コード例 #1
0
ファイル: thesis.py プロジェクト: BVonk/bluesky
    def generate_observation_continuous(self):
        """ Generate observation of size N_aircraft x state_size"""
        minlat, maxlat = 50.75428888888889, 55.
        minlon, maxlon = 2., 7.216944444444445
        destidx = navdb.getaptidx('EHAM')
        lat, lon = navdb.aptlat[destidx], navdb.aptlon[destidx]
        qdr, dist = qdrdist(traf.lat, traf.lon, lat*np.ones(traf.lat.shape), lon*np.ones(traf.lon.shape))
        # qdr, dist = np.asarray(qdr)[0], np.asarray(dist)[0]
        self.qdr, self.dist = qdr, dist
        obs = np.array([traf.lat, traf.lon, traf.hdg, qdr, dist, traf.cas]).transpose()
        # Normalize input data to the range [-1, ,1]
        obs = np.array([normalize(traf.lat, minlat, maxlat),
                        normalize(traf.lon, minlon, maxlon),
                        normalize(traf.hdg, 0, 360),
                        normalize(qdr+180, 0, 360),
                        normalize(dist, 0, self.dist_scale),
                        normalize(traf.cas, 80, 200)]).transpose()

        obs = np.array([normalize(traf.lat, minlat, maxlat),
                        normalize(traf.lon, minlon, maxlon),
                        degtoqdr180(traf.hdg, qdr)/180.,
                        normalize(dist, 0, self.dist_scale)
                        ]).transpose()
        # print('obs', degtoqdr180(traf.hdg, qdr)/180.)
        return obs
コード例 #2
0
ファイル: thesis.py プロジェクト: BVonk/bluesky
    def generate_shared_observation(self):
        """
        Generate the shared observation sequences for the aircraft
        States are distance, heading, bearing, latitude longitude, (speed)

        The observation are Ntraf sequences of size (Ntraf - 1 , x)
        """
        minlat, maxlat = 50.75428888888889, 55.
        minlon, maxlon = 2., 7.216944444444445
        # Generate distance matrix
        qdr, dist = qdrdist_matrix(np.mat(traf.lat), np.mat(traf.lon), np.mat(traf.lat), np.mat(traf.lon))
        qdr, dist = np.array(qdr), np.array(dist)
        shared_obs = np.zeros((traf.ntraf, traf.ntraf, self.shared_state_size))

        destidx = navdb.getaptidx('EHAM')
        lat, lon = navdb.aptlat[destidx], navdb.aptlon[destidx]
        qdr1, dist1 = qdrdist(traf.lat, traf.lon, lat * np.ones(traf.lat.shape), lon * np.ones(traf.lon.shape))
        for i in range(traf.ntraf):
            # shared_obs = np.zeros((traf.ntraf - 1, self.shared_state_size))
            shared_obs[i, :, 0] = normalize(dist[i,:], 0, 200)
            shared_obs[i, :, 1] = degtoqdr180(traf.hdg, qdr1)/180.  # divide by 180
            shared_obs[i, :, 2] = normalize(traf.lat, minlat, maxlat)
            shared_obs[i, :, 3] = normalize(traf.lon, minlon, maxlon)

        # if traf.ntraf==1:
        #     shared_obs = np.zeros((traf.ntraf+1, traf.ntraf, self.shared_state_size))
        # print('shard_obs', shared_obs.shape)
        return shared_obs
コード例 #3
0
ファイル: thesis.py プロジェクト: BVonk/bluesky
 def load_waypoints(self):
     wpts = np.loadtxt('plugins/ml/routes/testroute.txt')
     rows = wpts.shape[0]
     cols = wpts.shape[1]
     wpts = wpts.reshape((int(rows * cols / 2), 2))
     destidx = navdb.getaptidx('EHAM')
     lat, lon = navdb.aptlat[destidx], navdb.aptlon[destidx]
     wpts = np.vstack((wpts, np.array([lat,lon])))
     wpts = norm(wpts, axis=0)
     eham = wpts[-1,:]
     wpts = wpts[:-1,:].reshape((rows, cols))
     wp_db = dict()
     i = 0
     for j in range(wpts.shape[0]):
         for k in range(int(wpts.shape[1] / 2)):
             #               stack.stack('DEFWPT RL{}{}{}, {}, {}, FIX'.format(i, j, k, wpts[j,k*2], wpts[j,k*2+1]))
             wp_db['RL{}{}{}'.format(i, j, k)] = [wpts[j, k * 2], wpts[j, k * 2 + 1]]
     wp_db['EHAM'] = [eham[0], eham[1]]
     wp_db['dummy']=[0,0]
     return wp_db
コード例 #4
0
ファイル: thesis.py プロジェクト: BVonk/bluesky
    def act_continuous(self, state):
        state_copy = state.copy()
        # No action should be taken if there are no aircraft, otherwise the program crashes.
        # n_aircraft = int(np.prod(obs.shape) / self.state_size)
        if type(state)==list:
            n_aircraft = int(np.prod(state[0].shape) / self.state_size)


            if len(state_copy[0].shape)==2:
                state_copy[0] = np.expand_dims(state_copy[0], axis=0)
            if len(state_copy[1].shape)==2:
                state_copy[1] = np.expand_dims(state_copy[1], axis=0)
            obs = state_copy[0]
            state_copy[1] = state[1].reshape(1, n_aircraft * n_aircraft, state[1].shape[-1])
        else:
            n_aircraft = int(np.prod(state.shape)/self.state_size)
            if len(state_copy.shape)==2:
                state_copy = np.expand_dims(state_copy, axis=0)

            obs = state_copy
        if n_aircraft==0:
            return

        # state[0] = state[0].reshape(1, state[0].shape[0], state[0].shape[1])
        # state[0] = self.pad_zeros(state[0], self.max_agents).reshape((1, self.max_agents, self.state_size))
        # state[1] = self.pad_nines(state[1], self.max_agents).reshape((1, self.max_agents, self.max_agents-1, self.shared_obs_size))
        # state_copy = state.copy()
        # state_copy[0] = state[0].reshape(1, state[0].shape[0], state[0].shape[1])

        # if n_aircraft==1:
        #     state_copy[1] = state[1].reshape(1, n_aircraft, state[1].shape[-1])
        # else:
        #     state_copy[1] = state[1].reshape(1, n_aircraft*(n_aircraft-1), state[1].shape[-1])
        # state_copy[1] = state[1].reshape(1, n_aircraft * (n_aircraft - 1), state[1].shape[-1])


        self.action = self.actor.predict(state_copy)
        # state[0] = state[0].reshape(1, state[0].shape[0], state[0].shape[1])

        # data = state
        # model = self.target.model
        # print_intermediate_layer_output(model, data, 'merged_mask')
        # print_intermediate_layer_output(model, data, 'pre_brnn')
        # print_intermediate_layer_output(model, data, 'brnn')
        # print_intermediate_layer_output(model, data, 'post_brnn')
        qdr, dist = qdrdist(traf.lat, traf.lon,
                            traf.actwp.lat, traf.actwp.lon)  # [deg][nm])

        # check which aircraft have reached their destination by checkwaypoint type = 3 (destination) and the relative
        # heading to this waypoint is exceeding 150
        dest = np.asarray([traf.ap.route[i].wptype[traf.ap.route[i].iactwp] for i in range(traf.ntraf)]) == 3
        away = np.abs(degto180(traf.trk % 360. - qdr % 360.)) > 100.
        d = dist < 2
        done_idx = np.where(away * dest * d)[0]

        tas = np.delete(traf.tas, done_idx, 0)
        bank = np.delete(traf.bank, done_idx, 0)
        hdg = np.delete(traf.hdg, done_idx, 0)
        traflat = np.delete(traf.lat, done_idx, 0)
        traflon = np.delete(traf.lon, done_idx, 0)


        # data = [state[0], state[1], self.action]
        # model = self.critic.model
        # print_intermediate_layer_output(model, data, 'input_actions')
        # print_intermediate_layer_output(model, data, 'max_pool')
        # print_intermediate_layer_output(model, data, 'concatenate_inputs')
        # print_intermediate_layer_output(model, data, 'input_mask')
        # print_intermediate_layer_output(model, data, 'pre_brnn')
        # print_intermediate_layer_output(model, data, 'brnn')
        # print_intermediate_layer_output(model, data, 'post_brnn')

        # Exploration noise is added only when no test episode is running
        # print('OU', self.OU())
        annealing_factor = 1.
        if self.summary_counter > 1000:
            annealing_factor = 1 - 0.0003 * self.summary_counter
            annealing_factor = np.max([annealing_factor, 0.15])

        noise = self.OU()[0:n_aircraft].reshape(self.action.shape)
        # print(not self.summary_counter % CONF.test_freq, not self.train_indicator)
        # print('action', self.action)
        # print('noise', noise)

        # if not self.summary_counter % CONF.test_freq == 0 or not self.train_indicator:
        if self.train_indicator:
            if not self.summary_counter % CONF.test_freq == 0:

                # Add exploration noise and clip to range [-1, 1] for action space

                self.action = self.action + noise * annealing_factor
                # print('noise', noise, self.action)

                self.action = np.maximum(-1*np.ones(self.action.shape), self.action)
                self.action = np.minimum(np.ones(self.action.shape), self.action)
                # print('action', self.action)

        # Apply Bell curve here to sample from to get action values
        # mu = 0
        # sigma = 0.5
        # y_offset = 0.107982 + 6.69737e-08
        # action = bell_curve(self.action[0], mu=mu, sigma=sigma, y_offset=y_offset, scaled=True)
        dist_limit = 5 # nm
        # dist = state[0][:,:, 4] * 110
        """
        dist = (obs[:,:,4]+1)/2 * 110 # denormalize
        # dist = dist.reshape(action.shape)
        mul_factor = 80*np.ones(dist.shape)
        """
        # Compute multiplier for angle difference in action command
        turnrad = np.square(tas) / (np.maximum(0.01 * np.ones(tas.shape), np.tan(bank)) * g0)  # [m]
        max_angle = (tas * CONF.update_interval) / (2 * np.pi * turnrad) * 360


        dheading = self.action.reshape(max_angle.shape) * max_angle


        destidx = navdb.getaptidx('EHAM')
        lat, lon = navdb.aptlat[destidx], navdb.aptlon[destidx]
        qdr, dist = qdrdist(traflat, traflon, lat*np.ones(traflat.shape), lon*np.ones(traflon.shape))
        # qdr, dist = np.asarray(qdr)[0], np.asarray(dist)[0]
        # print('qdr', qdr)
        qdr = (qdr+360)%360
        # qdr = degtoqdr180(traf.hdg + dheading, qdr)
        heading = degtoqdr180(hdg + dheading, qdr) # traf.hdg + dheading + 360
        # heading = np.maximum(-90*np.ones(heading.shape), heading)
        # heading = np.minimum(+90*np.ones(heading.shape), heading)

        # print("maxa {},\n dhdg {},\n qdr {},\n, , \n hdg1 {}\n, hdg2{}, \ntarget_hdg\n{}".format(max_angle, dheading, qdr, traf.hdg, heading, qdr180todeg(heading, qdr)))
        heading = qdr180todeg(heading, qdr)
        # print('HEADING', heading)
        return heading.ravel()[0:n_aircraft]


        wheredist = np.where(dist<dist_limit)
        mul_factor[wheredist] = dist[wheredist] / dist_limit * 80
        minus = np.where(self.action.reshape(self.action.shape[1])<0)[0]
        plus = np.where(self.action.reshape(self.action.shape[1])>=0)[0]
        # dheading = np.zeros(action.shape)
        # dheading[minus] = (action[minus] - 1) * mul_factor[minus]
        # dheading[plus] = np.abs(action[plus]-1) * mul_factor[plus]
        # action[minus] = -1*action[minus]

        # qdr = state[0][:,:,3].transpose()*360-180 # Denormalize
        qdr = obs[:,:,3].transpose() * 180 #- 180
        dheading = self.action * mul_factor.reshape(self.action.shape)

        # dheading = 90*np.ones(dheading.shape)
        # print('heading', dheading, self.action)
        heading =  qdr + dheading
        print(qdr, dheading, heading, mul_factor, wheredist, dist)
        # print('action', self.action.ravel())
        return heading.ravel()[0:n_aircraft]
コード例 #5
0
def calc_state():
    # Required information:
    # traf.lat
    # traf.lon
    # traf.hdg
    # traf.id
    # latlong eham
    # multi agents obs: destination ID, lat, long, hdg, dist_wpt, hdg_wpt, dist_plane1, hdg_plane1, dist_plane2, hdg_plane2 (nm/deg)

    # Determine lat long for destination set
    # -3 = EHDL
    # -2 = EHEH
    # -1 = EHAM

    if settings.multi_destination:
        # lat and long reference list:
        # NAME [EHAM 18R, EHAM 09, EHAM 27, EHGR 28, EHGR 20, EHDL 02, EHDL 20]
        # IDX  [    0   ,    1   ,    2   ,    3   ,    4   ,    5   ,    6   ]
        # -IDX [   -7   ,   -6   ,   -5   ,   -4   ,   -3   ,   -2   ,   -1   ]
        # DEST translation
        #      [    1   ,    2   ,    3   ,    4   ,    5   ,    6   ,    7   ]

        # for dest_idx in range(apt_list):
        #     lat, lon = zip(*cone_centre[dest_idx])

        # dest_idx_list = [navdb.getaptidx('EHDL'), navdb.getaptidx('EHEH'), navdb.getaptidx('EHAM')]
        # lat_dest_list = navdb.aptlat[dest_idx_list]
        # lon_dest_list = navdb.aptlon[dest_idx_list]
        lat_dest_list = np.asarray(lat_cone_list)
        lon_dest_list = np.asarray(lon_cone_list)

    else:
        dest_idx_list = navdb.getaptidx('EHAM')
        lat_dest_list = navdb.aptlat[dest_idx_list]
        lon_dest_list = navdb.aptlon[dest_idx_list]

    # Retrieve latitude and longitude, and add destination lat/long to the end of the list for distance
    # and qdr calculation.

    # lat_list = np.append(traf.lat, lat_eham)
    # lon_list = np.append(traf.lon, lon_eham)

    lat_list = np.append(traf.lat, lat_dest_list)
    lon_list = np.append(traf.lon, lon_dest_list)
    traf_id_list = np.tile(traf.id, (len(traf.lon), 1))

    qdr, dist = tools.geo.kwikqdrdist_matrix(np.asmatrix(lat_list),
                                             np.asmatrix(lon_list),
                                             np.asmatrix(lat_list),
                                             np.asmatrix(lon_list))
    qdr = degto180(qdr)

    traf_idx = np.arange(len(traf.id))
    dist_destination = dist[traf_idx, -traf.dest_temp]
    qdr_destination = qdr[traf_idx, -traf.dest_temp]

    # # Reshape into; Rows = each aircraft, columns are states. OLD
    # obs_matrix_first = np.concatenate([traf.lat.reshape(-1, 1), traf.lon.reshape(-1, 1), traf.hdg.reshape(-1, 1),
    #                                    np.asarray(dist[:-1, -1]), np.asarray(qdr[:-1, -1])], axis=1)

    # Reshape into; Rows = each aircraft, columns are states
    obs_matrix_first = np.concatenate([
        traf.dest_temp.reshape(-1, 1),
        traf.lat.reshape(-1, 1),
        traf.lon.reshape(-1, 1),
        traf.hdg.reshape(-1, 1),
        np.asarray(dist_destination.reshape(-1, 1)),
        np.asarray(qdr_destination.reshape(-1, 1))
    ],
                                      axis=1)

    # Remove last entry, that is distance calculated to destination.
    if settings.multi_destination:
        dist = np.asarray(dist[:-7, :-7])
        qdr = np.asarray(qdr[:-7, :-7])
    else:
        dist = np.asarray(dist[:-1, :-1])
        qdr = np.asarray(qdr[:-1, :-1])

    # Sort value's on clostest distance.
    sort_idx = np.argsort(dist, axis=1)
    dist = np.take_along_axis(dist, sort_idx, axis=1)
    qdr = np.take_along_axis(qdr, sort_idx, axis=1)
    traf_id_list_sort = np.take_along_axis(traf_id_list, sort_idx, axis=1)
    traf_send_flag = True

    # Determine amount of current aircraft and neighbours.
    n_ac_neighbours = np.size(dist, axis=1) - 1
    n_ac_current = np.size(dist, axis=0)

    if n_ac_neighbours > 0 and settings.n_neighbours > 0:

        # Split up values to make [dist, qdr] stacks.
        dist = np.split(dist[:, 1:], np.size(dist[:, 1:], axis=1), axis=1)
        qdr = np.split(qdr[:, 1:], np.size(qdr[:, 1:], axis=1), axis=1)
        # traf_id_list_sort = traf_id_list_sort[:, 1:]

        # When current number of neighbours is lower than the amount set in settings, fill rest with dummy variables.
        if n_ac_neighbours < settings.n_neighbours:
            nr_fill = settings.n_neighbours - n_ac_neighbours

            # Dummy values
            fill_mask_dist = np.full((n_ac_current, 1), -1)  #settings.max_dist
            fill_mask_qdr = np.full((n_ac_current, 1), -1)
            fill_mask = np.concatenate([fill_mask_dist, fill_mask_qdr], axis=1)
            comb_ac = np.hstack(
                [np.hstack([dist[i], qdr[i]]) for i in range(n_ac_neighbours)])
            for i in range(nr_fill):
                comb_ac = np.hstack((comb_ac, fill_mask))
            n_ac_neighbours_send = n_ac_neighbours

        # If there are still enough neighbouring aircraft, the state space can be made without the use of dummies.
        elif n_ac_neighbours >= settings.n_neighbours and settings.n_neighbours > 0:
            comb_ac = np.hstack([
                np.hstack([dist[i], qdr[i]])
                for i in range(settings.n_neighbours)
            ])
            n_ac_neighbours_send = settings.n_neighbours
            traf_id_list_sort = traf_id_list_sort[:, :settings.n_neighbours +
                                                  1]
        # Combine S0 (lat, long, hdg, wpt dist, hdg dist) with other agent information.
        obs_matrix_first = np.concatenate([obs_matrix_first, comb_ac], axis=1)

    elif n_ac_neighbours == 0:

        # Dummy values
        nr_fill = settings.n_neighbours
        fill_mask_dist = np.full((n_ac_current, 1), -1)
        fill_mask_qdr = np.full((n_ac_current, 1), -1)
        fill_mask = np.concatenate([fill_mask_dist, fill_mask_qdr], axis=1)
        for i in range(nr_fill):
            obs_matrix_first = np.concatenate([obs_matrix_first, fill_mask],
                                              axis=1)
        n_ac_neighbours_send = n_ac_neighbours
        traf_id_list_sort = []
        traf_send_flag = False

    if settings.n_neighbours == 0:
        n_ac_neighbours_send = settings.n_neighbours
        traf_id_list_sort = []
        traf_send_flag = False
    # Create final observation dict, with corresponding traffic ID's.
    obs_c = dict(zip(traf.id, obs_matrix_first))
    info = dict.fromkeys(traf.id, {})
    # Remove check later.
    if not traf.id:
        print('ikzithier')
        n_ac_neighbours_send = 0

    if traf_send_flag:
        for idx, keys in enumerate(traf.id):
            if keys == traf_id_list_sort[idx, 0]:
                info[keys] = {'sequence': list(traf_id_list_sort[idx])}
            else:
                raise ValueError("Info dict is wrongly constructed")
    return obs_c, n_ac_neighbours_send, info