コード例 #1
0
def mainloop():
    global config, masks, layers, config_mtime

    config, config_mtime_new = load_config(config_mtime, config)
    if config_mtime != config_mtime_new:
        config['width'] = width
        config['height'] = height
        layers = []  # Allow filters to run their destructors
        layers = reload_layers(config)
        config_mtime = config_mtime_new

    if static_image is not None:
        success, frame = True, static_image
    else:
        success, frame = cap.read()
    if not success:
        print("Error getting a webcam image!")
        sys.exit(1)
    # BGR to RGB
    frame = frame[..., ::-1]
    frame = frame.astype(np.float)

    input_height, input_width = frame.shape[:2]
    internal_resolution = config.get("internal_resolution", 0.5)

    target_height, target_width = to_input_resolution_height_and_width(
        internal_resolution, output_stride, input_height, input_width)

    padT, padB, padL, padR = calc_padding(frame, target_height, target_width)
    resized_frame = tf.image.resize_with_pad(
        frame,
        target_height,
        target_width,
        method=tf.image.ResizeMethod.BILINEAR)

    resized_height, resized_width = resized_frame.shape[:2]

    # Preprocessing
    if model_type == "mobilenet":
        resized_frame = np.divide(resized_frame, 127.5)
        resized_frame = np.subtract(resized_frame, 1.0)
    elif model_type == "resnet50":
        m = np.array([-123.15, -115.90, -103.06])
        resized_frame = np.add(resized_frame, m)
    else:
        assert (False)

    sample_image = resized_frame[tf.newaxis, ...]

    results = sess.run(output_tensor_names,
                       feed_dict={input_tensor: sample_image})

    if model_type == "mobilenet":
        segment_logits = results[1]
        part_heatmaps = results[2]
        heatmaps = results[4]
    else:
        segment_logits = results[6]
        part_heatmaps = results[5]
        heatmaps = results[2]

    scaled_segment_scores = scale_and_crop_to_input_tensor_shape(
        segment_logits, input_height, input_width, padT, padB, padL, padR,
        True)

    scaled_part_heatmap_scores = scale_and_crop_to_input_tensor_shape(
        part_heatmaps, input_height, input_width, padT, padB, padL, padR, True)

    scaled_heatmap_scores = scale_and_crop_to_input_tensor_shape(
        heatmaps, input_height, input_width, padT, padB, padL, padR, True)

    mask = to_mask_tensor(scaled_segment_scores,
                          config.get("segmentation_threshold", 0.75))
    mask = np.reshape(mask, mask.shape[:2])

    part_masks = to_mask_tensor(scaled_part_heatmap_scores, 0.999)
    part_masks = np.array(part_masks)
    heatmap_masks = to_mask_tensor(scaled_heatmap_scores, 0.99)
    heatmap_masks = np.array(heatmap_masks)

    # Average over the last N masks to reduce flickering
    # (at the cost of seeing afterimages)
    num_average_masks = max(1, config.get("average_masks", 3))
    masks.insert(0, mask)
    masks = masks[:num_average_masks]

    mask = np.mean(masks, axis=0)
    mask = (mask * 255).astype(np.uint8)

    dilate_value = config.get("dilate", 0)
    erode_value = config.get("erode", 0)
    blur_value = config.get("blur", 0)

    if dilate_value:
        mask = cv2.dilate(mask,
                          np.ones((dilate_value, dilate_value), np.uint8),
                          iterations=1)
    if erode_value:
        mask = cv2.erode(mask,
                         np.ones((erode_value, erode_value), np.uint8),
                         iterations=1)
    if blur_value:
        mask = cv2.blur(mask, (blur_value, blur_value))

    frame = np.append(frame, np.expand_dims(mask, axis=2), axis=2)

    input_frame = frame.copy()
    frame = np.zeros(input_frame.shape)
    for layer_type, layer_filters in layers:
        # Initialize the layer frame
        layer_frame = np.zeros(frame.shape)  # transparent black
        if layer_type == "foreground":
            layer_frame = input_frame.copy()
        elif layer_type == "input":
            layer_frame = input_frame.copy()
            # make the frame opaque
            layer_frame[:, :, 3] = 255 * np.ones(input_frame.shape[:2])
        elif layer_type == "previous":
            layer_frame = frame.copy()
            # make the frame opaque
            layer_frame[:, :, 3] = 255 * np.ones(input_frame.shape[:2])
        elif layer_type == "empty":
            pass

        layer_frame = filters.apply_filters(layer_frame, mask, part_masks,
                                            heatmap_masks, layer_filters)
        if layer_frame.shape[2] == 4:
            transparency = layer_frame[:, :, 3] / 255.0
            transparency = np.expand_dims(transparency, axis=2)
            frame[:,:,:3] = frame[:,:,:3] * \
                (1.0 - transparency) + layer_frame[:,:,:3] * transparency
        else:
            frame[:, :, :3] = layer_frame[:, :, :3].copy()

    # Remove alpha channel
    frame = frame[:, :, :3]

    if config.get("debug_show_mask") is not None:
        mask_id = int(config.get("debug_show_mask", None))
        if mask_id > -1 and mask_id < 24:
            mask = part_masks[:, :, mask_id] * 255.0
        frame[:, :, 0] = mask
        frame[:, :, 1] = mask
        frame[:, :, 2] = mask
    elif config.get("debug_show_heatmap") is not None:
        heatmap_id = int(config.get("debug_show_heatmap", None))
        if heatmap_id > -1 and heatmap_id < 17:
            mask = heatmap_masks[:, :, heatmap_id] * 255.0
        frame[:, :, 0] = mask
        frame[:, :, 1] = mask
        frame[:, :, 2] = mask

    frame = frame.astype(np.uint8)
    fakewebcam.schedule_frame(frame)
コード例 #2
0
def mainloop():
    global config, masks, replacement_bgs, overlays
    config = load_config(config)
    success, frame = cap.read()
    if not success:
        print("Error getting a webcam image!")
        sys.exit(1)

    if config.get("flip_horizontal"):
        frame = cv2.flip(frame, 1)
    if config.get("flip_vertical"):
        frame = cv2.flip(frame, 0)

    image_filters = get_imagefilters(config.get("background_filters", []))

    image_name = config.get("background_image", "background.jpg")
    replacement_bgs = load_images(replacement_bgs, image_name,
        height, width, "replacement_bgs",
        config.get("background_interpolation_method"),
        image_filters)

    frame = frame[...,::-1]
    if replacement_bgs is None:
        if len(image_filters) == 0:
            fakewebcam.schedule_frame(frame)
            return

        replacement_bg = np.copy(frame)
        for image_filter in image_filters:
            try:
                replacement_bg = image_filter(replacement_bg)
            except TypeError:
                # caused by a wrong number of arguments in the config
                pass

        replacement_bgs = [replacement_bg]

    input_height, input_width = frame.shape[:2]

    target_height, target_width = to_input_resolution_height_and_width(
        internal_resolution, output_stride, input_height, input_width)

    padT, padB, padL, padR = calc_padding(frame, target_height, target_width)
    resized_frame = tf.image.resize_with_pad(frame, target_height, target_width,
            method=tf.image.ResizeMethod.BILINEAR)

    resized_height, resized_width = resized_frame.shape[:2]

    # Preprocessing for resnet
    #m = np.array([-123.15, -115.90, -103.06])
    #resized_frame = np.add(resized_frame, m)

    # Preprocessing for mobilenet
    resized_frame = np.divide(resized_frame, 127.5)
    resized_frame = np.subtract(resized_frame, 1.0)
    sample_image = resized_frame[tf.newaxis, ...]

    results = sess.run(output_tensor_names,
        feed_dict={input_tensor: sample_image})
    segments = np.squeeze(results[1], 0)

    segment_logits = results[1]
    scaled_segment_scores = scale_and_crop_to_input_tensor_shape(
        segment_logits, input_height, input_width,
        padT, padB, padL, padR, True
    )

    mask = to_mask_tensor(scaled_segment_scores,
        config["segmentation_threshold"])
    mask = tf.dtypes.cast(mask, tf.int32)
    mask = np.reshape(mask, mask.shape[:2])

    # Average over the last N masks to reduce flickering
    # (at the cost of seeing afterimages)
    masks.insert(0, mask)
    num_average_masks = max(1, config.get("average_masks", 3))
    masks = masks[:num_average_masks]
    mask = np.mean(masks, axis=0)

    mask *= 255
    if config["dilate"]:
        mask = cv2.dilate(mask, np.ones((config["dilate"], config["dilate"]), np.uint8), iterations=1)
    if config["erode"]:
        mask = cv2.erode(mask, np.ones((config["erode"], config["erode"]), np.uint8), iterations=1)
    if config["blur"]:
        mask = cv2.blur(mask, (config["blur"], config["blur"]))
    mask /= 255.
    mask_inv = 1.0 - mask

    # Filter the foreground
    image_filters = get_imagefilters(config.get("foreground_filters", []))
    for image_filter in image_filters:
        try:
            frame = image_filter(frame)
        except TypeError:
            # caused by a wrong number of arguments in the config
            pass

    replacement_bgs_idx = config.get("replacement_bgs_idx", 0)
    for c in range(3):
        frame[:,:,c] = frame[:,:,c] * mask + \
            replacement_bgs[replacement_bgs_idx][:,:,c] * mask_inv

    if time.time() - config.get("last_frame_bg", 0) > 1.0 / config.get("background_fps", 1):
        config["replacement_bgs_idx"] = (replacement_bgs_idx + 1) % len(replacement_bgs)
        config["last_frame_bg"] = time.time()

    # Filter the result
    image_filters = get_imagefilters(config.get("result_filters", []))
    for image_filter in image_filters:
        try:
            frame = image_filter(frame)
        except TypeError:
            # caused by a wrong number of arguments in the config
            pass

    overlays_idx = config.get("overlays_idx", 0)
    overlays = load_images(overlays, config.get("overlay_image", ""), height, width,
        "overlays", get_imagefilters(config.get("overlay_filters", [])))

    if overlays:
        overlay = overlays[overlays_idx]
        assert(overlay.shape[2] == 4) # The image has an alpha channel
        for c in range(3):
            frame[:,:,c] = frame[:,:,c] * (1.0 - overlay[:,:,3] / 255.0) + \
                overlay[:,:,c] * (overlay[:,:,3] / 255.0)

        if time.time() - config.get("last_frame_overlay", 0) > 1.0 / config.get("overlay_fps", 1):
            config["overlays_idx"] = (overlays_idx + 1) % len(overlays)
            config["last_frame_overlay"] = time.time()

    if config.get("debug_show_mask", False):
        frame[:,:,0] = mask * 255
        frame[:,:,1] = mask * 255
        frame[:,:,2] = mask * 255

    fakewebcam.schedule_frame(frame)
    last_frame_time = time.time()