_rate * grad newc = stepc / tensor.shape_padright(stepc.mean(axis=1)) fn = theano.function([], [cost, x], updates=[(coefficients, newc)]) filmstrip = Filmstrip( random_init.shape[-2:], (dims[0], 1), background='red') layer = get_brick(output) learning_rate.set_value(0.1) for index in range(20000): c, result = fn() if index % 1000 == 0: learning_rate.set_value(numpy.cast[theano.config.floatX]( learning_rate.get_value() * 0.8)) print('cost', c) for u in range(dims[0]): filmstrip.set_image((u, 0), result[u,:,:,:]) filmstrip.save(layer.name + '_stroke.jpg') for u in range(dims[0]): filmstrip.set_image((u, 0), result[u,:,:,:]) filmstrip.save(layer.name + '_stroke.jpg')
def main(save_to): batch_size = 365 feature_maps = [6, 16] mlp_hiddens = [120, 84] conv_sizes = [5, 5] pool_sizes = [2, 2] image_size = (28, 28) output_size = 10 # The above are from LeCun's paper. The blocks example had: # feature_maps = [20, 50] # mlp_hiddens = [500] # Use ReLUs everywhere and softmax for the final prediction conv_activations = [Rectifier() for _ in feature_maps] mlp_activations = [Rectifier() for _ in mlp_hiddens] + [Softmax()] convnet = LeNet(conv_activations, 1, image_size, filter_sizes=zip(conv_sizes, conv_sizes), feature_maps=feature_maps, pooling_sizes=zip(pool_sizes, pool_sizes), top_mlp_activations=mlp_activations, top_mlp_dims=mlp_hiddens + [output_size], border_mode='valid', weights_init=Uniform(width=.2), biases_init=Constant(0)) # We push initialization config to set different initialization schemes # for convolutional layers. convnet.push_initialization_config() convnet.layers[0].weights_init = Uniform(width=.2) convnet.layers[1].weights_init = Uniform(width=.09) convnet.top_mlp.linear_transformations[0].weights_init = Uniform(width=.08) convnet.top_mlp.linear_transformations[1].weights_init = Uniform(width=.11) convnet.initialize() logging.info("Input dim: {} {} {}".format( *convnet.children[0].get_dim('input_'))) for i, layer in enumerate(convnet.layers): if isinstance(layer, Activation): logging.info("Layer {} ({})".format( i, layer.__class__.__name__)) else: logging.info("Layer {} ({}) dim: {} {} {}".format( i, layer.__class__.__name__, *layer.get_dim('output'))) x = tensor.tensor4('features') # Normalize input and apply the convnet probs = convnet.apply(x) cg = ComputationGraph([probs]) outs = VariableFilter( roles=[OUTPUT], bricks=[Convolutional, Linear])(cg.variables) # Create an interior activation model model = Model([probs] + outs) # Load it with trained parameters params = load_parameters(open(save_to, 'rb')) model.set_parameter_values(params) algorithm = MaximumActivationSearch(outputs=outs) # Use the mnist test set, unshuffled mnist_test = MNIST(("test",), sources=['features']) mnist_test_stream = DataStream.default_stream( mnist_test, iteration_scheme=SequentialScheme( mnist_test.num_examples, batch_size)) extensions = [Timing(), FinishAfter(after_n_epochs=1), DataStreamMonitoring( [], mnist_test_stream, prefix="test"), Checkpoint("maxact.tar"), ProgressBar(), Printing()] main_loop = MainLoop( algorithm, mnist_test_stream, model=model, extensions=extensions) main_loop.run() examples = mnist_test.get_example_stream() example = examples.get_data(0)[0] layers = convnet.layers for output, record in algorithm.maximum_activations.items(): layer = get_brick(output) activations, indices, snapshots = ( r.get_value() if r else None for r in record[1:]) filmstrip = Filmstrip( example.shape[-2:], (indices.shape[1], indices.shape[0]), background='blue') if layer in layers: fieldmap = layerarray_fieldmap(layers[0:layers.index(layer) + 1]) for unit in range(indices.shape[1]): for index in range(100): mask = make_mask(example.shape[-2:], fieldmap, numpy.clip( snapshots[index, unit, :, :], 0, numpy.inf)) imagenum = indices[index, unit, 0] filmstrip.set_image((unit, index), examples.get_data(imagenum)[0], mask) else: for unit in range(indices.shape[1]): for index in range(100): imagenum = indices[index, unit] filmstrip.set_image((unit, index), examples.get_data(imagenum)[0]) filmstrip.save(layer.name + '_maxact.jpg')
def load_params(self, path): cg = self.get_cost_graph() with open(path, 'r') as src: param_values = load_parameters(src) Model(cg.outputs).set_parameter_values(param_values)
def main(save_to): batch_size = 365 feature_maps = [6, 16] mlp_hiddens = [120, 84] conv_sizes = [5, 5] pool_sizes = [2, 2] image_size = (28, 28) output_size = 10 # The above are from LeCun's paper. The blocks example had: # feature_maps = [20, 50] # mlp_hiddens = [500] # Use ReLUs everywhere and softmax for the final prediction conv_activations = [Rectifier() for _ in feature_maps] mlp_activations = [Rectifier() for _ in mlp_hiddens] + [Softmax()] convnet = LeNet(conv_activations, 1, image_size, filter_sizes=zip(conv_sizes, conv_sizes), feature_maps=feature_maps, pooling_sizes=zip(pool_sizes, pool_sizes), top_mlp_activations=mlp_activations, top_mlp_dims=mlp_hiddens + [output_size], border_mode='valid', weights_init=Uniform(width=.2), biases_init=Constant(0)) # We push initialization config to set different initialization schemes # for convolutional layers. convnet.push_initialization_config() convnet.layers[0].weights_init = Uniform(width=.2) convnet.layers[1].weights_init = Uniform(width=.09) convnet.top_mlp.linear_transformations[0].weights_init = Uniform(width=.08) convnet.top_mlp.linear_transformations[1].weights_init = Uniform(width=.11) convnet.initialize() layers = convnet.layers logging.info( "Input dim: {} {} {}".format(*convnet.children[0].get_dim('input_'))) for i, layer in enumerate(convnet.layers): if isinstance(layer, Activation): logging.info("Layer {} ({})".format(i, layer.__class__.__name__)) else: logging.info("Layer {} ({}) dim: {} {} {}".format( i, layer.__class__.__name__, *layer.get_dim('output'))) random_init = (numpy.random.rand(100, 1, 28, 28) * 128).astype('float32') mnist_test = MNIST(("test", ), sources=['features', 'targets']) basis = create_fair_basis(mnist_test, 10, 10) # state = mnist_test.open() # # basis = numpy.zeros((100, 1, 28, 28), dtype=theano.config.floatX) # counters = [0] * 10 # index = 0 # while min(counters) < 10: # feature, target = mnist_test.get_data(state=state, request=[index]) # target = target[0, 0] # feature = feature / 256 # if counters[target] < 10: # basis[target + counters[target] * 10, :, :, :] = feature[0, :, :, :] # counters[target] += 1 # index += 1 # mnist_test.close(state=state) # b = shared_floatx(basis) # random_init = numpy.rand.random(100, 1000) # r = shared_floatx(random_init) # rn = r / r.norm(axis=1) # x = tensor.dot(rn, tensor.shape_padright(b)) x = tensor.tensor4('features') # Normalize input and apply the convnet probs = convnet.apply(x) cg = ComputationGraph([probs]) outs = VariableFilter(roles=[OUTPUT], bricks=[Convolutional, Linear])(cg.variables) # Create an interior activation model model = Model([probs] + outs) # Load it with trained parameters params = load_parameters(open(save_to, 'rb')) model.set_parameter_values(params) fn = theano.function([x], outs) results = fn(basis) for snapshots, output in zip(results, outs): layer = get_brick(output) filmstrip = Filmstrip(basis.shape[-2:], (snapshots.shape[1], snapshots.shape[0]), background='purple') if layer in layers: fieldmap = layerarray_fieldmap(layers[0:layers.index(layer) + 1]) for unit in range(snapshots.shape[1]): for index in range(snapshots.shape[0]): mask = make_mask( basis.shape[-2:], fieldmap, numpy.clip(snapshots[index, unit, :, :], 0, numpy.inf)) filmstrip.set_image((unit, index), basis[index, :, :, :], mask) filmstrip.save(layer.name + '_show.jpg')
def train_extractive_qa(new_training_job, config, save_path, params, fast_start, fuel_server, seed): if seed: fuel.config.default_seed = seed blocks.config.config.default_seed = seed root_path = os.path.join(save_path, 'training_state') extension = '.tar' tar_path = root_path + extension best_tar_path = root_path + '_best' + extension c = config data, qam = initialize_data_and_model(c) if theano.config.compute_test_value != 'off': test_value_data = next( data.get_stream('train', shuffle=True, batch_size=4, max_length=5).get_epoch_iterator(as_dict=True)) for var in qam.input_vars.values(): var.tag.test_value = test_value_data[var.name] costs = qam.apply_with_default_vars() cost = rename(costs.mean(), 'mean_cost') cg = Model(cost) if params: logger.debug("Load parameters from {}".format(params)) with open(params) as src: cg.set_parameter_values(load_parameters(src)) length = rename(qam.contexts.shape[1], 'length') batch_size = rename(qam.contexts.shape[0], 'batch_size') predicted_begins, = VariableFilter(name='predicted_begins')(cg) predicted_ends, = VariableFilter(name='predicted_ends')(cg) exact_match, = VariableFilter(name='exact_match')(cg) exact_match_ratio = rename(exact_match.mean(), 'exact_match_ratio') context_unk_ratio, = VariableFilter(name='context_unk_ratio')(cg) monitored_vars = [ length, batch_size, cost, exact_match_ratio, context_unk_ratio ] if c['dict_path']: def_unk_ratio, = VariableFilter(name='def_unk_ratio')(cg) num_definitions = rename(qam.input_vars['defs'].shape[0], 'num_definitions') max_definition_length = rename(qam.input_vars['defs'].shape[1], 'max_definition_length') monitored_vars.extend( [def_unk_ratio, num_definitions, max_definition_length]) if c['def_word_gating'] == 'self_attention': def_gates = VariableFilter(name='def_gates')(cg) def_gates_min = tensor.minimum(*[x.min() for x in def_gates]) def_gates_max = tensor.maximum(*[x.max() for x in def_gates]) monitored_vars.extend([ rename(def_gates_min, 'def_gates_min'), rename(def_gates_max, 'def_gates_max') ]) text_match_ratio = TextMatchRatio(data_path=os.path.join( fuel.config.data_path[0], 'squad/dev-v1.1.json'), requires=[ predicted_begins, predicted_ends, tensor.ltensor3('contexts_text'), tensor.lmatrix('q_ids') ], name='text_match_ratio') parameters = cg.get_parameter_dict() trained_parameters = parameters.values() if c['embedding_path']: logger.debug("Exclude word embeddings from the trained parameters") trained_parameters = [ p for p in trained_parameters if not p == qam.embeddings_var() ] if c['train_only_def_part']: def_reading_parameters = qam.def_reading_parameters() trained_parameters = [ p for p in trained_parameters if p in def_reading_parameters ] logger.info("Cost parameters" + "\n" + pprint.pformat([ " ".join( (key, str(parameters[key].get_value().shape), 'trained' if parameters[key] in trained_parameters else 'frozen')) for key in sorted(parameters.keys()) ], width=120)) # apply dropout to the training cost and to all the variables # that we monitor during training train_cost = cost train_monitored_vars = list(monitored_vars) if c['dropout']: regularized_cg = ComputationGraph([cost] + train_monitored_vars) # Dima: the dropout that I implemented first bidir_outputs, = VariableFilter(bricks=[Bidirectional], roles=[OUTPUT])(cg) readout_layers = VariableFilter(bricks=[Rectifier], roles=[OUTPUT])(cg) dropout_vars = [bidir_outputs] + readout_layers logger.debug("applying dropout to {}".format(", ".join( [v.name for v in dropout_vars]))) regularized_cg = apply_dropout(regularized_cg, dropout_vars, c['dropout']) # a new dropout with exactly same mask at different steps emb_vars = VariableFilter(roles=[EMBEDDINGS])(regularized_cg) emb_dropout_mask = get_dropout_mask(emb_vars[0], c['emb_dropout']) if c['emb_dropout_type'] == 'same_mask': regularized_cg = apply_dropout2(regularized_cg, emb_vars, c['emb_dropout'], dropout_mask=emb_dropout_mask) elif c['emb_dropout_type'] == 'regular': regularized_cg = apply_dropout(regularized_cg, emb_vars, c['emb_dropout']) else: raise ValueError("unknown dropout type {}".format( c['emb_dropout_type'])) train_cost = regularized_cg.outputs[0] train_monitored_vars = regularized_cg.outputs[1:] rules = [] if c['grad_clip_threshold']: rules.append(StepClipping(c['grad_clip_threshold'])) rules.append(Adam(learning_rate=c['learning_rate'], beta1=c['momentum'])) algorithm = GradientDescent(cost=train_cost, parameters=trained_parameters, step_rule=CompositeRule(rules)) if c['grad_clip_threshold']: train_monitored_vars.append(algorithm.total_gradient_norm) if c['monitor_parameters']: train_monitored_vars.extend(parameter_stats(parameters, algorithm)) training_stream = data.get_stream('train', batch_size=c['batch_size'], shuffle=True, max_length=c['max_length']) original_training_stream = training_stream if fuel_server: # the port will be configured by the StartFuelServer extension training_stream = ServerDataStream( sources=training_stream.sources, produces_examples=training_stream.produces_examples) extensions = [ LoadNoUnpickling(tar_path, load_iteration_state=True, load_log=True).set_conditions( before_training=not new_training_job), StartFuelServer(original_training_stream, os.path.join(save_path, 'stream.pkl'), before_training=fuel_server), Timing(every_n_batches=c['mon_freq_train']), TrainingDataMonitoring(train_monitored_vars, prefix="train", every_n_batches=c['mon_freq_train']), ] validation = DataStreamMonitoring( [text_match_ratio] + monitored_vars, data.get_stream('dev', batch_size=c['batch_size_valid'], raw_text=True, q_ids=True), prefix="dev").set_conditions(before_training=not fast_start, after_epoch=True) dump_predictions = DumpPredictions(save_path, text_match_ratio, before_training=not fast_start, after_epoch=True) track_the_best_exact = TrackTheBest( validation.record_name(exact_match_ratio), choose_best=max).set_conditions(before_training=True, after_epoch=True) track_the_best_text = TrackTheBest( validation.record_name(text_match_ratio), choose_best=max).set_conditions(before_training=True, after_epoch=True) extensions.extend([ validation, dump_predictions, track_the_best_exact, track_the_best_text ]) # We often use pretrained word embeddings and we don't want # to load and save them every time. To avoid that, we use # save_main_loop=False, we only save the trained parameters, # and we save the log and the iterations state separately # in the tar file. extensions.extend([ Checkpoint(tar_path, parameters=trained_parameters, save_main_loop=False, save_separately=['log', 'iteration_state'], before_training=not fast_start, every_n_epochs=c['save_freq_epochs'], every_n_batches=c['save_freq_batches'], after_training=not fast_start).add_condition( ['after_batch', 'after_epoch'], OnLogRecord(track_the_best_text.notification_name), (best_tar_path, )), DumpTensorflowSummaries(save_path, after_epoch=True, every_n_batches=c['mon_freq_train'], after_training=True), RetrievalPrintStats(retrieval=data._retrieval, every_n_batches=c['mon_freq_train'], before_training=not fast_start), Printing(after_epoch=True, every_n_batches=c['mon_freq_train']), FinishAfter(after_n_batches=c['n_batches'], after_n_epochs=c['n_epochs']), Annealing(c['annealing_learning_rate'], after_n_epochs=c['annealing_start_epoch']), LoadNoUnpickling(best_tar_path, after_n_epochs=c['annealing_start_epoch']) ]) main_loop = MainLoop(algorithm, training_stream, model=Model(cost), extensions=extensions) main_loop.run()
def main(save_to, hist_file): batch_size = 365 feature_maps = [6, 16] mlp_hiddens = [120, 84] conv_sizes = [5, 5] pool_sizes = [2, 2] image_size = (28, 28) output_size = 10 # The above are from LeCun's paper. The blocks example had: # feature_maps = [20, 50] # mlp_hiddens = [500] # Use ReLUs everywhere and softmax for the final prediction conv_activations = [Rectifier() for _ in feature_maps] mlp_activations = [Rectifier() for _ in mlp_hiddens] + [Softmax()] convnet = LeNet(conv_activations, 1, image_size, filter_sizes=zip(conv_sizes, conv_sizes), feature_maps=feature_maps, pooling_sizes=zip(pool_sizes, pool_sizes), top_mlp_activations=mlp_activations, top_mlp_dims=mlp_hiddens + [output_size], border_mode='valid', weights_init=Uniform(width=.2), biases_init=Constant(0)) # We push initialization config to set different initialization schemes # for convolutional layers. convnet.push_initialization_config() convnet.layers[0].weights_init = Uniform(width=.2) convnet.layers[1].weights_init = Uniform(width=.09) convnet.top_mlp.linear_transformations[0].weights_init = Uniform(width=.08) convnet.top_mlp.linear_transformations[1].weights_init = Uniform(width=.11) convnet.initialize() logging.info("Input dim: {} {} {}".format( *convnet.children[0].get_dim('input_'))) for i, layer in enumerate(convnet.layers): if isinstance(layer, Activation): logging.info("Layer {} ({})".format( i, layer.__class__.__name__)) else: logging.info("Layer {} ({}) dim: {} {} {}".format( i, layer.__class__.__name__, *layer.get_dim('output'))) mnist_test = MNIST(("test",), sources=['features', 'targets']) x = tensor.tensor4('features') y = tensor.lmatrix('targets') # Normalize input and apply the convnet probs = convnet.apply(x) error_rate = (MisclassificationRate().apply(y.flatten(), probs) .copy(name='error_rate')) confusion = (ConfusionMatrix().apply(y.flatten(), probs) .copy(name='confusion')) confusion.tag.aggregation_scheme = Sum(confusion) model = Model([error_rate, confusion]) # Load it with trained parameters params = load_parameters(open(save_to, 'rb')) model.set_parameter_values(params) def full_brick_name(brick): return '/'.join([''] + [b.name for b in brick.get_unique_path()]) # Find layer outputs to probe outs = OrderedDict((full_brick_name(get_brick(out)), out) for out in VariableFilter( roles=[OUTPUT], bricks=[Convolutional, Linear])( model.variables)) # Load histogram information with open(hist_file, 'rb') as handle: histograms = pickle.load(handle) # Corpora mnist_train = MNIST(("train",)) mnist_train_stream = DataStream.default_stream( mnist_train, iteration_scheme=ShuffledScheme( mnist_train.num_examples, batch_size)) mnist_test = MNIST(("test",)) mnist_test_stream = DataStream.default_stream( mnist_test, iteration_scheme=ShuffledScheme( mnist_test.num_examples, batch_size)) # Probe the given layer target_layer = '/lenet/mlp/linear_0' next_layer_param = '/lenet/mlp/linear_1.W' sample = extract_sample(outs[target_layer], mnist_test_stream) print('sample shape', sample.shape) # Figure neurons to ablate hist = histograms[('linear_1', 'b')] targets = [i for i in range(hist.shape[1]) if hist[2, i] * hist[7, i] < 0] print('ablating', len(targets), ':', targets) # Now adjust the next layer weights based on the probe param = model.get_parameter_dict()[next_layer_param] print('param shape', param.get_value().shape) new_weights = ablate_inputs( targets, sample, param.get_value(), compensate=False) param.set_value(new_weights) # Evaluation pass evaluator = DatasetEvaluator([error_rate, confusion]) print(evaluator.evaluate(mnist_test_stream))
def evaluate_extractive_qa(config, tar_path, part, num_examples, dest_path, qids=None, dataset=None): if not dest_path: dest_path = os.path.join(os.path.dirname(tar_path), 'predictions.json') log_path = os.path.splitext(dest_path)[0] + '_log.json' if qids: qids = qids.split(',') if dataset: dataset = SQuADDataset(dataset, ('all', )) c = config data, qam = initialize_data_and_model(c) costs = qam.apply_with_default_vars() cg = Model(costs) with open(tar_path) as src: cg.set_parameter_values(load_parameters(src)) predicted_begins, = VariableFilter(name='predicted_begins')(cg) predicted_ends, = VariableFilter(name='predicted_ends')(cg) compute = {'begins': predicted_begins, 'ends': predicted_ends} if c['coattention']: d2q_att_weights, = VariableFilter(name='d2q_att_weights')(cg) q2d_att_weights, = VariableFilter(name='q2d_att_weights')(cg) compute.update({'d2q': d2q_att_weights, 'q2d': q2d_att_weights}) compute['costs'] = costs predict_func = theano.function(qam.input_vars.values(), compute) logger.debug("Ready to evaluate") done_examples = 0 num_correct = 0 def print_stats(): print('EXACT MATCH RATIO: {}'.format(num_correct / float(done_examples))) predictions = {} log = {} stream = data.get_stream(part, batch_size=1, shuffle=part == 'train', raw_text=True, q_ids=True, dataset=dataset) for example in stream.get_epoch_iterator(as_dict=True): if done_examples == num_examples: break q_id = vec2str(example['q_ids'][0]) if qids and not q_id in qids: continue example['contexts_text'] = [map(vec2str, example['contexts_text'][0])] example['questions_text'] = [ map(vec2str, example['questions_text'][0]) ] feed = dict(example) del feed['q_ids'] del feed['contexts_text'] del feed['questions_text'] del feed['contexts_text_mask'] result = predict_func(**feed) correct_answer_span = slice(example['answer_begins'][0], example['answer_ends'][0]) predicted_answer_span = slice(result['begins'][0], result['ends'][0]) correct_answer = example['contexts_text'][0][correct_answer_span] answer = example['contexts_text'][0][predicted_answer_span] is_correct = correct_answer_span == predicted_answer_span context = example['contexts_text'][0] question = example['questions_text'][0] context_def_map = example['contexts_def_map'] # pretty print outcome = 'correct' if is_correct else 'wrong' print('#{}'.format(done_examples)) print(u"CONTEXT:", detokenize(context)) print(u"QUESTION:", detokenize(question)) print(u"RIGHT ANSWER: {}".format(detokenize(correct_answer))) print( u"ANSWER (span=[{}, {}], {}):".format(predicted_answer_span.start, predicted_answer_span.stop, outcome), detokenize(answer)) print(u"COST: {}".format(float(result['costs'][0]))) print(u"DEFINITIONS AVAILABLE FOR:") for pos in set(context_def_map[:, 1]): print(context[pos]) print() # update statistics done_examples += 1 num_correct += is_correct # save the results predictions[q_id] = detokenize(answer) log_entry = { 'context': context, 'question': question, 'answer': answer, 'correct_answer': correct_answer, 'cost': float(result['costs'][0]) } if c['coattention']: log_entry['d2q'] = cPickle.dumps(result['d2q'][0]) log_entry['q2d'] = cPickle.dumps(result['q2d'][0]) log[q_id] = log_entry if done_examples % 100 == 0: print_stats() print_stats() with open(log_path, 'w') as dst: json.dump(log, dst, indent=2, sort_keys=True) with open(dest_path, 'w') as dst: json.dump(predictions, dst, indent=2, sort_keys=True)
def main(save_to): batch_size = 365 feature_maps = [6, 16] mlp_hiddens = [120, 84] conv_sizes = [5, 5] pool_sizes = [2, 2] image_size = (28, 28) output_size = 10 # The above are from LeCun's paper. The blocks example had: # feature_maps = [20, 50] # mlp_hiddens = [500] # Use ReLUs everywhere and softmax for the final prediction conv_activations = [Rectifier() for _ in feature_maps] mlp_activations = [Rectifier() for _ in mlp_hiddens] + [Softmax()] convnet = LeNet(conv_activations, 1, image_size, filter_sizes=zip(conv_sizes, conv_sizes), feature_maps=feature_maps, pooling_sizes=zip(pool_sizes, pool_sizes), top_mlp_activations=mlp_activations, top_mlp_dims=mlp_hiddens + [output_size], border_mode='valid', weights_init=Uniform(width=.2), biases_init=Constant(0)) # We push initialization config to set different initialization schemes # for convolutional layers. convnet.push_initialization_config() convnet.layers[0].weights_init = Uniform(width=.2) convnet.layers[1].weights_init = Uniform(width=.09) convnet.top_mlp.linear_transformations[0].weights_init = Uniform(width=.08) convnet.top_mlp.linear_transformations[1].weights_init = Uniform(width=.11) convnet.initialize() logging.info( "Input dim: {} {} {}".format(*convnet.children[0].get_dim('input_'))) for i, layer in enumerate(convnet.layers): if isinstance(layer, Activation): logging.info("Layer {} ({})".format(i, layer.__class__.__name__)) else: logging.info("Layer {} ({}) dim: {} {} {}".format( i, layer.__class__.__name__, *layer.get_dim('output'))) random_init = (numpy.random.rand(100, 1, 28, 28) * 128).astype('float32') layers = [l for l in convnet.layers if isinstance(l, Convolutional)] mnist_test = MNIST(("test", ), sources=['features', 'targets']) basis_init = create_fair_basis(mnist_test, 10, 50) basis_set = make_shifted_basis(basis_init, convnet, layers) for layer, basis in zip(layers, basis_set): # basis is 5d: # (probed_units, base_cases, 1-c, 28-y, 28-x) b = shared_floatx(basis) # coefficients is 2d: # (probed_units, base_cases) coefficients = shared_floatx( numpy.ones(basis.shape[0:2], dtype=theano.config.floatX)) # prod is 5d: (probed_units, base_cases, 1-c, 28-y, 28-x) prod = tensor.shape_padright(coefficients, 3) * b # x is 4d: (probed_units, 1-c, 28-y, 28-x) ux = prod.sum(axis=1) x = tensor.clip( ux / tensor.shape_padright(ux.flatten(ndim=2).max(axis=1), 3), 0, 1) # Normalize input and apply the convnet probs = convnet.apply(x) cg = ComputationGraph([probs]) outs = VariableFilter(roles=[OUTPUT], bricks=[layer])(cg.variables) # Create an interior activation model model = Model([probs] + outs) # Load it with trained parameters params = load_parameters(open(save_to, 'rb')) model.set_parameter_values(params) learning_rate = shared_floatx(0.03, 'learning_rate') # We will try to do all units at once. # unit = shared_floatx(0, 'unit', dtype='int64') # But we are only doing one layer at once. output = outs[0] dims = layer.get_dims(['output'])[0] if isinstance(dims, numbers.Integral): # FC case: output is 2d: (probed_units, units) dims = (dims, ) unitrange = tensor.arange(dims[0]) costvec = -tensor.log( tensor.nnet.softmax(output)[unitrange, unitrage].flatten()) else: # Conv case: output is 4d: (probed_units, units, y, x) unitrange = tensor.arange(dims[0]) print('dims is', dims) costvec = -tensor.log( tensor.nnet.softmax(output[unitrange, unitrange, dims[1] // 2, dims[2] // 2]).flatten()) cost = costvec.sum() # grad is dims (probed_units, basis_size) grad = gradient.grad(cost, coefficients) stepc = coefficients # - learning_rate * grad newc = stepc / tensor.shape_padright(stepc.mean(axis=1)) fn = theano.function([], [cost, x], updates=[(coefficients, newc)]) filmstrip = Filmstrip(random_init.shape[-2:], (dims[0], 1), background='red') layer = get_brick(output) learning_rate.set_value(0.1) for index in range(20000): c, result = fn() if index % 1000 == 0: learning_rate.set_value(numpy.cast[theano.config.floatX]( learning_rate.get_value() * 0.8)) print('cost', c) for u in range(dims[0]): filmstrip.set_image((u, 0), result[u, :, :, :]) filmstrip.save(layer.name + '_stroke.jpg') for u in range(dims[0]): filmstrip.set_image((u, 0), result[u, :, :, :]) filmstrip.save(layer.name + '_stroke.jpg')
def train_model(new_training_job, config, save_path, params, fast_start, fuel_server, seed): c = config if seed: fuel.config.default_seed = seed blocks.config.config.default_seed = seed data, model = initialize_data_and_model(config, train_phase=True) # full main loop can be saved... main_loop_path = os.path.join(save_path, 'main_loop.tar') # or only state (log + params) which can be useful not to pickle embeddings state_path = os.path.join(save_path, 'training_state.tar') stream_path = os.path.join(save_path, 'stream.pkl') best_tar_path = os.path.join(save_path, "best_model.tar") keys = tensor.lmatrix('keys') n_identical_keys = tensor.lvector('n_identical_keys') words = tensor.ltensor3('words') words_mask = tensor.matrix('words_mask') if theano.config.compute_test_value != 'off': #TODO test_value_data = next( data.get_stream('train', batch_size=4, max_length=5).get_epoch_iterator()) words.tag.test_value = test_value_data[0] words_mask.tag.test_value = test_value_data[1] if use_keys(c) and use_n_identical_keys(c): costs = model.apply(words, words_mask, keys, n_identical_keys, train_phase=True) elif use_keys(c): costs = model.apply(words, words_mask, keys, train_phase=True) else: costs = model.apply(words, words_mask, train_phase=True) cost = rename(costs.mean(), 'mean_cost') cg = Model(cost) if params: logger.debug("Load parameters from {}".format(params)) with open(params) as src: cg.set_parameter_values(load_parameters(src)) length = rename(words.shape[1], 'length') perplexity, = VariableFilter(name='perplexity')(cg) monitored_vars = [length, cost, perplexity] if c['proximity_coef']: proximity_term, = VariableFilter(name='proximity_term')(cg) monitored_vars.append(proximity_term) print "inputs of the model:", cg.inputs parameters = cg.get_parameter_dict() trained_parameters = parameters.values() saved_parameters = parameters.values() if c['embedding_path']: if c['freeze_pretrained']: logger.debug( "Exclude pretrained encoder embeddings from the trained parameters" ) to_freeze = 'main' elif c['provide_targets']: logger.debug( "Exclude pretrained targets from the trained parameters") to_freeze = 'target' trained_parameters = [ p for p in trained_parameters if not p == model.get_def_embeddings_params(to_freeze) ] saved_parameters = [ p for p in saved_parameters if not p == model.get_def_embeddings_params(to_freeze) ] logger.info("Cost parameters" + "\n" + pprint.pformat([ " ".join( (key, str(parameters[key].get_value().shape), 'trained' if parameters[key] in trained_parameters else 'frozen')) for key in sorted(parameters.keys()) ], width=120)) rules = [] if c['grad_clip_threshold']: rules.append(StepClipping(c['grad_clip_threshold'])) rules.append(Adam(learning_rate=c['learning_rate'], beta1=c['momentum'])) algorithm = GradientDescent(cost=cost, parameters=trained_parameters, step_rule=CompositeRule(rules)) train_monitored_vars = list(monitored_vars) if c['grad_clip_threshold']: train_monitored_vars.append(algorithm.total_gradient_norm) if c['monitor_parameters']: train_monitored_vars.extend(parameter_stats(parameters, algorithm)) # We use a completely random seed on purpose. With Fuel server # it's currently not possible to restore the state of the training # stream. That's why it's probably better to just have it stateless. stream_seed = numpy.random.randint(0, 10000000) if fuel_server else None training_stream = data.get_stream( 'train', batch_size=c['batch_size'], max_length=c['max_length'], seed=stream_seed, remove_keys=not use_keys(c), remove_n_identical_keys=not use_n_identical_keys(c)) print "trainin_stream will contains sources:", training_stream.sources original_training_stream = training_stream if fuel_server: # the port will be configured by the StartFuelServer extension training_stream = ServerDataStream( sources=training_stream.sources, produces_examples=training_stream.produces_examples) validate = c['mon_freq_valid'] > 0 if validate: valid_stream = data.get_stream( 'valid', batch_size=c['batch_size_valid'], max_length=c['max_length'], seed=stream_seed, remove_keys=not use_keys(c), remove_n_identical_keys=not use_n_identical_keys(c)) validation = DataStreamMonitoring( monitored_vars, valid_stream, prefix="valid").set_conditions(before_first_epoch=not fast_start, on_resumption=True, every_n_batches=c['mon_freq_valid']) track_the_best = TrackTheBest(validation.record_name(cost), choose_best=min).set_conditions( on_resumption=True, after_epoch=True, every_n_batches=c['mon_freq_valid']) # don't save them the entire main loop to avoid pickling everything if c['fast_checkpoint']: cp_path = state_path load = (LoadNoUnpickling(cp_path, load_iteration_state=True, load_log=True).set_conditions( before_training=not new_training_job)) cp_args = { 'save_main_loop': False, 'save_separately': ['log', 'iteration_state'], 'parameters': saved_parameters } else: cp_path = main_loop_path load = (Load(cp_path, load_iteration_state=True, load_log=True).set_conditions( before_training=not new_training_job)) cp_args = { 'save_separately': ['iteration_state'], 'parameters': saved_parameters } checkpoint = Checkpoint(cp_path, before_training=not fast_start, every_n_batches=c['save_freq_batches'], after_training=not fast_start, **cp_args) if c['checkpoint_every_n_batches'] > 0 or c[ 'checkpoint_every_n_epochs'] > 0: intermediate_cp = IntermediateCheckpoint( cp_path, every_n_epochs=c['checkpoint_every_n_epochs'], every_n_batches=c['checkpoint_every_n_batches'], after_training=False, **cp_args) if validate: checkpoint = checkpoint.add_condition( ['after_batch', 'after_epoch'], OnLogRecord(track_the_best.notification_name), (best_tar_path, )) extensions = [ load, StartFuelServer(original_training_stream, stream_path, before_training=fuel_server), Timing(every_n_batches=c['mon_freq_train']) ] extensions.extend([ TrainingDataMonitoring(train_monitored_vars, prefix="train", every_n_batches=c['mon_freq_train']), ]) if validate: extensions.extend([validation, track_the_best]) extensions.append(checkpoint) if c['checkpoint_every_n_batches'] > 0 or c[ 'checkpoint_every_n_epochs'] > 0: extensions.append(intermediate_cp) extensions.extend( [Printing(on_resumption=True, every_n_batches=c['mon_freq_train'])]) if validate and c['n_valid_early'] > 0: extensions.append( FinishIfNoImprovementAfter(track_the_best.notification_name, iterations=c['n_valid_early'] * c['mon_freq_valid'], every_n_batches=c['mon_freq_valid'])) extensions.append(FinishAfter(after_n_epochs=c['n_epochs'])) logger.info("monitored variables during training:" + "\n" + pprint.pformat(train_monitored_vars, width=120)) logger.info("monitored variables during valid:" + "\n" + pprint.pformat(monitored_vars, width=120)) main_loop = MainLoop(algorithm, training_stream, model=Model(cost), extensions=extensions) main_loop.run()
def main(mode, save_to, num_epochs, load_params=None, feature_maps=None, mlp_hiddens=None, conv_sizes=None, pool_sizes=None, stride=None, repeat_times=None, batch_size=None, num_batches=None, algo=None, test_set=None, valid_examples=None, dropout=None, max_norm=None, weight_decay=None, batch_norm=None): if feature_maps is None: feature_maps = [20, 50, 50] if mlp_hiddens is None: mlp_hiddens = [500] if conv_sizes is None: conv_sizes = [5, 5, 5] if pool_sizes is None: pool_sizes = [2, 2, 2] if repeat_times is None: repeat_times = [1, 1, 1] if batch_size is None: batch_size = 500 if valid_examples is None: valid_examples = 2500 if stride is None: stride = 1 if test_set is None: test_set = 'test' if algo is None: algo = 'rmsprop' if batch_norm is None: batch_norm = False image_size = (128, 128) output_size = 2 if (len(feature_maps) != len(conv_sizes) or len(feature_maps) != len(pool_sizes) or len(feature_maps) != len(repeat_times)): raise ValueError("OMG, inconsistent arguments") # Use ReLUs everywhere and softmax for the final prediction conv_activations = [Rectifier() for _ in feature_maps] mlp_activations = [Rectifier() for _ in mlp_hiddens] + [Softmax()] convnet = LeNet(conv_activations, 3, image_size, stride=stride, filter_sizes=zip(conv_sizes, conv_sizes), feature_maps=feature_maps, pooling_sizes=zip(pool_sizes, pool_sizes), repeat_times=repeat_times, top_mlp_activations=mlp_activations, top_mlp_dims=mlp_hiddens + [output_size], border_mode='full', batch_norm=batch_norm, weights_init=Glorot(), biases_init=Constant(0)) # We push initialization config to set different initialization schemes # for convolutional layers. convnet.initialize() logging.info("Input dim: {} {} {}".format( *convnet.children[0].get_dim('input_'))) for i, layer in enumerate(convnet.layers): if isinstance(layer, Activation): logging.info("Layer {} ({})".format( i, layer.__class__.__name__)) else: logging.info("Layer {} ({}) dim: {} {} {}".format( i, layer.__class__.__name__, *layer.get_dim('output'))) single_x = tensor.tensor3('image_features') x = tensor.tensor4('image_features') single_y = tensor.lvector('targets') y = tensor.lmatrix('targets') # Training with batch_normalization(convnet): probs = convnet.apply(x) cost = (CategoricalCrossEntropy().apply(y.flatten(), probs) .copy(name='cost')) error_rate = (MisclassificationRate().apply(y.flatten(), probs) .copy(name='error_rate')) cg = ComputationGraph([cost, error_rate]) extra_updates = [] if batch_norm: # batch norm: logger.debug("Apply batch norm") pop_updates = get_batch_normalization_updates(cg) # p stands for population mean # m stands for minibatch alpha = 0.005 extra_updates = [(p, m * alpha + p * (1 - alpha)) for p, m in pop_updates] population_statistics = [p for p, m in extra_updates] if dropout: relu_outputs = VariableFilter(bricks=[Rectifier], roles=[OUTPUT])(cg) cg = apply_dropout(cg, relu_outputs, dropout) cost, error_rate = cg.outputs if weight_decay: logger.debug("Apply weight decay {}".format(weight_decay)) cost += weight_decay * l2_norm(cg.parameters) cost.name = 'cost' # Validation valid_probs = convnet.apply_5windows(single_x) valid_cost = (CategoricalCrossEntropy().apply(single_y, valid_probs) .copy(name='cost')) valid_error_rate = (MisclassificationRate().apply( single_y, valid_probs).copy(name='error_rate')) model = Model([cost, error_rate]) if load_params: logger.info("Loaded params from {}".format(load_params)) with open(load_params, 'r') as src: model.set_parameter_values(load_parameters(src)) # Training stream with random cropping train = DogsVsCats(("train",), subset=slice(None, 25000 - valid_examples, None)) train_str = DataStream( train, iteration_scheme=ShuffledScheme(train.num_examples, batch_size)) train_str = add_transformers(train_str, random_crop=True) # Validation stream without cropping valid = DogsVsCats(("train",), subset=slice(25000 - valid_examples, None, None)) valid_str = DataStream( valid, iteration_scheme=SequentialExampleScheme(valid.num_examples)) valid_str = add_transformers(valid_str) if mode == 'train': directory, _ = os.path.split(sys.argv[0]) env = dict(os.environ) env['THEANO_FLAGS'] = 'floatX=float32' port = numpy.random.randint(1025, 10000) server = subprocess.Popen( [directory + '/server.py', str(25000 - valid_examples), str(batch_size), str(port)], env=env, stderr=subprocess.STDOUT) train_str = ServerDataStream( ('image_features', 'targets'), produces_examples=False, port=port) save_to_base, save_to_extension = os.path.splitext(save_to) # Train with simple SGD if algo == 'rmsprop': step_rule = RMSProp(decay_rate=0.999, learning_rate=0.0003) elif algo == 'adam': step_rule = Adam() else: assert False if max_norm: conv_params = VariableFilter(bricks=[Convolutional], roles=[WEIGHT])(cg) linear_params = VariableFilter(bricks=[Linear], roles=[WEIGHT])(cg) step_rule = CompositeRule( [step_rule, Restrict(VariableClipping(max_norm, axis=0), linear_params), Restrict(VariableClipping(max_norm, axis=(1, 2, 3)), conv_params)]) algorithm = GradientDescent( cost=cost, parameters=model.parameters, step_rule=step_rule) algorithm.add_updates(extra_updates) # `Timing` extension reports time for reading data, aggregating a batch # and monitoring; # `ProgressBar` displays a nice progress bar during training. extensions = [Timing(every_n_batches=100), FinishAfter(after_n_epochs=num_epochs, after_n_batches=num_batches), DataStreamMonitoring( [valid_cost, valid_error_rate], valid_str, prefix="valid"), TrainingDataMonitoring( [cost, error_rate, aggregation.mean(algorithm.total_gradient_norm)], prefix="train", after_epoch=True), TrackTheBest("valid_error_rate"), Checkpoint(save_to, save_separately=['log'], parameters=cg.parameters + (population_statistics if batch_norm else []), before_training=True, after_epoch=True) .add_condition( ['after_epoch'], OnLogRecord("valid_error_rate_best_so_far"), (save_to_base + '_best' + save_to_extension,)), Printing(every_n_batches=100)] model = Model(cost) main_loop = MainLoop( algorithm, train_str, model=model, extensions=extensions) try: main_loop.run() finally: server.terminate() elif mode == 'test': classify = theano.function([single_x], valid_probs.argmax()) test = DogsVsCats((test_set,)) test_str = DataStream( test, iteration_scheme=SequentialExampleScheme(test.num_examples)) test_str = add_transformers(test_str) correct = 0 with open(save_to, 'w') as dst: print("id", "label", sep=',', file=dst) for index, example in enumerate(test_str.get_epoch_iterator()): image = example[0] prediction = classify(image) print(index + 1, classify(image), sep=',', file=dst) if len(example) > 1 and prediction == example[1]: correct += 1 print(correct / float(test.num_examples)) else: assert False
def main(save_to): batch_size = 500 image_size = (28, 28) output_size = 10 # The above are from LeCun's paper. The blocks example had: # feature_maps = [20, 50] # mlp_hiddens = [500] # Use ReLUs everywhere and softmax for the final prediction convnet = create_lenet_5() mnist_test = MNIST(("test", ), sources=['features', 'targets']) basis_init = create_fair_basis(mnist_test, 10, 2) # b = shared_floatx(basis) # random_init = numpy.rand.random(100, 1000) # r = shared_floatx(random_init) # rn = r / r.norm(axis=1) # x = tensor.dot(rn, tensor.shape_padright(b)) x = shared_floatx(basis_init) # Normalize input and apply the convnet probs = convnet.apply(x) cg = ComputationGraph([probs]) outs = VariableFilter(roles=[OUTPUT], bricks=[Convolutional, Linear])(cg.variables) # Create an interior activation model model = Model([probs] + outs) # Load it with trained parameters params = load_parameters(open(save_to, 'rb')) model.set_parameter_values(params) learning_rate = shared_floatx(0.01, 'learning_rate') unit = shared_floatx(0, 'unit', dtype='int64') negate = False suffix = '_negsynth.jpg' if negate else '_synth.jpg' for output in outs: layer = get_brick(output) # For now, skip masks -for some reason they are always NaN iterations = 10000 layername = layer.parents[0].name + '-' + layer.name # if layername != 'noisylinear_2-linear': # continue dims = layer.get_dims(['output'])[0] if negate: measure = -output else: measure = output measure = measure[(slice(0, basis_init.shape[0]), ) + (slice(None), ) * (measure.ndim - 1)] if isinstance(dims, numbers.Integral): dims = (dims, ) costvec = -tensor.log( tensor.nnet.softmax(measure)[:, unit].flatten()) else: flatout = measure.flatten(ndim=3) maxout = flatout.max(axis=2) costvec = -tensor.log( tensor.nnet.softmax(maxout)[:, unit].flatten()) # Add a regularization to favor gray images. # cost = costvec.sum() + (x - 0.5).norm(2) * ( # 10.0 / basis_init.shape[0]) cost = costvec.sum() grad = gradient.grad(cost, x) stepx = x - learning_rate * grad normx = stepx / tensor.shape_padright( stepx.flatten(ndim=2).max(axis=1), n_ones=3) newx = tensor.clip(normx, 0, 1) newx = newx[(slice(0, basis_init.shape[0]), ) + (slice(None), ) * (newx.ndim - 1)] fn = theano.function([], [cost], updates=[(x, newx)]) filmstrip = Filmstrip(basis_init.shape[-2:], (dims[0], basis_init.shape[0]), background='red') for u in range(dims[0]): unit.set_value(u) x.set_value(basis_init) print('layer', layername, 'unit', u) for index in range(iterations): c = fn()[0] if index % 1000 == 0: print('cost', c) result = x.get_value() for i2 in range(basis_init.shape[0]): filmstrip.set_image((u, i2), result[i2, :, :, :]) filmstrip.save(layername + suffix) result = x.get_value() for index in range(basis_init.shape[0]): filmstrip.set_image((u, index), result[index, :, :, :]) filmstrip.save(layername + suffix)
def initialize_all(config, save_path, bokeh_name, params, bokeh_server, bokeh, test_tag, use_load_ext, load_log, fast_start): root_path, extension = os.path.splitext(save_path) data = Data(**config['data']) train_conf = config['training'] recognizer = create_model(config, data, test_tag) # Separate attention_params to be handled differently # when regularization is applied attention = recognizer.generator.transition.attention attention_params = Selector(attention).get_parameters().values() logger.info( "Initialization schemes for all bricks.\n" "Works well only in my branch with __repr__ added to all them,\n" "there is an issue #463 in Blocks to do that properly.") def show_init_scheme(cur): result = dict() for attr in dir(cur): if attr.endswith('_init'): result[attr] = getattr(cur, attr) for child in cur.children: result[child.name] = show_init_scheme(child) return result logger.info(pprint.pformat(show_init_scheme(recognizer))) prediction, prediction_mask = add_exploration(recognizer, data, train_conf) # # Observables: # primary_observables = [] # monitored each batch secondary_observables = [] # monitored every 10 batches validation_observables = [] # monitored on the validation set cg = recognizer.get_cost_graph(batch=True, prediction=prediction, prediction_mask=prediction_mask) labels, = VariableFilter(applications=[recognizer.cost], name='labels')(cg) labels_mask, = VariableFilter(applications=[recognizer.cost], name='labels_mask')(cg) gain_matrix = VariableFilter( theano_name=RewardRegressionEmitter.GAIN_MATRIX)(cg) if len(gain_matrix): gain_matrix, = gain_matrix primary_observables.append(rename(gain_matrix.min(), 'min_gain')) primary_observables.append(rename(gain_matrix.max(), 'max_gain')) batch_cost = cg.outputs[0].sum() batch_size = rename(recognizer.labels.shape[1], "batch_size") # Assumes constant batch size. `aggregation.mean` is not used because # of Blocks #514. cost = batch_cost / batch_size cost.name = "sequence_total_cost" logger.info("Cost graph is built") # Fetch variables useful for debugging. # It is important not to use any aggregation schemes here, # as it's currently impossible to spread the effect of # regularization on their variables, see Blocks #514. cost_cg = ComputationGraph(cost) r = recognizer energies, = VariableFilter(applications=[r.generator.readout.readout], name="output_0")(cost_cg) bottom_output = VariableFilter( # We need name_regex instead of name because LookupTable calls itsoutput output_0 applications=[r.bottom.apply], name_regex="output")(cost_cg)[-1] attended, = VariableFilter(applications=[r.generator.transition.apply], name="attended")(cost_cg) attended_mask, = VariableFilter(applications=[ r.generator.transition.apply ], name="attended_mask")(cost_cg) weights, = VariableFilter(applications=[r.generator.evaluate], name="weights")(cost_cg) from blocks.roles import AUXILIARY l2_cost, = VariableFilter(roles=[AUXILIARY], theano_name='l2_cost_aux')(cost_cg) cost_forward, = VariableFilter(roles=[AUXILIARY], theano_name='costs_forward_aux')(cost_cg) max_recording_length = rename(bottom_output.shape[0], "max_recording_length") # To exclude subsampling related bugs max_attended_mask_length = rename(attended_mask.shape[0], "max_attended_mask_length") max_attended_length = rename(attended.shape[0], "max_attended_length") max_num_phonemes = rename(labels.shape[0], "max_num_phonemes") min_energy = rename(energies.min(), "min_energy") max_energy = rename(energies.max(), "max_energy") mean_attended = rename(abs(attended).mean(), "mean_attended") mean_bottom_output = rename( abs(bottom_output).mean(), "mean_bottom_output") weights_penalty = rename(monotonicity_penalty(weights, labels_mask), "weights_penalty") weights_entropy = rename(entropy(weights, labels_mask), "weights_entropy") mask_density = rename(labels_mask.mean(), "mask_density") cg = ComputationGraph([ cost, weights_penalty, weights_entropy, min_energy, max_energy, mean_attended, mean_bottom_output, batch_size, max_num_phonemes, mask_density ]) # Regularization. It is applied explicitly to all variables # of interest, it could not be applied to the cost only as it # would not have effect on auxiliary variables, see Blocks #514. reg_config = config.get('regularization', dict()) regularized_cg = cg if reg_config.get('dropout'): logger.info('apply dropout') regularized_cg = apply_dropout(cg, [bottom_output], 0.5) if reg_config.get('noise'): logger.info('apply noise') noise_subjects = [ p for p in cg.parameters if p not in attention_params ] regularized_cg = apply_noise(cg, noise_subjects, reg_config['noise']) train_cost = regularized_cg.outputs[0] if reg_config.get("penalty_coof", .0) > 0: # big warning!!! # here we assume that: # regularized_weights_penalty = regularized_cg.outputs[1] train_cost = (train_cost + reg_config.get("penalty_coof", .0) * regularized_cg.outputs[1] / batch_size) if reg_config.get("decay", .0) > 0: train_cost = ( train_cost + reg_config.get("decay", .0) * l2_norm(VariableFilter(roles=[WEIGHT])(cg.parameters))**2) train_cost = rename(train_cost, 'train_cost') gradients = None if reg_config.get('adaptive_noise'): logger.info('apply adaptive noise') if ((reg_config.get("penalty_coof", .0) > 0) or (reg_config.get("decay", .0) > 0)): logger.error('using adaptive noise with alignment weight panalty ' 'or weight decay is probably stupid') train_cost, regularized_cg, gradients, noise_brick = apply_adaptive_noise( cg, cg.outputs[0], variables=cg.parameters, num_examples=data.get_dataset('train').num_examples, parameters=Model( regularized_cg.outputs[0]).get_parameter_dict().values(), **reg_config.get('adaptive_noise')) train_cost.name = 'train_cost' adapt_noise_cg = ComputationGraph(train_cost) model_prior_mean = rename( VariableFilter(applications=[noise_brick.apply], name='model_prior_mean')(adapt_noise_cg)[0], 'model_prior_mean') model_cost = rename( VariableFilter(applications=[noise_brick.apply], name='model_cost')(adapt_noise_cg)[0], 'model_cost') model_prior_variance = rename( VariableFilter(applications=[noise_brick.apply], name='model_prior_variance')(adapt_noise_cg)[0], 'model_prior_variance') regularized_cg = ComputationGraph( [train_cost, model_cost] + regularized_cg.outputs + [model_prior_mean, model_prior_variance]) primary_observables += [ regularized_cg.outputs[1], # model cost regularized_cg.outputs[2], # task cost regularized_cg.outputs[-2], # model prior mean regularized_cg.outputs[-1] ] # model prior variance model = Model(train_cost) if params: logger.info("Load parameters from " + params) # please note: we cannot use recognizer.load_params # as it builds a new computation graph that dies not have # shapred variables added by adaptive weight noise with open(params, 'r') as src: param_values = load_parameters(src) model.set_parameter_values(param_values) parameters = model.get_parameter_dict() logger.info("Parameters:\n" + pprint.pformat([(key, parameters[key].get_value().shape) for key in sorted(parameters.keys())], width=120)) # Define the training algorithm. clipping = StepClipping(train_conf['gradient_threshold']) clipping.threshold.name = "gradient_norm_threshold" rule_names = train_conf.get('rules', ['momentum']) core_rules = [] if 'momentum' in rule_names: logger.info("Using scaling and momentum for training") core_rules.append(Momentum(train_conf['scale'], train_conf['momentum'])) if 'adadelta' in rule_names: logger.info("Using AdaDelta for training") core_rules.append( AdaDelta(train_conf['decay_rate'], train_conf['epsilon'])) max_norm_rules = [] if reg_config.get('max_norm', False) > 0: logger.info("Apply MaxNorm") maxnorm_subjects = VariableFilter(roles=[WEIGHT])(cg.parameters) if reg_config.get('max_norm_exclude_lookup', False): maxnorm_subjects = [ v for v in maxnorm_subjects if not isinstance(get_brick(v), LookupTable) ] logger.info("Parameters covered by MaxNorm:\n" + pprint.pformat( [name for name, p in parameters.items() if p in maxnorm_subjects])) logger.info("Parameters NOT covered by MaxNorm:\n" + pprint.pformat([ name for name, p in parameters.items() if not p in maxnorm_subjects ])) max_norm_rules = [ Restrict(VariableClipping(reg_config['max_norm'], axis=0), maxnorm_subjects) ] burn_in = [] if train_conf.get('burn_in_steps', 0): burn_in.append(BurnIn(num_steps=train_conf['burn_in_steps'])) algorithm = GradientDescent( cost=train_cost, parameters=parameters.values(), gradients=gradients, step_rule=CompositeRule( [clipping] + core_rules + max_norm_rules + # Parameters are not changed at all # when nans are encountered. [RemoveNotFinite(0.0)] + burn_in), on_unused_sources='warn') logger.debug("Scan Ops in the gradients") gradient_cg = ComputationGraph(algorithm.gradients.values()) for op in ComputationGraph(gradient_cg).scans: logger.debug(op) # More variables for debugging: some of them can be added only # after the `algorithm` object is created. secondary_observables += list(regularized_cg.outputs) if not 'train_cost' in [v.name for v in secondary_observables]: secondary_observables += [train_cost] secondary_observables += [ algorithm.total_step_norm, algorithm.total_gradient_norm, clipping.threshold ] for name, param in parameters.items(): num_elements = numpy.product(param.get_value().shape) norm = param.norm(2) / num_elements**0.5 grad_norm = algorithm.gradients[param].norm(2) / num_elements**0.5 step_norm = algorithm.steps[param].norm(2) / num_elements**0.5 stats = tensor.stack(norm, grad_norm, step_norm, step_norm / grad_norm) stats.name = name + '_stats' secondary_observables.append(stats) primary_observables += [ train_cost, algorithm.total_gradient_norm, algorithm.total_step_norm, clipping.threshold, max_recording_length, max_attended_length, max_attended_mask_length ] validation_observables += [ rename(aggregation.mean(batch_cost, batch_size), cost.name), rename(aggregation.sum_(batch_size), 'num_utterances'), weights_entropy, weights_penalty ] def attach_aggregation_schemes(variables): # Aggregation specification has to be factored out as a separate # function as it has to be applied at the very last stage # separately to training and validation observables. result = [] for var in variables: if var.name == 'weights_penalty': result.append( rename(aggregation.mean(var, batch_size), 'weights_penalty_per_recording')) elif var.name == 'weights_entropy': result.append( rename(aggregation.mean(var, labels_mask.sum()), 'weights_entropy_per_label')) else: result.append(var) return result mon_conf = config['monitoring'] # Build main loop. logger.info("Initialize extensions") extensions = [] if use_load_ext and params: extensions.append( Load(params, load_iteration_state=True, load_log=True)) if load_log and params: extensions.append(LoadLog(params)) extensions += [ Timing(after_batch=True), CGStatistics(), #CodeVersion(['lvsr']), ] extensions.append( TrainingDataMonitoring(primary_observables + [l2_cost, cost_forward], after_batch=True)) average_monitoring = TrainingDataMonitoring( attach_aggregation_schemes(secondary_observables), prefix="average", every_n_batches=10) extensions.append(average_monitoring) validation = DataStreamMonitoring( attach_aggregation_schemes(validation_observables + [l2_cost, cost_forward]), data.get_stream("valid", shuffle=False), prefix="valid").set_conditions( before_first_epoch=not fast_start, every_n_epochs=mon_conf['validate_every_epochs'], every_n_batches=mon_conf['validate_every_batches'], after_training=False) extensions.append(validation) per = PhonemeErrorRate(recognizer, data, **config['monitoring']['search']) per_monitoring = DataStreamMonitoring( [per], data.get_stream("valid", batches=False, shuffle=False), prefix="valid").set_conditions( before_first_epoch=not fast_start, every_n_epochs=mon_conf['search_every_epochs'], every_n_batches=mon_conf['search_every_batches'], after_training=False) extensions.append(per_monitoring) track_the_best_per = TrackTheBest( per_monitoring.record_name(per)).set_conditions( before_first_epoch=True, after_epoch=True) track_the_best_cost = TrackTheBest( validation.record_name(cost)).set_conditions(before_first_epoch=True, after_epoch=True) extensions += [track_the_best_cost, track_the_best_per] extensions.append( AdaptiveClipping(algorithm.total_gradient_norm.name, clipping, train_conf['gradient_threshold'], decay_rate=0.998, burnin_period=500)) extensions += [ SwitchOffLengthFilter( data.length_filter, after_n_batches=train_conf.get('stop_filtering')), FinishAfter(after_n_batches=train_conf.get('num_batches'), after_n_epochs=train_conf.get('num_epochs')).add_condition( ["after_batch"], _gradient_norm_is_none), ] channels = [ # Plot 1: training and validation costs [ average_monitoring.record_name(train_cost), validation.record_name(cost) ], # Plot 2: gradient norm, [ average_monitoring.record_name(algorithm.total_gradient_norm), average_monitoring.record_name(clipping.threshold) ], # Plot 3: phoneme error rate [per_monitoring.record_name(per)], # Plot 4: training and validation mean weight entropy [ average_monitoring._record_name('weights_entropy_per_label'), validation._record_name('weights_entropy_per_label') ], # Plot 5: training and validation monotonicity penalty [ average_monitoring._record_name('weights_penalty_per_recording'), validation._record_name('weights_penalty_per_recording') ] ] if bokeh: extensions += [ Plot(bokeh_name if bokeh_name else os.path.basename(save_path), channels, every_n_batches=10, server_url=bokeh_server), ] extensions += [ Checkpoint(save_path, before_first_epoch=not fast_start, after_epoch=True, every_n_batches=train_conf.get('save_every_n_batches'), save_separately=["model", "log"], use_cpickle=True).add_condition( ['after_epoch'], OnLogRecord(track_the_best_per.notification_name), (root_path + "_best" + extension, )).add_condition( ['after_epoch'], OnLogRecord(track_the_best_cost.notification_name), (root_path + "_best_ll" + extension, )), ProgressBar() ] extensions.append(EmbedIPython(use_main_loop_run_caller_env=True)) if config['net']['criterion']['name'].startswith('mse'): extensions.append( LogInputsGains(labels, cg, recognizer.generator.readout.emitter, data)) if train_conf.get('patience'): patience_conf = train_conf['patience'] if not patience_conf.get('notification_names'): # setdefault will not work for empty list patience_conf['notification_names'] = [ track_the_best_per.notification_name, track_the_best_cost.notification_name ] extensions.append(Patience(**patience_conf)) extensions.append( Printing(every_n_batches=1, attribute_filter=PrintingFilterList())) return model, algorithm, data, extensions
def main(mode, save_path, num_batches, data_path=None): reverser = WordReverser(100, len(char2code), name="reverser") if mode == "train": # Data processing pipeline dataset_options = dict(dictionary=char2code, level="character", preprocess=_lower) if data_path: dataset = TextFile(data_path, **dataset_options) else: dataset = OneBillionWord("training", [99], **dataset_options) data_stream = dataset.get_example_stream() data_stream = Filter(data_stream, _filter_long) data_stream = Mapping(data_stream, reverse_words, add_sources=("targets",)) data_stream = Batch(data_stream, iteration_scheme=ConstantScheme(10)) data_stream = Padding(data_stream) data_stream = Mapping(data_stream, _transpose) # Initialization settings reverser.weights_init = IsotropicGaussian(0.1) reverser.biases_init = Constant(0.0) reverser.push_initialization_config() reverser.encoder.weights_init = Orthogonal() reverser.generator.transition.weights_init = Orthogonal() # Build the cost computation graph chars = tensor.lmatrix("features") chars_mask = tensor.matrix("features_mask") targets = tensor.lmatrix("targets") targets_mask = tensor.matrix("targets_mask") batch_cost = reverser.cost( chars, chars_mask, targets, targets_mask).sum() batch_size = chars.shape[1].copy(name="batch_size") cost = aggregation.mean(batch_cost, batch_size) cost.name = "sequence_log_likelihood" logger.info("Cost graph is built") # Give an idea of what's going on model = Model(cost) parameters = model.get_parameter_dict() logger.info("Parameters:\n" + pprint.pformat( [(key, value.get_value().shape) for key, value in parameters.items()], width=120)) # Initialize parameters for brick in model.get_top_bricks(): brick.initialize() # Define the training algorithm. cg = ComputationGraph(cost) algorithm = GradientDescent( cost=cost, parameters=cg.parameters, step_rule=CompositeRule([StepClipping(10.0), Scale(0.01)])) # Fetch variables useful for debugging generator = reverser.generator (energies,) = VariableFilter( applications=[generator.readout.readout], name_regex="output")(cg.variables) (activations,) = VariableFilter( applications=[generator.transition.apply], name=generator.transition.apply.states[0])(cg.variables) max_length = chars.shape[0].copy(name="max_length") cost_per_character = aggregation.mean( batch_cost, batch_size * max_length).copy( name="character_log_likelihood") min_energy = energies.min().copy(name="min_energy") max_energy = energies.max().copy(name="max_energy") mean_activation = abs(activations).mean().copy( name="mean_activation") observables = [ cost, min_energy, max_energy, mean_activation, batch_size, max_length, cost_per_character, algorithm.total_step_norm, algorithm.total_gradient_norm] for name, parameter in parameters.items(): observables.append(parameter.norm(2).copy(name + "_norm")) observables.append(algorithm.gradients[parameter].norm(2).copy( name + "_grad_norm")) # Construct the main loop and start training! average_monitoring = TrainingDataMonitoring( observables, prefix="average", every_n_batches=10) main_loop = MainLoop( model=model, data_stream=data_stream, algorithm=algorithm, extensions=[ Timing(), TrainingDataMonitoring(observables, after_batch=True), average_monitoring, FinishAfter(after_n_batches=num_batches) # This shows a way to handle NaN emerging during # training: simply finish it. .add_condition(["after_batch"], _is_nan), # Saving the model and the log separately is convenient, # because loading the whole pickle takes quite some time. Checkpoint(save_path, every_n_batches=500, save_separately=["model", "log"]), Printing(every_n_batches=1)]) main_loop.run() elif mode == "sample" or mode == "beam_search": chars = tensor.lmatrix("input") generated = reverser.generate(chars) model = Model(generated) logger.info("Loading the model..") with open(save_path, 'rb') as f: model.set_parameter_values(load_parameters(f)) def generate(input_): """Generate output sequences for an input sequence. Incapsulates most of the difference between sampling and beam search. Returns ------- outputs : list of lists Trimmed output sequences. costs : list The negative log-likelihood of generating the respective sequences. """ if mode == "beam_search": samples, = VariableFilter( applications=[reverser.generator.generate], name="outputs")( ComputationGraph(generated[1])) # NOTE: this will recompile beam search functions # every time user presses Enter. Do not create # a new `BeamSearch` object every time if # speed is important for you. beam_search = BeamSearch(samples) outputs, costs = beam_search.search( {chars: input_}, char2code['</S>'], 3 * input_.shape[0]) else: _1, outputs, _2, _3, costs = ( model.get_theano_function()(input_)) outputs = list(outputs.T) costs = list(costs.T) for i in range(len(outputs)): outputs[i] = list(outputs[i]) try: true_length = outputs[i].index(char2code['</S>']) + 1 except ValueError: true_length = len(outputs[i]) outputs[i] = outputs[i][:true_length] costs[i] = costs[i][:true_length].sum() return outputs, costs while True: try: line = input("Enter a sentence\n") message = ("Enter the number of samples\n" if mode == "sample" else "Enter the beam size\n") batch_size = int(input(message)) except EOFError: break except Exception: traceback.print_exc() continue encoded_input = [char2code.get(char, char2code["<UNK>"]) for char in line.lower().strip()] encoded_input = ([char2code['<S>']] + encoded_input + [char2code['</S>']]) print("Encoder input:", encoded_input) target = reverse_words((encoded_input,))[0] print("Target: ", target) samples, costs = generate( numpy.repeat(numpy.array(encoded_input)[:, None], batch_size, axis=1)) messages = [] for sample, cost in equizip(samples, costs): message = "({})".format(cost) message += "".join(code2char[code] for code in sample) if sample == target: message += " CORRECT!" messages.append((cost, message)) messages.sort(key=operator.itemgetter(0), reverse=True) for _, message in messages: print(message)
def train_language_model(new_training_job, config, save_path, params, fast_start, fuel_server, seed): c = config if seed: fuel.config.default_seed = seed blocks.config.config.default_seed = seed data, lm, retrieval = initialize_data_and_model(config) # full main loop can be saved... main_loop_path = os.path.join(save_path, 'main_loop.tar') # or only state (log + params) which can be useful not to pickle embeddings state_path = os.path.join(save_path, 'training_state.tar') stream_path = os.path.join(save_path, 'stream.pkl') best_tar_path = os.path.join(save_path, "best_model.tar") words = tensor.ltensor3('words') words_mask = tensor.matrix('words_mask') if theano.config.compute_test_value != 'off': test_value_data = next( data.get_stream('train', batch_size=4, max_length=5).get_epoch_iterator()) words.tag.test_value = test_value_data[0] words_mask.tag.test_value = test_value_data[1] costs, updates = lm.apply(words, words_mask) cost = rename(costs.mean(), 'mean_cost') cg = Model(cost) if params: logger.debug("Load parameters from {}".format(params)) with open(params) as src: cg.set_parameter_values(load_parameters(src)) length = rename(words.shape[1], 'length') perplexity, = VariableFilter(name='perplexity')(cg) perplexities = VariableFilter(name_regex='perplexity.*')(cg) monitored_vars = [length, cost] + perplexities if c['dict_path']: num_definitions, = VariableFilter(name='num_definitions')(cg) monitored_vars.extend([num_definitions]) parameters = cg.get_parameter_dict() trained_parameters = parameters.values() saved_parameters = parameters.values() if c['embedding_path']: logger.debug("Exclude word embeddings from the trained parameters") trained_parameters = [ p for p in trained_parameters if not p == lm.get_def_embeddings_params() ] saved_parameters = [ p for p in saved_parameters if not p == lm.get_def_embeddings_params() ] if c['cache_size'] != 0: logger.debug("Enable fake recursivity for looking up embeddings") trained_parameters = [ p for p in trained_parameters if not p == lm.get_cache_params() ] logger.info("Cost parameters" + "\n" + pprint.pformat([ " ".join( (key, str(parameters[key].get_value().shape), 'trained' if parameters[key] in trained_parameters else 'frozen')) for key in sorted(parameters.keys()) ], width=120)) rules = [] if c['grad_clip_threshold']: rules.append(StepClipping(c['grad_clip_threshold'])) rules.append(Adam(learning_rate=c['learning_rate'], beta1=c['momentum'])) algorithm = GradientDescent(cost=cost, parameters=trained_parameters, step_rule=CompositeRule(rules)) if c['cache_size'] != 0: algorithm.add_updates(updates) train_monitored_vars = list(monitored_vars) if c['grad_clip_threshold']: train_monitored_vars.append(algorithm.total_gradient_norm) word_emb_RMS, = VariableFilter(name='word_emb_RMS')(cg) main_rnn_in_RMS, = VariableFilter(name='main_rnn_in_RMS')(cg) train_monitored_vars.extend([word_emb_RMS, main_rnn_in_RMS]) if c['monitor_parameters']: train_monitored_vars.extend(parameter_stats(parameters, algorithm)) # We use a completely random seed on purpose. With Fuel server # it's currently not possible to restore the state of the training # stream. That's why it's probably better to just have it stateless. stream_seed = numpy.random.randint(0, 10000000) if fuel_server else None training_stream = data.get_stream('train', batch_size=c['batch_size'], max_length=c['max_length'], seed=stream_seed) valid_stream = data.get_stream('valid', batch_size=c['batch_size_valid'], max_length=c['max_length'], seed=stream_seed) original_training_stream = training_stream if fuel_server: # the port will be configured by the StartFuelServer extension training_stream = ServerDataStream( sources=training_stream.sources, produces_examples=training_stream.produces_examples) validation = DataStreamMonitoring(monitored_vars, valid_stream, prefix="valid").set_conditions( before_first_epoch=not fast_start, on_resumption=True, every_n_batches=c['mon_freq_valid']) track_the_best = TrackTheBest(validation.record_name(perplexity), choose_best=min).set_conditions( on_resumption=True, after_epoch=True, every_n_batches=c['mon_freq_valid']) # don't save them the entire main loop to avoid pickling everything if c['fast_checkpoint']: load = (LoadNoUnpickling(state_path, load_iteration_state=True, load_log=True).set_conditions( before_training=not new_training_job)) cp_args = { 'save_main_loop': False, 'save_separately': ['log', 'iteration_state'], 'parameters': saved_parameters } checkpoint = Checkpoint(state_path, before_training=not fast_start, every_n_batches=c['save_freq_batches'], after_training=not fast_start, **cp_args) if c['checkpoint_every_n_batches']: intermediate_cp = IntermediateCheckpoint( state_path, every_n_batches=c['checkpoint_every_n_batches'], after_training=False, **cp_args) else: load = (Load(main_loop_path, load_iteration_state=True, load_log=True).set_conditions( before_training=not new_training_job)) cp_args = { 'save_separately': ['iteration_state'], 'parameters': saved_parameters } checkpoint = Checkpoint(main_loop_path, before_training=not fast_start, every_n_batches=c['save_freq_batches'], after_training=not fast_start, **cp_args) if c['checkpoint_every_n_batches']: intermediate_cp = IntermediateCheckpoint( main_loop_path, every_n_batches=c['checkpoint_every_n_batches'], after_training=False, **cp_args) checkpoint = checkpoint.add_condition( ['after_batch', 'after_epoch'], OnLogRecord(track_the_best.notification_name), (best_tar_path, )) extensions = [ load, StartFuelServer(original_training_stream, stream_path, before_training=fuel_server), Timing(every_n_batches=c['mon_freq_train']) ] if retrieval: extensions.append( RetrievalPrintStats(retrieval=retrieval, every_n_batches=c['mon_freq_train'], before_training=not fast_start)) extensions.extend([ TrainingDataMonitoring(train_monitored_vars, prefix="train", every_n_batches=c['mon_freq_train']), validation, track_the_best, checkpoint ]) if c['checkpoint_every_n_batches']: extensions.append(intermediate_cp) extensions.extend([ DumpTensorflowSummaries(save_path, every_n_batches=c['mon_freq_train'], after_training=True), Printing(on_resumption=True, every_n_batches=c['mon_freq_train']), FinishIfNoImprovementAfter(track_the_best.notification_name, iterations=50 * c['mon_freq_valid'], every_n_batches=c['mon_freq_valid']), FinishAfter(after_n_batches=c['n_batches']) ]) logger.info("monitored variables during training:" + "\n" + pprint.pformat(train_monitored_vars, width=120)) logger.info("monitored variables during valid:" + "\n" + pprint.pformat(monitored_vars, width=120)) main_loop = MainLoop(algorithm, training_stream, model=Model(cost), extensions=extensions) main_loop.run()
def generate_embeddings(config, tar_path, part, dest_path, format_, average=False, encoder_embeddings=None, **kwargs): """ generate embeddings for all the defintions, average them and serialize OR if encoder_embeddings, serialize the models' encoder embeddings config: name of the config of the model tar_path: tar path of the model parameters part: part of the dataset (should be either 'train', 'valid', 'test' or 'all') dest_path: directory where the serialized embeddings will be written format: either 'dict' or 'glove' encoder_embeddings: None, 'only', 'mixed', 'if_missing' - None: don't include encoder embeddings - 'only': don't read any data, just serialize the encoder embeddings - 'mixed': add the encoder embeddings to the list of definition embeddings - 'if_missing': add the encoder embeddings when there is no corresponding def average: if true, multi-prototype embeddings will be averaged """ if not os.path.exists(dest_path): os.makedirs(dest_path) c = config data, model = initialize_data_and_model(c, train_phase=False) words = T.ltensor3('words') words_mask = T.matrix('words_mask') keys = T.lmatrix('keys') n_identical_keys = T.lvector('n_identical_keys') sym_args = [words, words_mask] if format_ not in ['dict', 'glove']: raise ValueError("format should be either: dict, glove") if not c['encoder'] and encoder_embeddings != 'only': raise ValueError('Error: this model does not have an encoder.') if use_keys(c): sym_args.append(keys) if use_n_identical_keys(c): sym_args.append(n_identical_keys) costs = model.apply(*sym_args, train_phase=False) cg = Model(costs) with open(tar_path) as src: cg.set_parameter_values(load_parameters(src)) if encoder_embeddings: if encoder_embeddings == 'only' and not c['encoder']: embeddings_array = model.get_def_embeddings_params('key').eval() else: embeddings_array = model.get_def_embeddings_params('main').eval() entries = model.get_embeddings_entries() enc_embeddings = { e: np.asarray(a) for e, a in zip(entries, embeddings_array) } if encoder_embeddings == 'only': serialize_embeddings(enc_embeddings, format_, dest_path, "encoder_embeddings") return 0 embeddings_var, = VariableFilter(name='embeddings')(cg) compute = dict({"embeddings": embeddings_var}) if c['proximity_coef'] != 0: prox_var, = VariableFilter(name='proximity_term')(cg) compute["proximity_term"] = prox_var print "sym args", sym_args predict_f = theano.function(sym_args, compute) batch_size = 256 # size of test_unseen stream = data.get_stream(part, batch_size=batch_size, max_length=c['max_length'], remove_keys=False, remove_n_identical_keys=False) raw_data = [] # list of dicts containing the inputs and computed outputs i = 0 vocab = model._vocab print "start computing" embeddings = defaultdict(list) for input_data in stream.get_epoch_iterator(as_dict=True): if i % 10 == 0: print "iteration:", i words = input_data['words'] words_mask = input_data['words_mask'] keys = input_data['keys'] n_identical_keys = input_data['n_identical_keys'] args = [words, words_mask] if use_keys(c): args.append(keys) if use_n_identical_keys(c): args.append(n_identical_keys) to_save = predict_f(*args) for k, h in zip(keys, to_save['embeddings']): key = vec2str(k) if encoder_embeddings == 'if_missing': try: del enc_embeddings[key] except KeyError: pass embeddings[key].append(h) i += 1 if encoder_embeddings in ['mixed', 'if_missing']: for k, e in enc_embeddings.iteritems(): embeddings[k].append(e) if encoder_embeddings == 'mixed': prefix_fname = 'mix_e_' elif encoder_embeddings == 'if_missing': prefix_fname = 'if_mis_e_' else: prefix_fname = '' # combine: if average: mean_embeddings = {} for k in embeddings.keys(): mean_embeddings[k] = np.mean(np.asarray(embeddings[k]), axis=0) serialize_embeddings(mean_embeddings, format_, dest_path, prefix_fname + "mean_embeddings") else: serialize_embeddings(embeddings, format_, dest_path, prefix_fname + "embeddings")
saved_args = cPickle.load(f) assert saved_args.dataset == args.dataset if args.use_last: params_mode = 'last_' else: params_mode = 'best_' args.samples_name = params_mode + args.samples_name with open( os.path.join(args.save_dir, "pkl", params_mode + args.experiment_name + ".tar"), 'rb') as src: parameters = load_parameters(src) test_stream = parrot_stream(args.dataset, saved_args.use_speaker, ('test', ), args.num_samples, args.num_steps, sorting_mult=1, labels_type=saved_args.labels_type, raw_data=args.plot_raw) data_tr = next(test_stream.get_epoch_iterator()) data_tr = {source: data for source, data in zip(test_stream.sources, data_tr)} print "Loaded sources from test_stream: ", data_tr.keys() features_tr = data_tr.get('features', None) features_mask_tr = data_tr.get('features_mask', None)
def train_snli_model(new_training_job, config, save_path, params, fast_start, fuel_server, seed, model='simple'): if config['exclude_top_k'] > config['num_input_words'] and config[ 'num_input_words'] > 0: raise Exception("Some words have neither word nor def embedding") c = config logger = configure_logger(name="snli_baseline_training", log_file=os.path.join(save_path, "log.txt")) if not os.path.exists(save_path): logger.info("Start a new job") os.mkdir(save_path) else: logger.info("Continue an existing job") with open(os.path.join(save_path, "cmd.txt"), "w") as f: f.write(" ".join(sys.argv)) # Make data paths nice for path in [ 'dict_path', 'embedding_def_path', 'embedding_path', 'vocab', 'vocab_def', 'vocab_text' ]: if c.get(path, ''): if not os.path.isabs(c[path]): c[path] = os.path.join(fuel.config.data_path[0], c[path]) main_loop_path = os.path.join(save_path, 'main_loop.tar') main_loop_best_val_path = os.path.join(save_path, 'main_loop_best_val.tar') stream_path = os.path.join(save_path, 'stream.pkl') # Save config to save_path json.dump(config, open(os.path.join(save_path, "config.json"), "w")) if model == 'simple': nli_model, data, used_dict, used_retrieval, _ = _initialize_simple_model_and_data( c) elif model == 'esim': nli_model, data, used_dict, used_retrieval, _ = _initialize_esim_model_and_data( c) else: raise NotImplementedError() # Compute cost s1, s2 = T.lmatrix('sentence1'), T.lmatrix('sentence2') if c['dict_path']: assert os.path.exists(c['dict_path']) s1_def_map, s2_def_map = T.lmatrix('sentence1_def_map'), T.lmatrix( 'sentence2_def_map') def_mask = T.fmatrix("def_mask") defs = T.lmatrix("defs") else: s1_def_map, s2_def_map = None, None def_mask = None defs = None s1_mask, s2_mask = T.fmatrix('sentence1_mask'), T.fmatrix('sentence2_mask') y = T.ivector('label') cg = {} for train_phase in [True, False]: # NOTE: Please don't change outputs of cg if train_phase: with batch_normalization(nli_model): pred = nli_model.apply(s1, s1_mask, s2, s2_mask, def_mask=def_mask, defs=defs, s1_def_map=s1_def_map, s2_def_map=s2_def_map, train_phase=train_phase) else: pred = nli_model.apply(s1, s1_mask, s2, s2_mask, def_mask=def_mask, defs=defs, s1_def_map=s1_def_map, s2_def_map=s2_def_map, train_phase=train_phase) cost = CategoricalCrossEntropy().apply(y.flatten(), pred) error_rate = MisclassificationRate().apply(y.flatten(), pred) cg[train_phase] = ComputationGraph([cost, error_rate]) # Weight decay (TODO: Make it less bug prone) if model == 'simple': weights_to_decay = VariableFilter( bricks=[dense for dense, relu, bn in nli_model._mlp], roles=[WEIGHT])(cg[True].variables) weight_decay = np.float32(c['l2']) * sum( (w**2).sum() for w in weights_to_decay) elif model == 'esim': weight_decay = 0.0 else: raise NotImplementedError() final_cost = cg[True].outputs[0] + weight_decay final_cost.name = 'final_cost' # Add updates for population parameters if c.get("bn", True): pop_updates = get_batch_normalization_updates(cg[True]) extra_updates = [(p, m * 0.1 + p * (1 - 0.1)) for p, m in pop_updates] else: pop_updates = [] extra_updates = [] if params: logger.debug("Load parameters from {}".format(params)) with open(params) as src: loaded_params = load_parameters(src) cg[True].set_parameter_values(loaded_params) for param, m in pop_updates: param.set_value(loaded_params[get_brick( param).get_hierarchical_name(param)]) if os.path.exists(os.path.join(save_path, "main_loop.tar")): logger.warning("Manually loading BN stats :(") with open(os.path.join(save_path, "main_loop.tar")) as src: loaded_params = load_parameters(src) for param, m in pop_updates: param.set_value( loaded_params[get_brick(param).get_hierarchical_name(param)]) if theano.config.compute_test_value != 'off': test_value_data = next( data.get_stream('train', batch_size=4).get_epoch_iterator()) s1.tag.test_value = test_value_data[0] s1_mask.tag.test_value = test_value_data[1] s2.tag.test_value = test_value_data[2] s2_mask.tag.test_value = test_value_data[3] y.tag.test_value = test_value_data[4] # Freeze embeddings if not c['train_emb']: frozen_params = [ p for E in nli_model.get_embeddings_lookups() for p in E.parameters ] train_params = [p for p in cg[True].parameters] assert len(set(frozen_params) & set(train_params)) > 0 else: frozen_params = [] if not c.get('train_def_emb', 1): frozen_params_def = [ p for E in nli_model.get_def_embeddings_lookups() for p in E.parameters ] train_params = [p for p in cg[True].parameters] assert len(set(frozen_params_def) & set(train_params)) > 0 frozen_params += frozen_params_def train_params = [p for p in cg[True].parameters if p not in frozen_params] train_params_keys = [ get_brick(p).get_hierarchical_name(p) for p in train_params ] # Optimizer algorithm = GradientDescent(cost=final_cost, on_unused_sources='ignore', parameters=train_params, step_rule=Adam(learning_rate=c['lr'])) algorithm.add_updates(extra_updates) m = Model(final_cost) parameters = m.get_parameter_dict() # Blocks version mismatch logger.info("Trainable parameters" + "\n" + pprint.pformat([(key, parameters[key].get_value().shape) for key in sorted(train_params_keys)], width=120)) logger.info("# of parameters {}".format( sum([ np.prod(parameters[key].get_value().shape) for key in sorted(train_params_keys) ]))) ### Monitored args ### train_monitored_vars = [final_cost] + cg[True].outputs monitored_vars = cg[False].outputs val_acc = monitored_vars[1] to_monitor_names = [ 'def_unk_ratio', 's1_merged_input_rootmean2', 's1_def_mean_rootmean2', 's1_gate_rootmean2', 's1_compose_gate_rootmean2' ] for k in to_monitor_names: train_v, valid_v = VariableFilter(name=k)( cg[True]), VariableFilter(name=k)(cg[False]) if len(train_v): logger.info("Adding {} tracking".format(k)) train_monitored_vars.append(train_v[0]) monitored_vars.append(valid_v[0]) else: logger.warning("Didnt find {} in cg".format(k)) if c['monitor_parameters']: for name in train_params_keys: param = parameters[name] num_elements = numpy.product(param.get_value().shape) norm = param.norm(2) / num_elements grad_norm = algorithm.gradients[param].norm(2) / num_elements step_norm = algorithm.steps[param].norm(2) / num_elements stats = tensor.stack(norm, grad_norm, step_norm, step_norm / grad_norm) stats.name = name + '_stats' train_monitored_vars.append(stats) regular_training_stream = data.get_stream('train', batch_size=c['batch_size'], seed=seed) if fuel_server: # the port will be configured by the StartFuelServer extension training_stream = ServerDataStream( sources=regular_training_stream.sources, hwm=100, produces_examples=regular_training_stream.produces_examples) else: training_stream = regular_training_stream ### Build extensions ### extensions = [ # Load(main_loop_path, load_iteration_state=True, load_log=True) # .set_conditions(before_training=not new_training_job), StartFuelServer(regular_training_stream, stream_path, hwm=100, script_path=os.path.join( os.path.dirname(__file__), "../bin/start_fuel_server.py"), before_training=fuel_server), Timing(every_n_batches=c['mon_freq']), ProgressBar(), RetrievalPrintStats(retrieval=used_retrieval, every_n_batches=c['mon_freq_valid'], before_training=not fast_start), Timestamp(), TrainingDataMonitoring(train_monitored_vars, prefix="train", every_n_batches=c['mon_freq']), ] if c['layout'] == 'snli': validation = DataStreamMonitoring(monitored_vars, data.get_stream('valid', batch_size=14, seed=seed), before_training=not fast_start, on_resumption=True, after_training=True, every_n_batches=c['mon_freq_valid'], prefix='valid') extensions.append(validation) elif c['layout'] == 'mnli': validation = DataStreamMonitoring(monitored_vars, data.get_stream('valid_matched', batch_size=14, seed=seed), every_n_batches=c['mon_freq_valid'], on_resumption=True, after_training=True, prefix='valid_matched') validation_mismatched = DataStreamMonitoring( monitored_vars, data.get_stream('valid_mismatched', batch_size=14, seed=seed), every_n_batches=c['mon_freq_valid'], before_training=not fast_start, on_resumption=True, after_training=True, prefix='valid_mismatched') extensions.extend([validation, validation_mismatched]) else: raise NotImplementedError() # Similarity trackers for embeddings if len(c.get('vocab_def', '')): retrieval_vocab = Vocabulary(c['vocab_def']) else: retrieval_vocab = data.vocab retrieval_all = Retrieval(vocab_text=retrieval_vocab, dictionary=used_dict, max_def_length=c['max_def_length'], exclude_top_k=0, max_def_per_word=c['max_def_per_word']) for name in [ 's1_word_embeddings', 's1_dict_word_embeddings', 's1_translated_word_embeddings' ]: variables = VariableFilter(name=name)(cg[False]) if len(variables): s1_emb = variables[0] logger.info("Adding similarity tracking for " + name) # A bit sloppy about downcast if "dict" in name: embedder = construct_dict_embedder(theano.function( [s1, defs, def_mask, s1_def_map], s1_emb, allow_input_downcast=True), vocab=data.vocab, retrieval=retrieval_all) extensions.append( SimilarityWordEmbeddingEval( embedder=embedder, prefix=name, every_n_batches=c['mon_freq_valid'], before_training=not fast_start)) else: embedder = construct_embedder(theano.function( [s1], s1_emb, allow_input_downcast=True), vocab=data.vocab) extensions.append( SimilarityWordEmbeddingEval( embedder=embedder, prefix=name, every_n_batches=c['mon_freq_valid'], before_training=not fast_start)) track_the_best = TrackTheBest(validation.record_name(val_acc), before_training=not fast_start, every_n_epochs=c['save_freq_epochs'], after_training=not fast_start, every_n_batches=c['mon_freq_valid'], choose_best=min) extensions.append(track_the_best) # Special care for serializing embeddings if len(c.get('embedding_path', '')) or len(c.get('embedding_def_path', '')): extensions.insert( 0, LoadNoUnpickling(main_loop_path, load_iteration_state=True, load_log=True).set_conditions( before_training=not new_training_job)) extensions.append( Checkpoint(main_loop_path, parameters=train_params + [p for p, m in pop_updates], save_main_loop=False, save_separately=['log', 'iteration_state'], before_training=not fast_start, every_n_epochs=c['save_freq_epochs'], after_training=not fast_start).add_condition( ['after_batch', 'after_epoch'], OnLogRecord(track_the_best.notification_name), (main_loop_best_val_path, ))) else: extensions.insert( 0, Load(main_loop_path, load_iteration_state=True, load_log=True).set_conditions( before_training=not new_training_job)) extensions.append( Checkpoint(main_loop_path, parameters=cg[True].parameters + [p for p, m in pop_updates], before_training=not fast_start, every_n_epochs=c['save_freq_epochs'], after_training=not fast_start).add_condition( ['after_batch', 'after_epoch'], OnLogRecord(track_the_best.notification_name), (main_loop_best_val_path, ))) extensions.extend([ DumpCSVSummaries(save_path, every_n_batches=c['mon_freq_valid'], after_training=True), DumpTensorflowSummaries(save_path, after_epoch=True, every_n_batches=c['mon_freq_valid'], after_training=True), Printing(every_n_batches=c['mon_freq_valid']), PrintMessage(msg="save_path={}".format(save_path), every_n_batches=c['mon_freq']), FinishAfter(after_n_batches=c['n_batches']).add_condition( ['after_batch'], OnLogStatusExceed('iterations_done', c['n_batches'])) ]) logger.info(extensions) ### Run training ### if "VISDOM_SERVER" in os.environ: print("Running visdom server") ret = subprocess.Popen([ os.path.join(os.path.dirname(__file__), "../visdom_plotter.py"), "--visdom-server={}".format(os.environ['VISDOM_SERVER']), "--folder={}".format(save_path) ]) time.sleep(0.1) if ret.returncode is not None: raise Exception() atexit.register(lambda: os.kill(ret.pid, signal.SIGINT)) model = Model(cost) for p, m in pop_updates: model._parameter_dict[get_brick(p).get_hierarchical_name(p)] = p main_loop = MainLoop(algorithm, training_stream, model=model, extensions=extensions) assert os.path.exists(save_path) main_loop.run()
Globals.read_alphabet(f_vocab); print("Vocab:",Globals.char2code, file=sys.stderr); Globals.read_lookup(f_test); print("Lookup size:", len(Globals.lookup), file=sys.stderr); #print("Test:",f_test,file=sys.stderr); m = MorphGen(100, len(Globals.char2code)); chars = tensor.lmatrix("input") generated = m.generate(chars) model = Model(generated) # Load model with open(f_model, 'rb') as f: #{ model.set_parameter_values(load_parameters(f)) #} f_in = open(f_test); total = 0.0; correct = 0.0; samples, = VariableFilter(applications=[m.generator.generate], name="outputs")(ComputationGraph(generated[1])) # NOTE: this will recompile beam search functions every time user presses Enter. Do not create # a new `BeamSearch` object every time if speed is important for you. beam_search = BeamSearch(samples); for line in f_in.readlines(): #{ inp = _tokenise(line); form = '|'.join(line.strip().split('|||')[1:]); encoded_input = _encode(inp); # print(inp,'→',encoded_input, sys.stderr);
def evaluate(c, tar_path, *args, **kwargs): """ Performs rudimentary evaluation of SNLI/MNLI run * Runs on valid and test given network * Saves all predictions * Saves embedding matrix * Saves results.json and predictions.csv """ # Load and configure model = kwargs['model'] assert c.endswith("json") c = json.load(open(c)) # Very ugly absolute path fix ABS_PATHS = [ "data/", "/mnt/users/jastrzebski/local/dict_based_learning/data/", "/data/cf9ffb48-61bd-40dc-a011-b2e7e5acfd72/" ] from six import string_types for abs_path in ABS_PATHS: for k in c: if isinstance(c[k], string_types): if c[k].startswith(abs_path): c[k] = c[k][len(abs_path):] # Make data paths nice for path in [ 'dict_path', 'embedding_def_path', 'embedding_path', 'vocab', 'vocab_def', 'vocab_text' ]: if c.get(path, ''): if not os.path.isabs(c[path]): c[path] = os.path.join(fuel.config.data_path[0], c[path]) logging.info("Updating config with " + str(kwargs)) c.update(**kwargs) # NOTE: This assures we don't miss crucial definition for some def heavy words # usually it is a good idea c['max_def_per_word'] = c['max_def_per_word'] * 2 assert tar_path.endswith("tar") dest_path = os.path.dirname(tar_path) prefix = os.path.splitext(os.path.basename(tar_path))[0] s1_decoded, s2_decoded = T.lmatrix('sentence1'), T.lmatrix('sentence2') if c['dict_path']: s1_def_map, s2_def_map = T.lmatrix('sentence1_def_map'), T.lmatrix( 'sentence2_def_map') def_mask = T.fmatrix("def_mask") defs = T.lmatrix("defs") else: s1_def_map, s2_def_map = None, None def_mask = None defs = None s1_mask, s2_mask = T.fmatrix('sentence1_mask'), T.fmatrix('sentence2_mask') if model == 'simple': model, data, used_dict, used_retrieval, used_vocab = _initialize_simple_model_and_data( c) elif model == 'esim': model, data, used_dict, used_retrieval, used_vocab = _initialize_esim_model_and_data( c) else: raise NotImplementedError() pred = model.apply(s1_decoded, s1_mask, s2_decoded, s2_mask, def_mask=def_mask, defs=defs, s1_def_map=s1_def_map, s2_def_map=s2_def_map, train_phase=False) cg = ComputationGraph([pred]) if c.get("bn", True): bn_params = [ p for p in VariableFilter(bricks=[BatchNormalization])(cg) if hasattr(p, "set_value") ] else: bn_params = [] # Load model model = Model(cg.outputs) parameters = model.get_parameter_dict() # Blocks version mismatch logging.info( "Trainable parameters" + "\n" + pprint.pformat([(key, parameters[key].get_value().shape) for key in sorted([ get_brick(param).get_hierarchical_name(param) for param in cg.parameters ])], width=120)) logging.info("# of parameters {}".format( sum([ np.prod(parameters[key].get_value().shape) for key in sorted([ get_brick(param).get_hierarchical_name(param) for param in cg.parameters ]) ]))) with open(tar_path) as src: params = load_parameters(src) loaded_params_set = set(params.keys()) model_params_set = set([ get_brick(param).get_hierarchical_name(param) for param in cg.parameters ]) logging.info("Loaded extra parameters") logging.info(loaded_params_set - model_params_set) logging.info("Missing parameters") logging.info(model_params_set - loaded_params_set) model.set_parameter_values(params) if c.get("bn", True): logging.info("Loading " + str([ get_brick(param).get_hierarchical_name(param) for param in bn_params ])) for param in bn_params: param.set_value( params[get_brick(param).get_hierarchical_name(param)]) for p in bn_params: model._parameter_dict[get_brick(p).get_hierarchical_name(p)] = p # Read logs logs = pd.read_csv(os.path.join(dest_path, "logs.csv")) best_val_acc = logs['valid_misclassificationrate_apply_error_rate'].min() logging.info("Best measured valid acc: " + str(best_val_acc)) # NOTE(kudkudak): We need this to have comparable mean rank and embedding scores reference_vocab = Vocabulary( os.path.join(fuel.config.data_path[0], c['data_path'], 'vocab.txt')) vocab_all = Vocabulary( os.path.join( fuel.config.data_path[0], c['data_path'], 'vocab_all.txt')) # Can include OOV words, which is interesting retrieval_all = Retrieval(vocab_text=used_vocab, dictionary=used_dict, max_def_length=c['max_def_length'], exclude_top_k=0, max_def_per_word=c['max_def_per_word']) # logging.info("Calculating dict and word embeddings for vocab.txt and vocab_all.txt") # for name in ['s1_word_embeddings', 's1_dict_word_embeddings']: # variables = VariableFilter(name=name)(cg) # if len(variables): # s1_emb = variables[0] # # A bit sloppy about downcast # # if "dict" in name: # embedder = construct_dict_embedder( # theano.function([s1_decoded, defs, def_mask, s1_def_map], s1_emb, allow_input_downcast=True), # vocab=data.vocab, retrieval=retrieval_all) # else: # embedder = construct_embedder(theano.function([s1_decoded], s1_emb, allow_input_downcast=True), # vocab=data.vocab) # # for v_name, v in [("vocab_all", vocab_all), ("vocab", reference_vocab)]: # logging.info("Calculating {} embeddings for {}".format(name, v_name)) # Predict predict_fnc = theano.function(cg.inputs, pred) results = {} batch_size = 14 for subset in ['valid', 'test']: logging.info("Predicting on " + subset) stream = data.get_stream(subset, batch_size=batch_size, seed=778) it = stream.get_epoch_iterator() rows = [] for ex in tqdm.tqdm(it, total=10000 / batch_size): ex = dict(zip(stream.sources, ex)) inp = [ex[v.name] for v in cg.inputs] prob = predict_fnc(*inp) label_pred = np.argmax(prob, axis=1) for id in range(len(prob)): s1_decoded = used_vocab.decode(ex['sentence1'][id]).split() s2_decoded = used_vocab.decode(ex['sentence2'][id]).split() assert used_vocab == data.vocab s1_decoded = [ '*' + w + '*' if used_vocab.word_to_id(w) > c['num_input_words'] else w for w in s1_decoded ] s2_decoded = [ '*' + w + '*' if used_vocab.word_to_id(w) > c['num_input_words'] else w for w in s2_decoded ] # Different difficulty metrics # text_unk_percentage s1_no_pad = [w for w in ex['sentence1'][id] if w != 0] s2_no_pad = [w for w in ex['sentence2'][id] if w != 0] s1_unk_percentage = sum([ 1. for w in s1_no_pad if w == used_vocab.unk ]) / len(s1_no_pad) s2_unk_percentage = sum([ 1. for w in s1_no_pad if w == used_vocab.unk ]) / len(s2_no_pad) # mean freq word s1_mean_freq = np.mean([ 0 if w == data.vocab.unk else used_vocab._id_to_freq[w] for w in s1_no_pad ]) s2_mean_freq = np.mean([ 0 if w == data.vocab.unk else used_vocab._id_to_freq[w] for w in s2_no_pad ]) # mean rank word (UNK is max rank) # NOTE(kudkudak): Will break if we reindex unk between vocabs :P s1_mean_rank = np.mean([ reference_vocab.size() if reference_vocab.word_to_id( used_vocab.id_to_word(w)) == reference_vocab.unk else reference_vocab.word_to_id(used_vocab.id_to_word(w)) for w in s1_no_pad ]) s2_mean_rank = np.mean([ reference_vocab.size() if reference_vocab.word_to_id( used_vocab.id_to_word(w)) == reference_vocab.unk else reference_vocab.word_to_id(used_vocab.id_to_word(w)) for w in s2_no_pad ]) rows.append({ "pred": label_pred[id], "true_label": ex['label'][id], "s1": ' '.join(s1_decoded), "s2": ' '.join(s2_decoded), "s1_unk_percentage": s1_unk_percentage, "s2_unk_percentage": s2_unk_percentage, "s1_mean_freq": s1_mean_freq, "s2_mean_freq": s2_mean_freq, "s1_mean_rank": s1_mean_rank, "s2_mean_rank": s2_mean_rank, "p_0": prob[id, 0], "p_1": prob[id, 1], "p_2": prob[id, 2] }) preds = pd.DataFrame(rows, columns=rows[0].keys()) preds.to_csv( os.path.join(dest_path, prefix + '_predictions_{}.csv'.format(subset))) results[subset] = {} results[subset]['misclassification'] = 1 - np.mean( preds.pred == preds.true_label) if subset == "valid" and np.abs( (1 - np.mean(preds.pred == preds.true_label)) - best_val_acc) > 0.001: logging.error("!!!") logging.error( "Found different best_val_acc. Probably due to changed specification of the model class." ) logging.error("Discrepancy {}".format( (1 - np.mean(preds.pred == preds.true_label)) - best_val_acc)) logging.error("!!!") logging.info(results) json.dump(results, open(os.path.join(dest_path, prefix + '_results.json'), "w"))