コード例 #1
0
def test_ivector_plda():
  temp_file = bob.io.base.test_utils.temporary_filename()
  ivec1 = bob.bio.base.load_resource("ivector-plda", "algorithm", preferred_package='bob.bio.gmm')
  ivec1.use_plda = True

  # create smaller IVector object
  ivec2 = bob.bio.gmm.algorithm.IVector(
      number_of_gaussians = 2,
      subspace_dimension_of_t = 10,
      kmeans_training_iterations = 1,
      tv_training_iterations = 1,
      INIT_SEED = seed_value,
      use_plda = True,
      plda_dim_F = 2,
      plda_dim_G = 2,
      plda_training_iterations = 2

  )

  train_data = utils.random_training_set_by_id((100,45), count=5, minimum=-5., maximum=5.)

  # reference is the same as for GMM projection
  reference_file = pkg_resources.resource_filename('bob.bio.gmm.test', 'data/ivector2_projector.hdf5')
  try:
    # train the projector

    ivec2.train_projector(train_data, temp_file)

    assert os.path.exists(temp_file)

    if regenerate_refs: shutil.copy(temp_file, reference_file)

    # check projection matrix
    ivec1.load_projector(reference_file)
    ivec2.load_projector(temp_file)

    assert ivec1.ubm.is_similar_to(ivec2.ubm)
    assert ivec1.tv.is_similar_to(ivec2.tv)
    assert ivec1.whitener.is_similar_to(ivec2.whitener)
  finally:
    if os.path.exists(temp_file): os.remove(temp_file)

  # generate and project random feature
  feature = utils.random_array((20,45), -5., 5., seed=84)
  projected = ivec1.project(feature)
  _compare(projected, pkg_resources.resource_filename('bob.bio.gmm.test', 'data/ivector2_projected.hdf5'), ivec1.write_feature, ivec1.read_feature)

  # enroll model from random features
  random_features = utils.random_training_set((20,45), count=5, minimum=-5., maximum=5.)
  enroll_features = [ivec1.project(feature) for feature in random_features]

  model = ivec1.enroll(enroll_features)
  _compare(model, pkg_resources.resource_filename('bob.bio.gmm.test', 'data/ivector2_model.hdf5'), ivec1.write_model, ivec1.read_model)

  # compare model with probe
  probe = ivec1.read_feature(pkg_resources.resource_filename('bob.bio.gmm.test', 'data/ivector2_projected.hdf5'))
  logger.info("%f" %ivec1.score(model, probe))
  reference_score = 1.21879822
  assert abs(ivec1.score(model, probe) - reference_score) < 1e-5, "The scores differ: %3.8f, %3.8f" % (ivec1.score(model, probe), reference_score)
  assert abs(ivec1.score_for_multiple_probes(model, [probe, probe]) - reference_score) < 1e-5
コード例 #2
0
def test_ivector_lda_wccn_plda():
    temp_file = bob.io.base.test_utils.temporary_filename()
    ivec1 = bob.bio.base.load_resource("ivector-lda-wccn-plda",
                                       "algorithm",
                                       preferred_package='bob.bio.gmm')
    ivec1.use_lda = True
    ivec1.use_wccn = True
    ivec1.use_plda = True
    # create smaller IVector object
    ivec2 = bob.bio.gmm.algorithm.IVector(number_of_gaussians=2,
                                          subspace_dimension_of_t=10,
                                          kmeans_training_iterations=1,
                                          tv_training_iterations=1,
                                          INIT_SEED=seed_value,
                                          use_lda=True,
                                          lda_dim=3,
                                          use_wccn=True,
                                          use_plda=True,
                                          plda_dim_F=2,
                                          plda_dim_G=2,
                                          plda_training_iterations=2)

    train_data = utils.random_training_set_by_id((100, 45),
                                                 count=5,
                                                 minimum=-5.,
                                                 maximum=5.)

    # reference is the same as for GMM projection
    reference_file = pkg_resources.resource_filename(
        'bob.bio.gmm.test', 'data/ivector3_projector.hdf5')
    try:
        # train the projector

        ivec2.train_projector(train_data, temp_file)

        assert os.path.exists(temp_file)

        if regenerate_refs: shutil.copy(temp_file, reference_file)

        # check projection matrix
        ivec1.load_projector(reference_file)
        ivec2.load_projector(temp_file)

        assert ivec1.ubm.is_similar_to(ivec2.ubm)
        assert ivec1.tv.is_similar_to(ivec2.tv)
        assert ivec1.whitener.is_similar_to(ivec2.whitener)
    finally:
        if os.path.exists(temp_file): os.remove(temp_file)

    # generate and project random feature
    feature = utils.random_array((20, 45), -5., 5., seed=84)
    projected = ivec1.project(feature)
    _compare(
        projected,
        pkg_resources.resource_filename('bob.bio.gmm.test',
                                        'data/ivector3_projected.hdf5'),
        ivec1.write_feature, ivec1.read_feature)

    # enroll model from random features
    random_features = utils.random_training_set((20, 45),
                                                count=5,
                                                minimum=-5.,
                                                maximum=5.)
    enroll_features = [ivec1.project(feature) for feature in random_features]
    model = ivec1.enroll(enroll_features)
    _compare(
        model,
        pkg_resources.resource_filename('bob.bio.gmm.test',
                                        'data/ivector3_model.hdf5'),
        ivec1.write_model, ivec1.read_model)

    # compare model with probe
    probe = ivec1.read_probe(
        pkg_resources.resource_filename('bob.bio.gmm.test',
                                        'data/ivector3_projected.hdf5'))
    reference_score = 0.338051
    assert abs(ivec1.score(model, probe) -
               reference_score) < 1e-5, "The scores differ: %3.8f, %3.8f" % (
                   ivec1.score(model, probe), reference_score)
    assert abs(
        ivec1.score_for_multiple_probes(model, [probe, probe]) -
        reference_score) < 1e-5
コード例 #3
0
def test_jfa():
    temp_file = bob.io.base.test_utils.temporary_filename()
    jfa1 = bob.bio.base.load_resource("jfa",
                                      "algorithm",
                                      preferred_package='bob.bio.gmm')
    assert isinstance(jfa1, bob.bio.gmm.algorithm.JFA)
    assert isinstance(jfa1, bob.bio.gmm.algorithm.GMM)
    assert isinstance(jfa1, bob.bio.base.algorithm.Algorithm)
    assert jfa1.performs_projection
    assert jfa1.requires_projector_training
    assert jfa1.use_projected_features_for_enrollment
    assert not jfa1.split_training_features_by_client
    assert jfa1.requires_enroller_training

    # create smaller JFA object
    jfa2 = bob.bio.gmm.algorithm.JFA(number_of_gaussians=2,
                                     subspace_dimension_of_u=2,
                                     subspace_dimension_of_v=2,
                                     kmeans_training_iterations=1,
                                     gmm_training_iterations=1,
                                     jfa_training_iterations=1,
                                     INIT_SEED=seed_value)

    train_data = utils.random_training_set((100, 45),
                                           count=5,
                                           minimum=-5.,
                                           maximum=5.)
    # reference is the same as for GMM projection
    reference_file = pkg_resources.resource_filename(
        'bob.bio.gmm.test', 'data/gmm_projector.hdf5')
    try:
        # train the projector
        jfa2.train_projector(train_data, temp_file)

        assert os.path.exists(temp_file)

        if regenerate_refs: shutil.copy(temp_file, reference_file)

        # check projection matrix
        jfa1.load_projector(reference_file)
        jfa2.load_projector(temp_file)

        assert jfa1.ubm.is_similar_to(jfa2.ubm)
    finally:
        if os.path.exists(temp_file): os.remove(temp_file)

    # generate and project random feature
    feature = utils.random_array((20, 45), -5., 5., seed=84)
    projected = jfa1.project(feature)
    assert isinstance(projected, bob.learn.em.GMMStats)
    _compare(
        projected,
        pkg_resources.resource_filename('bob.bio.gmm.test',
                                        'data/gmm_projected.hdf5'),
        jfa1.write_feature, jfa1.read_feature)

    # enroll model from random features
    random_features = utils.random_training_set_by_id((20, 45),
                                                      count=5,
                                                      minimum=-5.,
                                                      maximum=5.)
    train_data = [[jfa1.project(feature) for feature in client_features]
                  for client_features in random_features]
    reference_file = pkg_resources.resource_filename('bob.bio.gmm.test',
                                                     'data/jfa_enroller.hdf5')
    try:
        # train the projector
        jfa2.train_enroller(train_data, temp_file)

        assert os.path.exists(temp_file)

        if regenerate_refs: shutil.copy(temp_file, reference_file)

        # check projection matrix
        jfa1.load_enroller(reference_file)
        jfa2.load_enroller(temp_file)

        assert jfa1.jfa_base.is_similar_to(jfa2.jfa_base)
    finally:
        if os.path.exists(temp_file): os.remove(temp_file)

    # enroll model from random features
    random_features = utils.random_training_set((20, 45),
                                                count=5,
                                                minimum=-5.,
                                                maximum=5.)
    enroll_features = [jfa1.project(feature) for feature in random_features]
    model = jfa1.enroll(enroll_features)
    assert isinstance(model, bob.learn.em.JFAMachine)
    _compare(
        model,
        pkg_resources.resource_filename('bob.bio.gmm.test',
                                        'data/jfa_model.hdf5'),
        jfa1.write_model, jfa1.read_model)

    # compare model with probe
    probe = jfa1.read_probe(
        pkg_resources.resource_filename('bob.bio.gmm.test',
                                        'data/gmm_projected.hdf5'))
    reference_score = 0.02225812
    assert abs(jfa1.score(model, probe) -
               reference_score) < 1e-5, "The scores differ: %3.8f, %3.8f" % (
                   jfa1.score(model, probe), reference_score)
コード例 #4
0
def test_isv():
    temp_file = bob.io.base.test_utils.temporary_filename()
    isv1 = bob.bio.base.load_resource("isv",
                                      "algorithm",
                                      preferred_package='bob.bio.gmm')
    assert isinstance(isv1, bob.bio.gmm.algorithm.ISV)
    assert isinstance(isv1, bob.bio.gmm.algorithm.GMM)
    assert isinstance(isv1, bob.bio.base.algorithm.Algorithm)
    assert isv1.performs_projection
    assert isv1.requires_projector_training
    assert isv1.use_projected_features_for_enrollment
    assert isv1.split_training_features_by_client
    assert not isv1.requires_enroller_training

    # create smaller GMM object
    isv2 = bob.bio.gmm.algorithm.ISV(number_of_gaussians=2,
                                     subspace_dimension_of_u=10,
                                     kmeans_training_iterations=1,
                                     gmm_training_iterations=1,
                                     isv_training_iterations=1,
                                     INIT_SEED=seed_value)

    train_data = utils.random_training_set_by_id((100, 45),
                                                 count=5,
                                                 minimum=-5.,
                                                 maximum=5.)
    reference_file = pkg_resources.resource_filename(
        'bob.bio.gmm.test', 'data/isv_projector.hdf5')
    try:
        # train the projector
        isv2.train_projector(train_data, temp_file)

        assert os.path.exists(temp_file)

        if regenerate_refs: shutil.copy(temp_file, reference_file)

        # check projection matrix
        isv1.load_projector(reference_file)
        isv2.load_projector(temp_file)

        assert isv1.ubm.is_similar_to(isv2.ubm)
        assert isv1.isvbase.is_similar_to(isv2.isvbase)
    finally:
        if os.path.exists(temp_file): os.remove(temp_file)

    # generate and project random feature
    feature = utils.random_array((20, 45), -5., 5., seed=84)
    projected = isv1.project(feature)
    assert isinstance(projected, (list, tuple))
    assert len(projected) == 2
    assert isinstance(projected[0], bob.learn.em.GMMStats)
    assert isinstance(projected[1], numpy.ndarray)
    _compare_complex(
        projected,
        pkg_resources.resource_filename('bob.bio.gmm.test',
                                        'data/isv_projected.hdf5'),
        isv1.write_feature, isv1.read_probe)

    # enroll model from random features
    random_features = utils.random_training_set((20, 45),
                                                count=5,
                                                minimum=-5.,
                                                maximum=5.)
    enroll_features = [isv1.project(feature)[0] for feature in random_features]
    model = isv1.enroll(enroll_features)
    assert isinstance(model, bob.learn.em.ISVMachine)
    _compare(
        model,
        pkg_resources.resource_filename('bob.bio.gmm.test',
                                        'data/isv_model.hdf5'),
        isv1.write_model, isv1.read_model)

    # compare model with probe
    probe = isv1.read_probe(
        pkg_resources.resource_filename('bob.bio.gmm.test',
                                        'data/isv_projected.hdf5'))
    reference_score = 0.02136784
    assert abs(isv1.score(model, probe) -
               reference_score) < 1e-5, "The scores differ: %3.8f, %3.8f" % (
                   isv1.score(model, probe), reference_score)
    #  assert abs(isv1.score_for_multiple_probes(model, [probe]*4) - reference_score) < 1e-5, isv1.score_for_multiple_probes(model, [probe, probe])
    # TODO: Why is the score not identical for multiple copies of the same probe?
    assert abs(
        isv1.score_for_multiple_probes(model, [probe, probe]) -
        reference_score) < 1e-4, isv1.score_for_multiple_probes(
            model, [probe, probe])
コード例 #5
0
def test_jfa():
  temp_file = bob.io.base.test_utils.temporary_filename()
  jfa1 = bob.bio.base.load_resource("jfa", "algorithm", preferred_package='bob.bio.gmm')
  assert isinstance(jfa1, bob.bio.gmm.algorithm.JFA)
  assert isinstance(jfa1, bob.bio.gmm.algorithm.GMM)
  assert isinstance(jfa1, bob.bio.base.algorithm.Algorithm)
  assert jfa1.performs_projection
  assert jfa1.requires_projector_training
  assert jfa1.use_projected_features_for_enrollment
  assert not jfa1.split_training_features_by_client
  assert jfa1.requires_enroller_training

  # create smaller JFA object
  jfa2 = bob.bio.gmm.algorithm.JFA(
      number_of_gaussians = 2,
      subspace_dimension_of_u = 2,
      subspace_dimension_of_v = 2,
      kmeans_training_iterations = 1,
      gmm_training_iterations = 1,
      jfa_training_iterations = 1,
      INIT_SEED = seed_value
  )

  train_data = utils.random_training_set((100,45), count=5, minimum=-5., maximum=5.)
  # reference is the same as for GMM projection
  reference_file = pkg_resources.resource_filename('bob.bio.gmm.test', 'data/gmm_projector.hdf5')
  try:
    # train the projector
    jfa2.train_projector(train_data, temp_file)

    assert os.path.exists(temp_file)

    if regenerate_refs: shutil.copy(temp_file, reference_file)

    # check projection matrix
    jfa1.load_projector(reference_file)
    jfa2.load_projector(temp_file)

    assert jfa1.ubm.is_similar_to(jfa2.ubm)
  finally:
    if os.path.exists(temp_file): os.remove(temp_file)

  # generate and project random feature
  feature = utils.random_array((20,45), -5., 5., seed=84)
  projected = jfa1.project(feature)
  assert isinstance(projected, bob.learn.em.GMMStats)
  _compare(projected, pkg_resources.resource_filename('bob.bio.gmm.test', 'data/gmm_projected.hdf5'), jfa1.write_feature, jfa1.read_feature)

  # enroll model from random features
  random_features = utils.random_training_set_by_id((20,45), count=5, minimum=-5., maximum=5.)
  train_data = [[jfa1.project(feature) for feature in client_features] for client_features in random_features]
  reference_file = pkg_resources.resource_filename('bob.bio.gmm.test', 'data/jfa_enroller.hdf5')
  try:
    # train the projector
    jfa2.train_enroller(train_data, temp_file)

    assert os.path.exists(temp_file)

    if regenerate_refs: shutil.copy(temp_file, reference_file)

    # check projection matrix
    jfa1.load_enroller(reference_file)
    jfa2.load_enroller(temp_file)

    assert jfa1.jfa_base.is_similar_to(jfa2.jfa_base)
  finally:
    if os.path.exists(temp_file): os.remove(temp_file)

  # enroll model from random features
  random_features = utils.random_training_set((20,45), count=5, minimum=-5., maximum=5.)
  enroll_features = [jfa1.project(feature) for feature in random_features]
  model = jfa1.enroll(enroll_features)
  assert isinstance(model, bob.learn.em.JFAMachine)
  _compare(model, pkg_resources.resource_filename('bob.bio.gmm.test', 'data/jfa_model.hdf5'), jfa1.write_model, jfa1.read_model)

  # compare model with probe
  probe = jfa1.read_feature(pkg_resources.resource_filename('bob.bio.gmm.test', 'data/gmm_projected.hdf5'))
  reference_score = 0.02225812
  assert abs(jfa1.score(model, probe) - reference_score) < 1e-5, "The scores differ: %3.8f, %3.8f" % (jfa1.score(model, probe), reference_score)
コード例 #6
0
def test_isv():
  temp_file = bob.io.base.test_utils.temporary_filename()
  isv1 = bob.bio.base.load_resource("isv", "algorithm", preferred_package='bob.bio.gmm')
  assert isinstance(isv1, bob.bio.gmm.algorithm.ISV)
  assert isinstance(isv1, bob.bio.gmm.algorithm.GMM)
  assert isinstance(isv1, bob.bio.base.algorithm.Algorithm)
  assert isv1.performs_projection
  assert isv1.requires_projector_training
  assert isv1.use_projected_features_for_enrollment
  assert isv1.split_training_features_by_client
  assert not isv1.requires_enroller_training

  # create smaller GMM object
  isv2 = bob.bio.gmm.algorithm.ISV(
      number_of_gaussians = 2,
      subspace_dimension_of_u = 10,
      kmeans_training_iterations = 1,
      gmm_training_iterations = 1,
      isv_training_iterations = 1,
      INIT_SEED = seed_value
  )

  train_data = utils.random_training_set_by_id((100,45), count=5, minimum=-5., maximum=5.)
  reference_file = pkg_resources.resource_filename('bob.bio.gmm.test', 'data/isv_projector.hdf5')
  try:
    # train the projector
    isv2.train_projector(train_data, temp_file)

    assert os.path.exists(temp_file)

    if regenerate_refs: shutil.copy(temp_file, reference_file)

    # check projection matrix
    isv1.load_projector(reference_file)
    isv2.load_projector(temp_file)

    assert isv1.ubm.is_similar_to(isv2.ubm)
    assert isv1.isvbase.is_similar_to(isv2.isvbase)
  finally:
    if os.path.exists(temp_file): os.remove(temp_file)

  # generate and project random feature
  feature = utils.random_array((20,45), -5., 5., seed=84)
  projected = isv1.project(feature)
  assert isinstance(projected, (list, tuple))
  assert len(projected) == 2
  assert isinstance(projected[0], bob.learn.em.GMMStats)
  assert isinstance(projected[1], numpy.ndarray)
  _compare_complex(projected, pkg_resources.resource_filename('bob.bio.gmm.test', 'data/isv_projected.hdf5'), isv1.write_feature, isv1.read_feature)

  # enroll model from random features
  random_features = utils.random_training_set((20,45), count=5, minimum=-5., maximum=5.)
  enroll_features = [isv1.project(feature) for feature in random_features]
  model = isv1.enroll(enroll_features)
  assert isinstance(model, bob.learn.em.ISVMachine)
  _compare(model, pkg_resources.resource_filename('bob.bio.gmm.test', 'data/isv_model.hdf5'), isv1.write_model, isv1.read_model)

  # compare model with probe
  probe = isv1.read_feature(pkg_resources.resource_filename('bob.bio.gmm.test', 'data/isv_projected.hdf5'))
  reference_score = 0.02136784
  assert abs(isv1.score(model, probe) - reference_score) < 1e-5, "The scores differ: %3.8f, %3.8f" % (isv1.score(model, probe), reference_score)
#  assert abs(isv1.score_for_multiple_probes(model, [probe]*4) - reference_score) < 1e-5, isv1.score_for_multiple_probes(model, [probe, probe])
  # TODO: Why is the score not identical for multiple copies of the same probe?
  assert abs(isv1.score_for_multiple_probes(model, [probe, probe]) - reference_score) < 1e-4, isv1.score_for_multiple_probes(model, [probe, probe])