def best_move(self, board, tleft): logging.info("get_move {} {}".format(board, tleft)) logging.info("winmat {}".format(board.winmatrix())) csm = board.canscorematrix() logging.info("canscoremat {}".format(csm)) for sbi in range(9): if board.macroboard[sbi] == -1 and csm[self.myid][sbi]: scoring_loc = csm[self.myid][sbi] logging.info("we can score on board {} loc {}".format( sbi, scoring_loc)) scoring_move = board.locs_to_move(sbi, scoring_loc) logging.info("we can score with move {}".format(scoring_move)) logging.info("sb\n{}".format(pprint(board.get_subboard(sbi)))) logging.info("canscore \n{}".format( sb_logic.can_score(board.get_subboard(sbi), self.myid))) return scoring_move # logging.info("board {}".format(board.get_board())) lmoves = board.legal_moves() logging.info("lmoves {}".format(lmoves)) if len(lmoves) < 1: logging.error("There is no legal moves") for y in range(9): for x in range(9): if board.field[y * 9 + x] == 0: return (x, y) rm = randint(0, len(lmoves) - 1) logging.info("rm {}".format(rm)) return board.locs_to_move(*lmoves[rm])
def set_values(self, board): values = {(b, l): 0.0 for b in range(9) for l in range(9)} win_value = 2000.0 lose_board_value = -15.0 score_value = 18.0 bad_score_value = -12.0 free_play_value = -18.0 cats_play_value = 20.0 center_board_value = 0.5 #priotize the center for i in range(9): values[(4, i)] += center_board_value # priortize the board that could cause us to win masked_macrob = [0 if i < 0 else i for i in board.macroboard] canwin = sb_logic.can_score(masked_macrob, self.myid) if canwin is not False: logging.info("CAN WIN BOARD {}".format(canwin)) for l in range(9): values[canwin, l] += win_value # depriortize the board that could cause us to win canlose = sb_logic.can_score(masked_macrob, self.oppid) if canlose is not False: for b in range(9): values[b, canlose] += lose_board_value # priortize scoring csm = board.canscorematrix() for b in range(9): if csm[self.myid][b] is not False: values[b, csm[self.myid][b]] += score_value # depriortize him scoring for b in range(9): if csm[self.oppid][b] is not False: for b2 in range(9): values[b2, b] += bad_score_value # prioritize letting him play on cats catsmatrix = board.catsmatrix() for b in range(9): if catsmatrix[b] is True: for b2 in range(9): values[b2, b] += cats_play_value # don't give him free play for b in range(9): if board.macroboard[b] > 0: for b2 in range(9): values[b2, b] += free_play_value legal_values = { k: v for k, v in values.iteritems() if k in board.legal_moves() } return legal_values
def set_values(self, board): values = {(b,l): 0.0 for b in range(9) for l in range(9)} win_value = 2000.0 lose_board_value = -15.0 score_value = 18.0 bad_score_value = -12.0 free_play_value = -18.0 cats_play_value = 20.0 center_board_value = 0.5 #priotize the center for i in range(9): values[(4,i)] += center_board_value # priortize the board that could cause us to win masked_macrob = [0 if i < 0 else i for i in board.macroboard] canwin = sb_logic.can_score(masked_macrob, self.myid) if canwin is not False: logging.info("CAN WIN BOARD {}".format(canwin)) for l in range(9): values[canwin,l] += win_value # depriortize the board that could cause us to win canlose = sb_logic.can_score(masked_macrob, self.oppid) if canlose is not False: for b in range(9): values[b,canlose] += lose_board_value # priortize scoring csm = board.canscorematrix() for b in range(9): if csm[self.myid][b] is not False: values[b,csm[self.myid][b]] += score_value # depriortize him scoring for b in range(9): if csm[self.oppid][b] is not False: for b2 in range(9): values[b2,b] += bad_score_value # prioritize letting him play on cats catsmatrix = board.catsmatrix() for b in range(9): if catsmatrix[b] is True: for b2 in range(9): values[b2,b] += cats_play_value # don't give him free play for b in range(9): if board.macroboard[b] > 0: for b2 in range(9): values[b2,b] += free_play_value legal_values = {k:v for k,v in values.iteritems() if k in board.legal_moves()} return legal_values
def best_move(self, board, tleft): logging.info("get_move {} {}".format(board, tleft)) # testb = [0, 1, 1, 0, 1, 2, 0, 2, 1] # logging.info("testb?!\n{}".format(pprint(testb))) # logging.info("test1?! {}".format(sb_logic.can_score(testb, 1))) # logging.info("test2?! {}".format(sb_logic.can_score(testb, 2))) # exit(-1) logging.info("winmat {}".format(board.winmatrix())) csm = board.canscorematrix() logging.info("canscoremat {}".format(csm)) values = self.set_values(board) logging.info("values {}".format(values)) best_moves = [ k for k, v in values.iteritems() if v == max(values.values()) ] logging.info("best moves {}".format(best_moves)) if len(best_moves) < 1: logging.error("There is no legal moves") for y in range(9): for x in range(9): if board.field[y * 9 + x] == 0: return (x, y) rm = randint(0, len(best_moves) - 1) logging.info("rm {}".format(rm)) return board.locs_to_move(*best_moves[rm])
def best_move(self, board, tleft): logging.info("get_move {} {}".format(board, tleft)) # testb = [0, 1, 1, 0, 1, 2, 0, 2, 1] # logging.info("testb?!\n{}".format(pprint(testb))) # logging.info("test1?! {}".format(sb_logic.can_score(testb, 1))) # logging.info("test2?! {}".format(sb_logic.can_score(testb, 2))) # exit(-1) logging.info("winmat {}".format(board.winmatrix())) csm = board.canscorematrix() logging.info("canscoremat {}".format(csm)) values = self.set_values(board) logging.info("values {}".format(values)) best_moves = [k for k,v in values.iteritems() if v == max(values.values())] logging.info("best moves {}".format(best_moves)) if len(best_moves) < 1: logging.error("There is no legal moves") for y in range(9): for x in range(9): if board.field[y*9+x] == 0: return (x, y) rm = randint(0, len(best_moves)-1) logging.info("rm {}".format(rm)) return board.locs_to_move(*best_moves[rm])