コード例 #1
0
ファイル: linalg.py プロジェクト: surechen/bohrium
def cg(A, b, x=None, tol=1e-5, force_niter=None):
    """
    Conjugate Gradient (CG) solver

    Implemented as example MATLAB code from <https://en.wikipedia.org/wiki/Conjugate_gradient_method>
    """
    # If no guess is given, set an empty guess
    if x is None:
        x = array_create.zeros_like(b)

    r = b - dot(A, x)
    p = r.copy()
    r_squared = r * r
    rsold = np.sum(r_squared)

    tol_squared = tol * tol
    i = 0
    while np.max(r_squared) > tol_squared or force_niter is not None:
        Ap = dot(A, p)
        alpha = rsold / dot(p, Ap)
        x = x + alpha * p
        r = r - alpha * Ap
        r_squared = r * r
        rsnew = np.sum(r_squared)

        p = r + (rsnew / rsold) * p
        rsold = rsnew
        if force_niter is not None and i >= force_niter:
            break
        i += 1
    return x
コード例 #2
0
ファイル: linalg.py プロジェクト: madsbk/bohrium
def cg(A, b, x=None, tol=1e-5, force_niter=None):
    """
    Conjugate Gradient (CG) solver

    Implemented as example MATLAB code from <https://en.wikipedia.org/wiki/Conjugate_gradient_method>
    """
    # If no guess is given, set an empty guess
    if x is None:
        x = array_create.zeros_like(b)

    r = b - dot(A, x)
    p = r.copy()
    r_squared = r * r
    rsold = np.sum(r_squared)

    tol_squared = tol * tol
    i = 0
    while np.max(r_squared) > tol_squared or force_niter is not None:
        Ap = dot(A, p)
        alpha = rsold / dot(p, Ap)
        x = x + alpha * p
        r = r - alpha * Ap
        r_squared = r * r
        rsnew = np.sum(r_squared)

        p = r + (rsnew / rsold) * p
        rsold = rsnew
        if force_niter is not None and i >= force_niter:
            break
        i += 1
    return x
コード例 #3
0
ファイル: cg.py プロジェクト: jakirkham/bohrium
def cg(A, b, x=None, tol=1e-5):
    # If no guess is given, set an empty guess
    if x is None:
        x = np.zeros(shape=b.shape, dtype=b.dtype)

    # Initialize arrays
    alpha = np.zeros(shape=(1, 1), dtype=b.dtype)
    rsold = np.zeros(shape=(1, 1), dtype=b.dtype)
    rsnew = np.zeros(shape=(1, 1), dtype=b.dtype)

    r = b - np.dot(A, x)
    p = r.copy()
    r_squared = r * r
    rsold = np.sum(r_squared)

    tol_squared = tol * tol
    while np.max(r_squared) > tol_squared:
        Ap = np.dot(A, p)
        alpha = rsold / np.dot(p, Ap)

        x = x + alpha * p
        r = r - alpha * Ap
        r_squared = r * r
        rsnew = np.sum(r_squared)

        p = r + (rsnew / rsold) * p
        rsold = rsnew

    return x
コード例 #4
0
def normalMapFromHeightMap(heightmap):
    """
    Create a normal map from a height map (sometimes called a bumpmap)

    :param heightmap: height map to convert

    Comes from:
        http://www.juhanalankinen.com/calculating-normalmaps-with-python-and-numpy/
    """
    heightmap = numpyArray(heightmap)
    heightmap = normalize(heightmap)
    matI = np.identity(heightmap.shape[0] + 1)
    matNeg = -1 * matI[0:-1, 1:]
    matNeg[0, -1] = -1
    matI = matI[1:, 0:-1]
    matI[-1, 0] = 1
    matI += matNeg
    matGradX = (matI.dot(heightmap.T)).T
    matGradY = matI.dot(heightmap)
    matNormal = np.zeros([heightmap.shape[0], heightmap.shape[1], 3])
    matNormal[:, :, 0] = -matGradX
    matNormal[:, :, 1] = matGradY
    matNormal[:, :, 2] = 1.0
    fNormMax = np.max(np.abs(matNormal))
    matNormal = ((matNormal / fNormMax) + 1.0) / 2.0
    return matNormal
コード例 #5
0
def toneSplit(image, atPoints=None, absolute=False):
    """
    Break an image into n+1 images at selected value points.

    The default points are to get images for tritone adjustment

    :param image: image to split
    :param atPoints: what grayscale values to split the image
    :param absolute: whether atPoints are absolute values or
        percentages of the available space

    :return: given n atPoints, will return n+1 images
    """
    ret = []
    if atPoints is None:
        atPoints = [0.15, 0.85]
    if not absolute:
        b = min(1.0, np.max(image))
        m = 1 / (max(0.0, np.min(image)) - b)
    else:
        b = 0
        m = 1
    for pointRange in _pointsToRanges(atPoints):
        ret.append(
            np.logical_and(image >= pointRange[0] * m + b,
                           image < pointRange[1] * m + b), atPoints)
    return ret
コード例 #6
0
count = 0
#xsave = [0]*steps
#save_As=[]
#save_distribution = []
WRITE("Starting simulation")

avalanche_sizes = []

start = time.time()
for i in range(steps):
    print('Step:', i)
    WRITE("Step: " + str(i))
    if np.mod(i, float(steps) / 100) == 0:  #
        dist = list(np.bincount(list(degree.flat)))
        x_axis = list(np.arange(0, int(np.max(degree) + 1)))
        save_frame(i, A, [x_axis, dist])

    #Particle addition

    add_site = np.random.randint(0, N - 1)

    x[add_site] = x[add_site] + 1

    WRITE("Starting avalanche processing")

    #Avalanche processing
    """
    degree = np.array(np.sum(A,0))
    xc = degree + (degree==0)