コード例 #1
0
    def draw_final_figure(sample_cost, vis_confs, inc_eq_loc_x, draw_improvement=True, draw_normals=True):
        fig, ax = draw_basic_figure_plus_zone()

        labels = [r'$\lambda_%d$' % (idx + 1) for idx in range(len(vis_confs))]
        boplot.highlight_configuration(
            x=np.array(vis_confs),
            label=labels,
            lloc='bottom',
            ax=ax,
            disable_ticks=True
        )
        for label, conf in zip(labels, vis_confs):
            boplot.annotate_x_edge(
                label=label,
                xy=(conf + 0.6 * (ax.get_xlim()[1] - ax.get_xlim()[0]) / 10, ymin),
                ax=ax,
                align='bottom',
                offset_param=1.9
            )
        boplot.highlight_output(
            y=np.array([sample_cost, ymin]),
            label=['c', '$c_{inc}$'],
            lloc='left',
            ax=ax
        )
        # boplot.annotate_y_edge(label=r'c', xy=(lambda, cost), align='left', ax=ax)

        if draw_improvement:
            ax.annotate(s='', xy=(inc_eq_loc_x, sample_cost), xytext=(inc_eq_loc_x, ymin),
                        arrowprops={'arrowstyle': 'simple', })

            ax.text(inc_eq_loc_x - 1.0, sample_cost - 1.0, r'$I_c=c_{inc}-c$', weight='heavy')

        if draw_normals:
            for idx in range(len(vis_confs)):
                conf = vis_confs[idx]
                draw_distribution_for_candidate(ax=ax, candidate=conf, target_cost=sample_cost)

                ax.annotate(
                    s=r"$p(c|\lambda_%d)$" % (idx+1), xy=(conf, sample_cost), xytext=(conf-1.8, sample_cost - 1.5),
                    arrowprops={'arrowstyle': 'fancy', 'shrinkA': 20.0},
                    weight='heavy', color='darkgreen', zorder=zorders['annotations_high']
                )


        return fig, ax
コード例 #2
0
def visualize_look_ahead(initial_design, init=None):
    """
    Visualize one-step of look-ahead.
    :param initial_design: Method for initializing the GP, choice between 'uniform', 'random', and 'presentation'
    :param init: Number of datapoints to initialize GP with.
    :return: None
    """

    # boplot.set_rcparams(**{'legend.loc': 'lower left'})

    logging.debug(
        "Visualizing Look-Ahead with initial design {} and init {}".format(
            initial_design, init))
    # Initialize dummy dataset
    x, y = initialize_dataset(initial_design=initial_design, init=init)
    logging.debug(
        "Initialized dataset with:\nsamples {0}\nObservations {1}".format(
            x, y))

    # Fit GP to the currently available dataset
    gp = GPR(kernel=Matern())
    logging.debug("Fitting GP to\nx: {}\ny:{}".format(x, y))
    gp.fit(x, y)  # fit the model
    mu_star_t_xy = get_mu_star(gp)
    logging.info("Mu-star at time t: {}".format(mu_star_t_xy))

    # noinspection PyStringFormat
    logging.debug(
        "Model fit to dataset.\nOriginal Inputs: {0}\nOriginal Observations: {1}\n"
        "Predicted Means: {2}\nPredicted STDs: {3}".format(
            x, y, *(gp.predict(x, return_std=True))))

    # Assume next evaluation location
    x_ = np.array([[5.0]])
    print(x_)
    y_ = f(x_[0])

    # Update dataset with new observation
    X2_ = np.append(x, x_, axis=0)
    Y2_ = y + [y_]

    logging.info("x: {}, y: {}".format(x_, y_))

    # Fit GP to the updated dataset
    gp2 = GPR(kernel=Matern())
    logging.debug("Fitting GP to\nx: {}\ny:{}".format(X2_, Y2_))
    gp2.fit(X2_, Y2_)  # fit the model
    mu_star_t1_xy = get_mu_star(gp2)
    logging.info("Mu-star at time t+1: {}".format(mu_star_t1_xy))

    # -------------------------Plotting madness begins---------------------------

    def draw_basic_figure(tgp=gp,
                          tx=x,
                          tX_=x,
                          tY_=y,
                          title='',
                          highlight_datapoint=None,
                          highlight_label="",
                          ax=None):
        if ax is None:
            fig, ax = plt.subplots(1, 1, squeeze=True)
            plt.subplots_adjust(0.05, 0.15, 0.95, 0.85)
            figflag = True
        else:
            figflag = False

        ax.set_xlim(bounds["x"])
        ax.set_ylim(bounds["gp_y"])
        if title:
            ax.set_title(title, loc='left')
        ax.grid()
        boplot.plot_objective_function(ax=ax)
        boplot.plot_gp(model=tgp,
                       confidence_intervals=[1.0, 2.0, 3.0],
                       ax=ax,
                       custom_x=tx)
        if highlight_datapoint:
            boplot.mark_observations(X_=tX_,
                                     Y_=tY_,
                                     mark_incumbent=False,
                                     ax=ax,
                                     highlight_datapoint=highlight_datapoint,
                                     highlight_label=highlight_label)
        else:
            boplot.mark_observations(X_=tX_,
                                     Y_=tY_,
                                     mark_incumbent=False,
                                     ax=ax)

        if figflag:
            return fig, ax
        else:
            return ax

    def perform_finishing_tasks(ax, filename="", remove_legend=True):
        ax.legend().set_zorder(zorders['legend'])
        ax.set_xlabel(labels['xlabel'])

        if remove_legend:
            ax.legend().remove()

        # plt.tight_layout()
        if TOGGLE_PRINT:
            # plt.savefig(f"{OUTPUT_DIR}/{filename}", bbox_inches='tight')
            plt.savefig(f"{OUTPUT_DIR}/{filename}")
        else:
            plt.show()

    # ---------------------------------------
    # Draw look ahead 1.

    labels['gp_mean'] = r'Mean: $\mu^{(t)}(\cdot)$'

    fig, ax = draw_basic_figure(title="")
    perform_finishing_tasks(ax=ax,
                            filename="look_ahead_1.pdf",
                            remove_legend=False)

    # ---------------------------------------
    # Draw look ahead 2
    fig, ax = draw_basic_figure(title="")

    logging.debug("Placing vertical on configuration: {}".format(x_))
    # boplot.highlight_configuration(x=x_, label='', lloc='bottom', ax=ax, ha='center')
    boplot.highlight_configuration(x=x_,
                                   label='',
                                   lloc='bottom',
                                   ax=ax,
                                   disable_ticks=True)
    boplot.annotate_x_edge(label=r'$\lambda$',
                           xy=(x_, y_),
                           align='bottom',
                           ax=ax)

    perform_finishing_tasks(ax=ax,
                            filename="look_ahead_2.pdf",
                            remove_legend=True)

    # ---------------------------------------
    # Draw look ahead 3

    fig, ax = draw_basic_figure(title="")

    boplot.highlight_configuration(x=x_,
                                   label='',
                                   lloc='bottom',
                                   ax=ax,
                                   ha='right')
    boplot.annotate_x_edge(label=r'$\lambda$',
                           xy=(x_, y_),
                           align='bottom',
                           ax=ax)

    boplot.highlight_output(y_, label='', lloc='right', ax=ax, fontsize=28)
    boplot.annotate_y_edge(label=r'$c(\lambda)$',
                           xy=(x_, y_),
                           align='right',
                           ax=ax)

    ax.scatter(x_,
               y_,
               color=colors['highlighted_observations'],
               marker='X',
               label=r"Hypothetical Observation $<\lambda, c(\lambda)>$",
               zorder=zorders['annotations_normal'])

    perform_finishing_tasks(ax=ax,
                            filename="look_ahead_3.pdf",
                            remove_legend=True)

    # ---------------------------------------
    # Draw look ahead 4.

    labels['gp_mean'] = r'Mean: $\mu^{(t+1)}(\cdot)|_\lambda$'

    fig, ax = draw_basic_figure(
        tgp=gp2,
        tx=x,
        tX_=X2_,
        tY_=Y2_,
        title='',
        highlight_datapoint=np.where(np.isclose(X2_, x_))[0],
        highlight_label=r"Hypothetical Observation $<\lambda, c(\lambda)>$")

    perform_finishing_tasks(ax=ax,
                            filename="look_ahead_4.pdf",
                            remove_legend=False)

    # ---------------------------------------
    # Vertical comparison of look-ahead at any given x

    def draw_vertical_comparison(imaginary_lambda, ax1, ax2):
        tx_ = np.array([[imaginary_lambda]])
        ty_ = f(tx_[0])

        # Update dataset with new observation
        tX_ = np.append(x, tx_, axis=0)
        tY_ = y + [ty_]

        logging.info("x: {}, y: {}".format(tx_, ty_))

        # Fit GP to the updated dataset
        tgp = GPR(kernel=Matern())
        logging.debug("Fitting GP to\nx: {}\ny:{}".format(tX_, tY_))
        tgp.fit(tX_, tY_)  # fit the model
        tmu_star_t1_xy = get_mu_star(tgp)

        # Draw the left hand figure using the old gp on ax1
        draw_basic_figure(tgp=gp, title=r"$\hat{c}^{(t)}$", ax=ax1)

        logging.debug("Placing vertical on configuration: {}".format(tx_))

        ax1.scatter(tx_,
                    ty_,
                    color=colors['highlighted_observations'],
                    marker='X',
                    label=r"Hypothetical Observation $<\lambda, c(\lambda)>$",
                    zorder=zorders["annotations_normal"])

        ax1.legend().remove()

        # Draw the right hand figure using the hypothetical gp tgp on ax2
        draw_basic_figure(
            tgp=tgp,
            tx=tX_,
            tX_=tX_,
            tY_=tY_,
            title=r"$\hat{c}^{(t+1)}|_\lambda$",
            highlight_datapoint=np.where(np.isclose(tX_, tx_))[0],
            highlight_label=r"Hypothetical Observation $<\lambda, c(\lambda)>$",
            ax=ax2)

    def finishing_touches_parallel(ax1, ax2, filename=""):
        ax1.set_xlabel(labels['xlabel'])
        ax2.set_xlabel(labels['xlabel'])

        plt.tight_layout()
        if TOGGLE_PRINT:
            plt.savefig(f"{OUTPUT_DIR}/{filename}")
        else:
            plt.show()

    # ---------------------------------------
    # Draw look ahead 5

    fig, (ax1, ax2) = plt.subplots(1, 2, squeeze=True, figsize=(22, 9))
    draw_vertical_comparison(imaginary_lambda=5.0, ax1=ax1, ax2=ax2)
    finishing_touches_parallel(ax1=ax1, ax2=ax2, filename="look_ahead_5.pdf")

    # ---------------------------------------
    # Draw look ahead 6

    fig, (ax1, ax2) = plt.subplots(1, 2, squeeze=True, figsize=(22, 9))
    draw_vertical_comparison(imaginary_lambda=5.5, ax1=ax1, ax2=ax2)
    finishing_touches_parallel(ax1=ax1, ax2=ax2, filename="look_ahead_6.pdf")

    # ---------------------------------------
    # Draw look ahead 5

    fig, (ax1, ax2) = plt.subplots(1, 2, squeeze=True, figsize=(22, 9))
    draw_vertical_comparison(imaginary_lambda=3.5, ax1=ax1, ax2=ax2)
    finishing_touches_parallel(ax1=ax1, ax2=ax2, filename="look_ahead_7.pdf")

    # ---------------------------------------
    # Draw KG 1

    labels['gp_mean'] = r'Mean: $\mu^{(t)}(\cdot)$'

    fig, ax = draw_basic_figure(title="")
    perform_finishing_tasks(ax=ax, filename="kg_1.pdf", remove_legend=False)

    # ---------------------------------------
    # Draw kg 2
    fig, ax = draw_basic_figure(title="")

    boplot.highlight_configuration(mu_star_t_xy[0],
                                   lloc='bottom',
                                   ax=ax,
                                   disable_ticks=True)
    boplot.annotate_x_edge(label="%.2f" % mu_star_t_xy[0],
                           xy=mu_star_t_xy,
                           ax=ax,
                           align='bottom',
                           offset_param=1.5)
    boplot.highlight_output(mu_star_t_xy[1],
                            label='',
                            lloc='right',
                            ax=ax,
                            fontsize=30,
                            disable_ticks=True)
    boplot.annotate_y_edge(label=r'${(\mu^*)}^{(t)}$',
                           xy=mu_star_t_xy,
                           align='right',
                           ax=ax,
                           yoffset=1.5)

    perform_finishing_tasks(ax=ax, filename="kg_2.pdf", remove_legend=True)

    # ---------------------------------------
    # Draw kg 3

    fig, ax = draw_basic_figure(
        tgp=gp2,
        tx=x,
        tX_=X2_,
        tY_=Y2_,
        title='',
        highlight_datapoint=np.where(np.isclose(X2_, x_))[0],
        highlight_label=r"Hypothetical Observation $<\lambda, c(\lambda)>$")

    perform_finishing_tasks(ax=ax, filename="kg_3.pdf", remove_legend=True)

    # ---------------------------------------
    # Draw kg 4

    fig, ax = draw_basic_figure(
        tgp=gp2,
        tx=x,
        tX_=X2_,
        tY_=Y2_,
        title='',
        highlight_datapoint=np.where(np.isclose(X2_, x_))[0],
        highlight_label=r"Hypothetical Observation $<\lambda, c(\lambda)>$")

    boplot.highlight_configuration(mu_star_t1_xy[0],
                                   lloc='bottom',
                                   ax=ax,
                                   disable_ticks=True)
    boplot.annotate_x_edge(label="%.2f" % mu_star_t1_xy[0],
                           xy=mu_star_t1_xy,
                           ax=ax,
                           align='bottom',
                           offset_param=1.5)

    boplot.highlight_output(mu_star_t1_xy[1],
                            label='',
                            lloc='right',
                            ax=ax,
                            fontsize=28)
    boplot.annotate_y_edge(label=r'${(\mu^*)}^{(t+1)}|_\lambda$',
                           xy=mu_star_t1_xy,
                           align='right',
                           ax=ax,
                           yoffset=1.5)

    perform_finishing_tasks(ax=ax, filename="kg_4.pdf", remove_legend=True)

    # ---------------------------------------
    # Draw kg 5

    fig, (ax1, ax2) = plt.subplots(1, 2, squeeze=True, figsize=(22, 9))
    draw_vertical_comparison(imaginary_lambda=x_.squeeze(), ax1=ax1, ax2=ax2)

    boplot.highlight_output(mu_star_t_xy[1],
                            label='',
                            lloc='right',
                            ax=ax1,
                            fontsize=30)
    boplot.annotate_y_edge(label='${(\mu^*)}^{(t)}$',
                           xy=mu_star_t_xy,
                           align='right',
                           ax=ax1,
                           yoffset=1.5)

    boplot.highlight_output(mu_star_t1_xy[1],
                            label='',
                            lloc='right',
                            ax=ax2,
                            fontsize=28)
    boplot.annotate_y_edge(label='${(\mu^*)}^{(t+1)}|_\lambda$',
                           xy=mu_star_t1_xy,
                           align='left',
                           ax=ax2,
                           yoffset=1.5)

    finishing_touches_parallel(ax1=ax1, ax2=ax2, filename="kg_5.pdf")

    return
コード例 #3
0
ファイル: es_plots.py プロジェクト: automl-edu/AutoMLLecture
def visualize_es(initial_design, init=None):
    """
    Visualize one-step of ES.
    :param initial_design: Method for initializing the GP, choice between 'uniform', 'random', and 'presentation'
    :param init: Number of datapoints to initialize GP with.
    :return: None
    """

    # 1. Show GP fit on initial dataset, 0 samples, histogram
    # 2. Show GP fit on initial dataset, 1 sample, histogram
    # 3. Show GP fit on initial dataset, 3 samples, histogram
    # 4. Show GP fit on initial dataset, 50 samples, histogram
    # 5. Show PDF derived from the histogram at 50 samples
    # 6. Mark maximum of the PDF as next configuration to be evaluated

    # a. Plot GP
    # b. Sample GP, mark minima, update histogram of lambda*
    # c. Repeat 2 for each sample.
    # d. Show results after multiple iterations

    boplot.set_rcparams(**{'figure.figsize': (22, 11)})

    # Initial setup
    # -------------------------------------------

    logging.debug("Visualizing ES with initial design {} and init {}".format(
        initial_design, init))
    # Initialize dummy dataset
    x, y = initialize_dataset(initial_design=initial_design, init=init)
    logging.debug(
        "Initialized dataset with:\nsamples {0}\nObservations {1}".format(
            x, y))

    # Fit GP to the currently available dataset
    gp = GPR(kernel=Matern())
    logging.debug("Fitting GP to\nx: {}\ny:{}".format(x, y))
    gp.fit(x, y)  # fit the model

    histogram_precision = 20
    X_ = boplot.get_plot_domain(precision=histogram_precision)
    nbins = X_.shape[0]
    logging.info("Creating histograms with {} bins".format(nbins))
    bin_range = (bounds['x'][0], bounds['x'][1] + 1 / histogram_precision)

    # -------------------------------------------

    def draw_samples(nsamples, ax1, ax2, show_min=False, return_pdf=False):
        if not nsamples:
            return
        seed2 = 1256
        seed3 = 65

        mu = gp.sample_y(X=X_, n_samples=nsamples, random_state=seed3)
        boplot.plot_gp_samples(mu=mu,
                               nsamples=nsamples,
                               precision=histogram_precision,
                               custom_x=X_,
                               show_min=show_min,
                               ax=ax1,
                               seed=seed2)
        data_h = X_[np.argmin(mu, axis=0), 0]
        logging.info("Shape of data_h is {}".format(data_h.shape))
        logging.debug("data_h is: {}".format(data_h))

        bins = ax2.hist(data_h,
                        bins=nbins,
                        range=bin_range,
                        density=return_pdf,
                        color='lightgreen',
                        edgecolor='black',
                        alpha=0.0 if return_pdf else 1.0)

        return bins

    # 1. Show GP fit on initial dataset, 0 samples, histogram
    # -------------------------------------------

    ax2_title = r'$p_{min}=P(\lambda=\lambda^*)$'

    bounds['acq_y'] = (0.0, 1.0)

    fig, (ax1, ax2) = plt.subplots(2, 1, squeeze=True)
    ax1.set_xlim(bounds['x'])
    ax1.set_ylim(bounds['gp_y'])
    ax2.set_xlim(bounds['x'])
    ax2.set_ylim(bounds['acq_y'])
    ax1.grid()
    ax2.grid()

    boplot.plot_objective_function(ax=ax1)
    boplot.plot_gp(model=gp, confidence_intervals=[3.0], ax=ax1, custom_x=x)
    boplot.mark_observations(X_=x, Y_=y, mark_incumbent=False, ax=ax1)

    nsamples = 0
    draw_samples(nsamples=nsamples, ax1=ax1, ax2=ax2, show_min=True)

    # Plot uniform prior for p_min
    xplot = boplot.get_plot_domain()
    ylims = ax2.get_ylim()
    xlims = ax2.get_xlim()
    yupper = [(ylims[1] - ylims[0]) / (xlims[1] - xlims[0])] * xplot.shape[0]
    ax2.plot(xplot[:, 0], yupper, color='green', linewidth=2.0)
    ax2.fill_between(xplot[:, 0], ylims[0], yupper, color='lightgreen')

    ax1.legend().set_zorder(20)
    ax1.set_xlabel(labels['xlabel'])
    ax1.set_ylabel(labels['gp_ylabel'])
    ax1.set_title(r"Visualization of $\mathcal{G}^t$", loc='left')

    ax2.set_xlabel(labels['xlabel'])
    ax2.set_ylabel(r'$p_{min}$')
    ax2.set_title(ax2_title, loc='left')

    plt.tight_layout()
    if TOGGLE_PRINT:
        plt.savefig('es_1')
    else:
        plt.show()
    # -------------------------------------------

    # 2. Show GP fit on initial dataset, 1 sample, histogram
    # -------------------------------------------

    bounds['acq_y'] = (0.0, 5.0)
    ax2_title = r'Frequency of $\lambda=\hat{\lambda}^*$'

    fig, (ax1, ax2) = plt.subplots(2, 1, squeeze=True)
    ax1.set_xlim(bounds['x'])
    ax1.set_ylim(bounds['gp_y'])
    ax2.set_xlim(bounds['x'])
    ax2.set_ylim(bounds['acq_y'])
    ax1.grid()
    ax2.grid()

    boplot.plot_objective_function(ax=ax1)
    boplot.mark_observations(X_=x, Y_=y, mark_incumbent=False, ax=ax1)

    nsamples = 1
    draw_samples(nsamples=nsamples, ax1=ax1, ax2=ax2, show_min=True)

    ax1.legend().set_zorder(20)
    ax1.set_xlabel(labels['xlabel'])
    ax1.set_ylabel(labels['gp_ylabel'])
    ax1.set_title(r"One sample from $\mathcal{G}^t$", loc='left')

    ax2.set_xlabel(labels['xlabel'])

    # ax2.set_ylabel(r'$p_{min}$')
    ax2.set_ylabel(r'Frequency')
    ax2.set_title(ax2_title, loc='left')

    plt.tight_layout()
    if TOGGLE_PRINT:
        plt.savefig('es_2')
    else:
        plt.show()

    # 3. Show GP fit on initial dataset, 10 samples, histogram
    # -------------------------------------------

    bounds['acq_y'] = (0.0, 10.0)
    ax2_title = r'Frequency of $\lambda=\hat{\lambda}^*$'

    fig, (ax1, ax2) = plt.subplots(2, 1, squeeze=True)
    ax1.set_xlim(bounds['x'])
    ax1.set_ylim(bounds['gp_y'])
    ax2.set_xlim(bounds['x'])
    ax2.set_ylim(bounds['acq_y'])
    ax1.grid()
    ax2.grid()

    boplot.plot_objective_function(ax=ax1)
    boplot.mark_observations(X_=x, Y_=y, mark_incumbent=False, ax=ax1)

    nsamples = 10
    draw_samples(nsamples=nsamples, ax1=ax1, ax2=ax2)

    ax1.set_xlabel(labels['xlabel'])
    ax1.set_ylabel(labels['gp_ylabel'])
    ax1.set_title(r"Ten samples from $\mathcal{G}^t$", loc='left')

    ax2.set_xlabel(labels['xlabel'])

    # ax2.set_ylabel(r'$p_{min}$')
    ax2.set_ylabel(r'Frequency')
    ax2.set_title(ax2_title, loc='left')

    plt.tight_layout()
    if TOGGLE_PRINT:
        plt.savefig('es_3')
    else:
        plt.show()

    # -------------------------------------------

    # 4. Show GP fit on initial dataset, 200 samples, histogram
    # -------------------------------------------

    bounds["acq_y"] = (0.0, 20.0)
    ax2_title = r'Frequency of $\lambda=\hat{\lambda}^*$'

    fig, (ax1, ax2) = plt.subplots(2, 1, squeeze=True)
    ax1.set_xlim(bounds['x'])
    ax1.set_ylim(bounds['gp_y'])
    ax2.set_xlim(bounds['x'])
    ax2.set_ylim(bounds['acq_y'])
    ax1.grid()
    ax2.grid()

    boplot.plot_objective_function(ax=ax1)
    boplot.mark_observations(X_=x, Y_=y, mark_incumbent=False, ax=ax1)

    nsamples = 200
    draw_samples(nsamples=nsamples, ax1=ax1, ax2=ax2)

    ax1.set_xlabel(labels['xlabel'])
    ax1.set_ylabel(labels['gp_ylabel'])
    ax1.set_title(r"200 samples from $\mathcal{G}^t$", loc='left')

    ax2.set_xlabel(labels['xlabel'])

    # ax2.set_ylabel(r'$p_{min}$')
    ax2.set_ylabel(r'Frequency')
    ax2.set_title(ax2_title, loc='left')

    plt.tight_layout()
    if TOGGLE_PRINT:
        plt.savefig('es_4')
    else:
        plt.show()
    # -------------------------------------------

    # 5. Show PDF derived from the histogram at 200 samples
    # -------------------------------------------

    ax2_title = "$\hat{P}(\lambda=\lambda^*)$"
    bounds["acq_y"] = (0.0, 1.0)

    fig, (ax1, ax2) = plt.subplots(2, 1, squeeze=True)
    ax1.set_xlim(bounds['x'])
    ax1.set_ylim(bounds['gp_y'])
    ax2.set_xlim(bounds['x'])
    ax2.set_ylim(bounds["acq_y"])
    ax1.grid()
    ax2.grid()

    boplot.plot_objective_function(ax=ax1)
    boplot.plot_gp(model=gp, confidence_intervals=[3.0], ax=ax1, custom_x=x)
    boplot.mark_observations(X_=x, Y_=y, mark_incumbent=False, ax=ax1)

    nsamples = 200
    seed3 = 65

    mu = gp.sample_y(X=X_, n_samples=nsamples, random_state=seed3)
    data_h = X_[np.argmin(mu, axis=0), 0]

    kde = kd(kernel='gaussian', bandwidth=0.75).fit(data_h.reshape(-1, 1))
    xplot = boplot.get_plot_domain()
    ys = np.exp(kde.score_samples(xplot))

    ax2.plot(xplot, ys, color='green', lw=2.)
    ax2.fill_between(xplot[:, 0], ax2.get_ylim()[0], ys, color='lightgreen')

    ax1.set_xlabel(labels['xlabel'])
    ax1.set_ylabel(labels['gp_ylabel'])
    ax1.set_title(r"Visualization of $\mathcal{G}^t$", loc='left')

    ax2.set_xlabel(labels['xlabel'])
    ax2.set_ylabel(r'$p_{min}$')
    ax2.set_title(ax2_title, loc='left')

    plt.tight_layout()
    if TOGGLE_PRINT:
        plt.savefig('es_5')
    else:
        plt.show()

    # -------------------------------------------

    # 6. Mark maximum of the PDF as next configuration to be evaluated
    # -------------------------------------------

    ax2_title = "$\hat{P}(\lambda=\lambda^*)$"
    bounds["acq_y"] = (0.0, 1.0)

    fig, (ax1, ax2) = plt.subplots(2, 1, squeeze=True)
    ax1.set_xlim(bounds['x'])
    ax1.set_ylim(bounds['gp_y'])
    ax2.set_xlim(bounds['x'])
    ax2.set_ylim(bounds["acq_y"])
    ax1.grid()
    ax2.grid()

    boplot.plot_objective_function(ax=ax1)
    boplot.plot_gp(model=gp, confidence_intervals=[3.0], ax=ax1, custom_x=x)
    boplot.mark_observations(X_=x, Y_=y, mark_incumbent=False, ax=ax1)

    nsamples = 200
    seed3 = 65

    mu = gp.sample_y(X=X_, n_samples=nsamples, random_state=seed3)
    data_h = X_[np.argmin(mu, axis=0), 0]

    kde = kd(kernel='gaussian', bandwidth=0.75).fit(data_h.reshape(-1, 1))
    xplot = boplot.get_plot_domain()
    ys = np.exp(kde.score_samples(xplot))

    idx_umax = np.argmax(ys)
    boplot.highlight_configuration(x=xplot[idx_umax],
                                   label='',
                                   ax=ax1,
                                   disable_ticks=True)
    boplot.annotate_x_edge(label=r'$\lambda^{(t)}$',
                           xy=(xplot[idx_umax], ax1.get_ylim()[0]),
                           ax=ax1,
                           align='top',
                           offset_param=1.5)
    boplot.highlight_configuration(x=xplot[idx_umax],
                                   label='',
                                   ax=ax2,
                                   disable_ticks=True)
    boplot.annotate_x_edge(label=r'$\lambda^{(t)}$',
                           xy=(xplot[idx_umax], ys[idx_umax]),
                           ax=ax2,
                           align='top',
                           offset_param=1.0)

    ax2.plot(xplot, ys, color='green', lw=2.)
    ax2.fill_between(xplot[:, 0], ax2.get_ylim()[0], ys, color='lightgreen')

    ax1.set_xlabel(labels['xlabel'])
    ax1.set_ylabel(labels['gp_ylabel'])
    ax1.set_title(r"Visualization of $\mathcal{G}^t$", loc='left')

    ax2.set_xlabel(labels['xlabel'])
    ax2.set_ylabel(r'$p_{min}$')
    ax2.set_title(ax2_title, loc='left')

    plt.tight_layout()
    if TOGGLE_PRINT:
        plt.savefig('es_6')
    else:
        plt.show()
コード例 #4
0
ファイル: ts_plots.py プロジェクト: worstseed/bo_loop
def visualize_ts(initial_design, init=None):
    """
    Visualize one-step of TS.
    :param initial_design: Method for initializing the GP, choice between 'uniform', 'random', and 'presentation'
    :param init: Number of datapoints to initialize GP with.
    :return: None
    """

    # 1. Plot GP fit on initial dataset
    # 2. Plot one sample
    # 3. Mark minimum of sample

    boplot.set_rcparams(**{'legend.loc': 'upper left'})

    logging.debug("Visualizing EI with initial design {} and init {}".format(
        initial_design, init))
    # Initialize dummy dataset
    x, y = initialize_dataset(initial_design=initial_design, init=init)
    ymin_arg = np.argmin(y)
    ymin = y[ymin_arg]
    logging.debug(
        "Initialized dataset with:\nsamples {0}\nObservations {1}".format(
            x, y))

    # Fit GP to the currently available dataset
    gp = GPR(kernel=Matern())
    logging.debug("Fitting GP to\nx: {}\ny:{}".format(x, y))
    gp.fit(x, y)  # fit the model

    # noinspection PyStringFormat
    logging.debug(
        "Model fit to dataset.\nOriginal Inputs: {0}\nOriginal Observations: {1}\n"
        "Predicted Means: {2}\nPredicted STDs: {3}".format(
            x, y, *(gp.predict(x, return_std=True))))

    # 1. Plot GP fit on initial dataset
    # -------------Plotting code -----------------
    fig, ax = plt.subplots(1, 1, squeeze=True)
    ax.set_xlim(bounds["x"])
    ax.set_ylim(bounds["gp_y"])
    ax.grid()
    boplot.plot_gp(model=gp,
                   confidence_intervals=[1.0, 2.0, 3.0],
                   custom_x=x,
                   ax=ax)
    boplot.plot_objective_function(ax=ax)
    boplot.mark_observations(X_=x,
                             Y_=y,
                             mark_incumbent=False,
                             highlight_datapoint=None,
                             highlight_label=None,
                             ax=ax)

    ax.legend().set_zorder(zorders['legend'])
    ax.set_xlabel(labels['xlabel'])

    plt.tight_layout()
    if TOGGLE_PRINT:
        plt.savefig(f"{OUTPUT_DIR}/ts_1.pdf")
    else:
        plt.show()
    # -------------------------------------------

    # 2. Plot one sample
    # -------------Plotting code -----------------
    fig, ax = plt.subplots(1, 1, squeeze=True)
    ax.set_xlim(bounds["x"])
    ax.set_ylim(bounds["gp_y"])
    ax.grid()
    boplot.plot_gp(model=gp,
                   confidence_intervals=[1.0, 2.0, 3.0],
                   custom_x=x,
                   ax=ax)
    boplot.plot_objective_function(ax=ax)
    boplot.mark_observations(X_=x,
                             Y_=y,
                             mark_incumbent=False,
                             highlight_datapoint=None,
                             highlight_label=None,
                             ax=ax)

    # Sample from the GP
    nsamples = 1
    seed2 = 2
    seed3 = 1375
    X_ = boplot.get_plot_domain(precision=None)
    mu = gp.sample_y(X=X_, n_samples=nsamples, random_state=seed3)
    boplot.plot_gp_samples(mu=mu,
                           nsamples=nsamples,
                           precision=None,
                           custom_x=X_,
                           show_min=False,
                           ax=ax,
                           seed=seed2)

    ax.legend().set_zorder(zorders['legend'])
    ax.set_xlabel(labels['xlabel'])

    plt.tight_layout()
    if TOGGLE_PRINT:
        plt.savefig(f"{OUTPUT_DIR}/ts_2.pdf")
    else:
        plt.show()
    # -------------------------------------------

    # 3. Mark minimum of sample
    # -------------Plotting code -----------------
    fig, ax = plt.subplots(1, 1, squeeze=True)
    ax.set_xlim(bounds["x"])
    ax.set_ylim(bounds["gp_y"])
    ax.grid()
    # boplot.plot_gp(model=gp, confidence_intervals=[2.0], custom_x=x, ax=ax)
    boplot.plot_objective_function(ax=ax)
    boplot.mark_observations(X_=x,
                             Y_=y,
                             mark_incumbent=False,
                             highlight_datapoint=None,
                             highlight_label=None,
                             ax=ax)

    # Sample from the GP
    nsamples = 1
    X_ = boplot.get_plot_domain(precision=None)
    mu = gp.sample_y(X=X_, n_samples=nsamples, random_state=seed3)
    colors['highlighted_observations'] = 'red'  # Special for Thompson Sampling
    boplot.plot_gp_samples(mu=mu,
                           nsamples=nsamples,
                           precision=None,
                           custom_x=X_,
                           show_min=True,
                           ax=ax,
                           seed=seed2)

    min_idx = np.argmin(mu, axis=0)
    candidate = X_[min_idx]
    cost = mu[min_idx]

    boplot.highlight_configuration(x=np.array([candidate]),
                                   label='',
                                   lloc='bottom',
                                   disable_ticks=True,
                                   ax=ax)
    boplot.annotate_x_edge(label=r'$\lambda^{(t)}$',
                           xy=(candidate, cost),
                           align='top',
                           ax=ax)
    boplot.highlight_output(y=np.array([cost]),
                            label='',
                            lloc='left',
                            disable_ticks=True,
                            ax=ax)
    boplot.annotate_y_edge(label=r'$g(\lambda^{(t)})$',
                           xy=(candidate, cost),
                           align='left',
                           ax=ax)

    ax.legend().set_zorder(zorders['legend'])
    ax.set_xlabel(labels['xlabel'])

    plt.tight_layout()
    if TOGGLE_PRINT:
        plt.savefig(f"{OUTPUT_DIR}/ts_3.pdf")
    else:
        plt.show()