コード例 #1
0
ファイル: electrical.py プロジェクト: itamarNov/BMSpy
 def PartialDynamicSystem(self,ieq,variable):
     """
     returns dynamical system blocks associated to output variable
     """
     if ieq==0:
         # U1=0
         if variable==self.physical_nodes[0].variable:
             v=Step('Ground',0)
             return[Gain(v,variable,1)]                
コード例 #2
0
"""

import bms
from bms.signals.functions import Step, Sinus
from bms.blocks.continuous import Gain, ODE, Sum, Subtraction, Product, WeightedSum
from bms.blocks.nonlinear import CoulombVariableValue, Saturation, Coulomb

Cmax = 300  # Max clutch torque handling
I1 = 1
I2 = 0.25
fv1 = 0.01
fv2 = 0.01
#e=bmsp.Step(1.,'e')

cc = Sinus(('Brake command', 'cc'), 0.5, 0.1, 0, 0.5)
it = Step(('Input torque', 'it'), 100)
rt = Step(('Resistant torque', 'rt'), -80)

tc = bms.Variable(('brake Torque capacity', 'Tc'))
bt = bms.Variable(('brake torque', 'bt'))
w1 = bms.Variable(('Rotational speed shaft 1', 'w1'))
#dw12=bms.Variable(('Clutch differential speed','dw12'))
st1 = bms.Variable(('Sum torques on 1', 'st1'))
et1 = bms.Variable(('Sum of ext torques on 1', 'et1'))

b1 = Gain(cc, tc, Cmax)
b2 = WeightedSum([it, rt], et1, [1, 1])
b3 = CoulombVariableValue(et1, w1, tc, bt, 0.1)
#b3=Coulomb(it,dw12,ct,150)

b4 = ODE(st1, w1, [1], [fv1, I1])
コード例 #3
0
ファイル: derivative.py プロジェクト: rowhit/BMSpy
#I2=Sinus(('input','i'),100.)
#O2=bms.Variable(('Output','O'))#
#b=ODE(I2,O2,[0,1],[1])
#ds2=bms.DynamicSystem(15,3000,[b])
#ds2.Simulate()
#ds2.PlotVariables()

#print(b.Mi,b.Mo)
#print()

#==============================================================================
#  Feedback with derivative for stability test
#==============================================================================

I = Step(('input', 'i'), 100.)
AI = bms.Variable(('adapted input', 'ai'), [100.])
dI = bms.Variable(('error', 'dI'))
O = bms.Variable(('Output', 'O'))  #
F = bms.Variable(('Feedback', 'F'))  #

b1 = Gain(I, AI, Ka)
b2 = WeightedSum([AI, dI], F, [1, -1])
b3 = ODE(O, dI, [1, tau], [Kb])
b4 = Gain(F, O, 1 / Kc)
#
#ds.
ds = bms.DynamicSystem(0.1, 20, [b1, b2, b3, b4])
ds.Simulate()
ds.PlotVariables([[I, O, dI, F]])
コード例 #4
0
ファイル: electric_motor.py プロジェクト: tsa-heidi/BMSpy
from bms.blocks.continuous import Gain, ODE, Sum, Subtraction, Product
from bms.blocks.nonlinear import Coulomb, Saturation

R = 0.3
L = 0.2
J = 0.2
k = 0.17
Tr = 3  # Torque requested on motor output
Gc = 8  # Gain corrector
tau_i = 3
Umax = 48  # Max voltage motor
# Imax=10# Max intensity motor

# e=bmsp.Step(1.,'e')

Wc = Step(('Rotationnal speed command', 'wc'), 100.)

dW = bms.Variable(('delta rotationnal speed', 'dW'))
Up = bms.Variable(('Voltage corrector proportionnal', 'Ucp'))
Ui = bms.Variable(('Voltage corrector integrator', 'Uci'))
Uc = bms.Variable(('Voltage command', 'Uc'))
Um = bms.Variable(('Voltage Input motor', 'Uim'))
e = bms.Variable(('Counter electromotive force', 'Cef'))
Uind = bms.Variable(('Voltage Inductor', 'Vi'))
Iind = bms.Variable(('Intensity Inductor', 'Ii'))
Tm = bms.Variable(('Motor torque', 'Tm'))
Text = bms.Variable(('Resistant torque', 'Tr'))
T = bms.Variable(('Torque', 'T'))
W = bms.Variable(('Rotationnal speed', 'w'))
Pe = bms.Variable(('Electrical power', 'Pe'))
Pm = bms.Variable(('Mechanical power', 'Pm'))