image_size=IMAGE_SIZE, classes=CLASSES, anchors=anchors, data_format=DATA_FORMAT, ), ExcludeLowScoreBox(threshold=score_threshold), NMS( iou_threshold=nms_iou_threshold, max_output_size=nms_max_output_size, classes=CLASSES, ), ]) NETWORK = SmartDict() NETWORK.OPTIMIZER_CLASS = tf.compat.v1.train.MomentumOptimizer NETWORK.OPTIMIZER_KWARGS = {"momentum": 0.9} NETWORK.LEARNING_RATE_FUNC = tf.compat.v1.train.piecewise_constant _epoch_steps = 16551 // BATCH_SIZE NETWORK.LEARNING_RATE_KWARGS = { "values": [1e-6, 1e-4, 1e-5, 1e-6, 1e-7], "boundaries": [_epoch_steps, _epoch_steps * 10, _epoch_steps * 60, _epoch_steps * 90], } NETWORK.IMAGE_SIZE = IMAGE_SIZE NETWORK.BATCH_SIZE = BATCH_SIZE NETWORK.DATA_FORMAT = DATA_FORMAT NETWORK.ANCHORS = anchors NETWORK.OBJECT_SCALE = 5.0 NETWORK.NO_OBJECT_SCALE = 1.0 NETWORK.CLASS_SCALE = 1.0 NETWORK.COORDINATE_SCALE = 1.0
# SUMMARISE_STEPS = 1 # IS_DEBUG = True PRE_PROCESSOR = Sequence([ Resize(size=IMAGE_SIZE), PerImageStandardization(), ]) POST_PROCESSOR = Sequence([ Bilinear(size=IMAGE_SIZE, data_format=DATA_FORMAT, compatible_tensorflow_v1=True), Softmax(), ]) NETWORK = SmartDict() NETWORK.OPTIMIZER_CLASS = tf.compat.v1.train.AdamOptimizer NETWORK.OPTIMIZER_KWARGS = {"learning_rate": 0.001} NETWORK.IMAGE_SIZE = IMAGE_SIZE NETWORK.BATCH_SIZE = BATCH_SIZE NETWORK.DATA_FORMAT = DATA_FORMAT NETWORK.WEIGHT_DECAY_RATE = 0. NETWORK.AUXILIARY_LOSS_WEIGHT = 0.5 NETWORK.USE_FEATURE_FUSION = True NETWORK.USE_ATTENTION_REFINEMENT = True NETWORK.USE_TAIL_GAP = True NETWORK.ACTIVATION_QUANTIZER = linear_mid_tread_half_quantizer NETWORK.ACTIVATION_QUANTIZER_KWARGS = { 'bit': 2, 'max_value': 2 } NETWORK.WEIGHT_QUANTIZER = binary_channel_wise_mean_scaling_quantizer NETWORK.WEIGHT_QUANTIZER_KWARGS = {}
hp.uniform('learning_rate', 0, 0.01), 'learning_rate_func': hp.choice('learning_rate_func', [ { 'scheduler': tf.compat.v1.train.piecewise_constant, 'scheduler_factor': hp.uniform('scheduler_factor', 0.05, 0.5), 'scheduler_steps': [25000, 50000, 75000], }, ]), 'weight_decay_rate': 0.0001, } NETWORK = SmartDict() NETWORK.OPTIMIZER_CLASS = None NETWORK.OPTIMIZER_KWARGS = {} NETWORK.LEARNING_RATE_FUNC = None NETWORK.LEARNING_RATE_KWARGS = {} NETWORK.WEIGHT_DECAY_RATE = None NETWORK.IMAGE_SIZE = IMAGE_SIZE NETWORK.BATCH_SIZE = BATCH_SIZE NETWORK.DATA_FORMAT = DATA_FORMAT NETWORK.ACTIVATION_QUANTIZER = linear_mid_tread_half_quantizer NETWORK.ACTIVATION_QUANTIZER_KWARGS = {'bit': 2, 'max_value': 2} NETWORK.WEIGHT_QUANTIZER = binary_mean_scaling_quantizer NETWORK.WEIGHT_QUANTIZER_KWARGS = {} # dataset DATASET = SmartDict() DATASET.BATCH_SIZE = BATCH_SIZE DATASET.DATA_FORMAT = DATA_FORMAT
PRETRAIN_FILE = "" # for debug # BATCH_SIZE = 2 # SUMMARISE_STEPS = 1 # IS_DEBUG = True PRE_PROCESSOR = Sequence([ Resize(size=IMAGE_SIZE), {% if quantize_first_convolution %}DivideBy255(){% else %}PerImageStandardization(){% endif %} ]) POST_PROCESSOR = None NETWORK = SmartDict() NETWORK.OPTIMIZER_CLASS = {{optimizer_class}} NETWORK.OPTIMIZER_KWARGS = {{optimizer_kwargs}} NETWORK.LEARNING_RATE_FUNC = {{learning_rate_func}} NETWORK.LEARNING_RATE_KWARGS = {{learning_rate_kwargs}} NETWORK.IMAGE_SIZE = IMAGE_SIZE NETWORK.BATCH_SIZE = BATCH_SIZE NETWORK.DATA_FORMAT = DATA_FORMAT NETWORK.ACTIVATION_QUANTIZER = linear_mid_tread_half_quantizer NETWORK.ACTIVATION_QUANTIZER_KWARGS = { 'bit': 2, 'max_value': 2 } NETWORK.WEIGHT_QUANTIZER = binary_mean_scaling_quantizer NETWORK.WEIGHT_QUANTIZER_KWARGS = {} DATASET = SmartDict()