def test_crop(): img = _image() augmentor = Crop(size=(100, 200), resize=(200, 200)) result = augmentor(**{'image': img}) image = result['image'] _show_image(image) assert image.shape[0] == 100 assert image.shape[1] == 200 assert image.shape[2] == 3
}, ]), 'weight_decay_rate': 0.0001, } NETWORK = SmartDict() NETWORK.OPTIMIZER_CLASS = None NETWORK.OPTIMIZER_KWARGS = {} NETWORK.LEARNING_RATE_FUNC = None NETWORK.LEARNING_RATE_KWARGS = {} NETWORK.WEIGHT_DECAY_RATE = None NETWORK.IMAGE_SIZE = IMAGE_SIZE NETWORK.BATCH_SIZE = BATCH_SIZE NETWORK.DATA_FORMAT = DATA_FORMAT NETWORK.ACTIVATION_QUANTIZER = linear_mid_tread_half_quantizer NETWORK.ACTIVATION_QUANTIZER_KWARGS = {'bit': 2, 'max_value': 2} NETWORK.WEIGHT_QUANTIZER = binary_mean_scaling_quantizer NETWORK.WEIGHT_QUANTIZER_KWARGS = {} # dataset DATASET = SmartDict() DATASET.BATCH_SIZE = BATCH_SIZE DATASET.DATA_FORMAT = DATA_FORMAT DATASET.PRE_PROCESSOR = PRE_PROCESSOR DATASET.AUGMENTOR = Sequence([ Pad(2), Crop(size=IMAGE_SIZE), FlipLeftRight(), ])
"power": 4.0, "end_learning_rate": 0.0 } NETWORK.IMAGE_SIZE = IMAGE_SIZE NETWORK.BATCH_SIZE = BATCH_SIZE NETWORK.DATA_FORMAT = DATA_FORMAT NETWORK.WEIGHT_DECAY_RATE = 0.0005 NETWORK.ACTIVATION_QUANTIZER = linear_mid_tread_half_quantizer NETWORK.ACTIVATION_QUANTIZER_KWARGS = { 'bit': 2, 'max_value': 2.0, } NETWORK.WEIGHT_QUANTIZER = binary_channel_wise_mean_scaling_quantizer NETWORK.WEIGHT_QUANTIZER_KWARGS = {} NETWORK.QUANTIZE_FIRST_CONVOLUTION = True NETWORK.QUANTIZE_LAST_CONVOLUTION = False # dataset DATASET = EasyDict() DATASET.BATCH_SIZE = BATCH_SIZE DATASET.DATA_FORMAT = DATA_FORMAT DATASET.PRE_PROCESSOR = PRE_PROCESSOR DATASET.AUGMENTOR = Sequence([ Crop(size=IMAGE_SIZE, resize=256), FlipLeftRight(), Brightness((0.75, 1.25)), Color((0.75, 1.25)), Contrast((0.75, 1.25)), Hue((-10, 10)), ])