コード例 #1
0
def generateSliders(file_name):
    from bokeh.models.widgets import Slider
    sliders = []
    dataarray = data[file_name]
    for dim in dataarray.dims:
        slider = Slider(start=0, end=dataarray.sizes[dim], step=1)
        #def change_value(attr, old, new):
        #    data
        #slider.on_change("value", change_value)
        slider.title = dim
        sliders.append(slider)
    return sliders
コード例 #2
0
ファイル: plotframes.py プロジェクト: michaelJwilson/prospect
def plotspectra(spectra,
                zcatalog=None,
                model=None,
                notebook=False,
                title=None):
    '''
    TODO: document
    '''

    if notebook:
        bk.output_notebook()

    #- If inputs are frames, convert to a spectra object
    if isinstance(spectra, list) and isinstance(spectra[0],
                                                desispec.frame.Frame):
        spectra = frames2spectra(spectra)
        frame_input = True
    else:
        frame_input = False

    if frame_input and title is None:
        meta = spectra.meta
        title = 'Night {} ExpID {} Spectrograph {}'.format(
            meta['NIGHT'],
            meta['EXPID'],
            meta['CAMERA'][1],
        )

    #- Gather spectra into ColumnDataSource objects for Bokeh
    nspec = spectra.num_spectra()
    cds_spectra = list()

    for band in spectra.bands:
        #- Set masked bins to NaN so that Bokeh won't plot them
        bad = (spectra.ivar[band] == 0.0) | (spectra.mask[band] != 0)
        spectra.flux[band][bad] = np.nan

        cdsdata = dict(
            origwave=spectra.wave[band].copy(),
            plotwave=spectra.wave[band].copy(),
        )

        for i in range(nspec):
            key = 'origflux' + str(i)
            cdsdata[key] = spectra.flux[band][i]

        cdsdata['plotflux'] = cdsdata['origflux0']

        cds_spectra.append(bk.ColumnDataSource(cdsdata, name=band))

    #- Reorder zcatalog to match input targets
    #- TODO: allow more than one zcatalog entry with different ZNUM per targetid
    targetids = spectra.target_ids()
    if zcatalog is not None:
        ii = np.argsort(np.argsort(targetids))
        jj = np.argsort(zcatalog['TARGETID'])
        kk = jj[ii]
        zcatalog = zcatalog[kk]

        #- That sequence of argsorts may feel like magic,
        #- so make sure we got it right
        assert np.all(zcatalog['TARGETID'] == targetids)
        assert np.all(zcatalog['TARGETID'] == spectra.fibermap['TARGETID'])

        #- Also need to re-order input model fluxes
        if model is not None:
            mwave, mflux = model
            model = mwave, mflux[kk]

    #- Gather models into ColumnDataSource objects, row matched to spectra
    if model is not None:
        mwave, mflux = model
        model_obswave = mwave.copy()
        model_restwave = mwave.copy()
        cds_model_data = dict(
            origwave=mwave.copy(),
            plotwave=mwave.copy(),
            plotflux=np.zeros(len(mwave)),
        )

        for i in range(nspec):
            key = 'origflux' + str(i)
            cds_model_data[key] = mflux[i]

        cds_model_data['plotflux'] = cds_model_data['origflux0']
        cds_model = bk.ColumnDataSource(cds_model_data)
    else:
        cds_model = None

    #- Subset of zcatalog and fibermap columns into ColumnDataSource
    target_info = list()
    for i, row in enumerate(spectra.fibermap):
        target_bit_names = ' '.join(desi_mask.names(row['DESI_TARGET']))
        txt = 'Target {}: {}'.format(row['TARGETID'], target_bit_names)
        if zcatalog is not None:
            txt += '<BR/>{} z={:.4f} ± {:.4f}  ZWARN={}'.format(
                zcatalog['SPECTYPE'][i],
                zcatalog['Z'][i],
                zcatalog['ZERR'][i],
                zcatalog['ZWARN'][i],
            )
        target_info.append(txt)

    cds_targetinfo = bk.ColumnDataSource(dict(target_info=target_info),
                                         name='targetinfo')
    if zcatalog is not None:
        cds_targetinfo.add(zcatalog['Z'], name='z')

    plot_width = 800
    plot_height = 400
    # tools = 'pan,box_zoom,wheel_zoom,undo,redo,reset,save'
    tools = 'pan,box_zoom,wheel_zoom,reset,save'
    fig = bk.figure(height=plot_height,
                    width=plot_width,
                    title=title,
                    tools=tools,
                    toolbar_location='above',
                    y_range=(-10, 20))
    fig.toolbar.active_drag = fig.tools[1]  #- box zoom
    fig.toolbar.active_scroll = fig.tools[2]  #- wheel zoom
    fig.xaxis.axis_label = 'Wavelength [Å]'
    fig.yaxis.axis_label = 'Flux'
    fig.xaxis.axis_label_text_font_style = 'normal'
    fig.yaxis.axis_label_text_font_style = 'normal'
    colors = dict(b='#1f77b4', r='#d62728', z='maroon')

    data_lines = list()
    for spec in cds_spectra:
        lx = fig.line('plotwave',
                      'plotflux',
                      source=spec,
                      line_color=colors[spec.name])
        data_lines.append(lx)

    if cds_model is not None:
        model_lines = list()
        lx = fig.line('plotwave',
                      'plotflux',
                      source=cds_model,
                      line_color='black')
        model_lines.append(lx)

        legend = Legend(items=[
            ("data",
             data_lines[-1::-1]),  #- reversed to get blue as lengend entry
            ("model", model_lines),
        ])
    else:
        legend = Legend(items=[
            ("data",
             data_lines[-1::-1]),  #- reversed to get blue as lengend entry
        ])

    fig.add_layout(legend, 'center')
    fig.legend.click_policy = 'hide'  #- or 'mute'

    #- Zoom figure around mouse hover of main plot
    zoomfig = bk.figure(
        height=plot_height // 2,
        width=plot_height // 2,
        y_range=fig.y_range,
        x_range=(5000, 5100),
        # output_backend="webgl",
        toolbar_location=None,
        tools=[])

    for spec in cds_spectra:
        zoomfig.line('plotwave',
                     'plotflux',
                     source=spec,
                     line_color=colors[spec.name],
                     line_width=1,
                     line_alpha=1.0)

    if cds_model is not None:
        zoomfig.line('plotwave',
                     'plotflux',
                     source=cds_model,
                     line_color='black')

    #- Callback to update zoom window x-range
    zoom_callback = CustomJS(args=dict(zoomfig=zoomfig),
                             code="""
            zoomfig.x_range.start = cb_obj.x - 100;
            zoomfig.x_range.end = cb_obj.x + 100;
        """)

    fig.js_on_event(bokeh.events.MouseMove, zoom_callback)

    #-----
    #- Emission and absorption lines
    z = zcatalog['Z'][0] if (zcatalog is not None) else 0.0
    line_data, lines, line_labels = add_lines(fig, z=z)

    #-----
    #- Add widgets for controling plots
    z1 = np.floor(z * 100) / 100
    dz = z - z1
    zslider = Slider(start=0.0, end=4.0, value=z1, step=0.01, title='Redshift')
    dzslider = Slider(start=0.0,
                      end=0.01,
                      value=dz,
                      step=0.0001,
                      title='+ Delta redshift')
    dzslider.format = "0[.]0000"

    #- Observer vs. Rest frame wavelengths
    waveframe_buttons = RadioButtonGroup(labels=["Obs", "Rest"], active=0)

    ifiberslider = Slider(start=0, end=nspec - 1, value=0, step=1)
    if frame_input:
        ifiberslider.title = 'Fiber'
    else:
        ifiberslider.title = 'Target'

    zslider_callback = CustomJS(
        args=dict(
            spectra=cds_spectra,
            model=cds_model,
            targetinfo=cds_targetinfo,
            ifiberslider=ifiberslider,
            zslider=zslider,
            dzslider=dzslider,
            waveframe_buttons=waveframe_buttons,
            line_data=line_data,
            lines=lines,
            line_labels=line_labels,
            fig=fig,
        ),
        #- TODO: reorder to reduce duplicated code
        code="""
        var z = zslider.value + dzslider.value
        var line_restwave = line_data.data['restwave']
        var ifiber = ifiberslider.value
        var zfit = 0.0
        if(targetinfo.data['z'] != undefined) {
            zfit = targetinfo.data['z'][ifiber]
        }

        // Observer Frame
        if(waveframe_buttons.active == 0) {
            var x = 0.0
            for(var i=0; i<line_restwave.length; i++) {
                x = line_restwave[i] * (1+z)
                lines[i].location = x
                line_labels[i].x = x
            }
            for(var i=0; i<spectra.length; i++) {
                var data = spectra[i].data
                var origwave = data['origwave']
                var plotwave = data['plotwave']
                for (var j=0; j<plotwave.length; j++) {
                    plotwave[j] = origwave[j]
                }
                spectra[i].change.emit()
            }

            // Update model wavelength array
            if(model) {
                var origwave = model.data['origwave']
                var plotwave = model.data['plotwave']
                for(var i=0; i<plotwave.length; i++) {
                    plotwave[i] = origwave[i] * (1+z) / (1+zfit)
                }
                model.change.emit()
            }

        // Rest Frame
        } else {
            for(i=0; i<line_restwave.length; i++) {
                lines[i].location = line_restwave[i]
                line_labels[i].x = line_restwave[i]
            }
            for (var i=0; i<spectra.length; i++) {
                var data = spectra[i].data
                var origwave = data['origwave']
                var plotwave = data['plotwave']
                for (var j=0; j<plotwave.length; j++) {
                    plotwave[j] = origwave[j] / (1+z)
                }
                spectra[i].change.emit()
            }

            // Update model wavelength array
            if(model) {
                var origwave = model.data['origwave']
                var plotwave = model.data['plotwave']
                for(var i=0; i<plotwave.length; i++) {
                    plotwave[i] = origwave[i] / (1+zfit)
                }
                model.change.emit()
            }
        }
        """)

    zslider.js_on_change('value', zslider_callback)
    dzslider.js_on_change('value', zslider_callback)
    waveframe_buttons.js_on_click(zslider_callback)

    plotrange_callback = CustomJS(args=dict(
        zslider=zslider,
        dzslider=dzslider,
        waveframe_buttons=waveframe_buttons,
        fig=fig,
    ),
                                  code="""
        var z = zslider.value + dzslider.value
        // Observer Frame
        if(waveframe_buttons.active == 0) {
            fig.x_range.start = fig.x_range.start * (1+z)
            fig.x_range.end = fig.x_range.end * (1+z)
        } else {
            fig.x_range.start = fig.x_range.start / (1+z)
            fig.x_range.end = fig.x_range.end / (1+z)
        }
        """)
    waveframe_buttons.js_on_click(plotrange_callback)

    smootherslider = Slider(start=0,
                            end=31,
                            value=0,
                            step=1.0,
                            title='Gaussian Sigma Smooth')
    target_info_div = Div(text=target_info[0])

    #-----
    #- Toggle lines
    lines_button_group = CheckboxButtonGroup(labels=["Emission", "Absorption"],
                                             active=[])

    lines_callback = CustomJS(args=dict(line_data=line_data,
                                        lines=lines,
                                        line_labels=line_labels),
                              code="""
        var show_emission = false
        var show_absorption = false
        if (cb_obj.active.indexOf(0) >= 0) {  // index 0=Emission in active list
            show_emission = true
        }
        if (cb_obj.active.indexOf(1) >= 0) {  // index 1=Absorption in active list
            show_absorption = true
        }

        for(var i=0; i<lines.length; i++) {
            if(line_data.data['emission'][i]) {
                lines[i].visible = show_emission
                line_labels[i].visible = show_emission
            } else {
                lines[i].visible = show_absorption
                line_labels[i].visible = show_absorption
            }
        }
        """)
    lines_button_group.js_on_click(lines_callback)
    # lines_button_group.js_on_change('value', lines_callback)

    #-----
    update_plot = CustomJS(args=dict(
        spectra=cds_spectra,
        model=cds_model,
        targetinfo=cds_targetinfo,
        target_info_div=target_info_div,
        ifiberslider=ifiberslider,
        smootherslider=smootherslider,
        zslider=zslider,
        dzslider=dzslider,
        lines_button_group=lines_button_group,
        fig=fig,
    ),
                           code="""
        var ifiber = ifiberslider.value
        var nsmooth = smootherslider.value
        target_info_div.text = targetinfo.data['target_info'][ifiber]

        if(targetinfo.data['z'] != undefined) {
            var z = targetinfo.data['z'][ifiber]
            var z1 = Math.floor(z*100) / 100
            zslider.value = z1
            dzslider.value = (z - z1)
        }

        function get_y_minmax(pmin, pmax, data) {
            // copy before sorting to not impact original, and filter out NaN
            var dx = data.slice().filter(Boolean)
            dx.sort()
            var imin = Math.floor(pmin * dx.length)
            var imax = Math.floor(pmax * dx.length)
            return [dx[imin], dx[imax]]
        }

        // Smoothing kernel
        var kernel = [];
        for(var i=-2*nsmooth; i<=2*nsmooth; i++) {
            kernel.push(Math.exp(-(i**2)/(2*nsmooth)))
        }
        var kernel_offset = Math.floor(kernel.length/2)

        // Smooth plot and recalculate ymin/ymax
        // TODO: add smoother function to reduce duplicated code
        var ymin = 0.0
        var ymax = 0.0
        for (var i=0; i<spectra.length; i++) {
            var data = spectra[i].data
            var plotflux = data['plotflux']
            var origflux = data['origflux'+ifiber]
            for (var j=0; j<plotflux.length; j++) {
                if(nsmooth == 0) {
                    plotflux[j] = origflux[j]
                } else {
                    plotflux[j] = 0.0
                    var weight = 0.0
                    // TODO: speed could be improved by moving `if` out of loop
                    for (var k=0; k<kernel.length; k++) {
                        var m = j+k-kernel_offset
                        if((m >= 0) && (m < plotflux.length)) {
                            var fx = origflux[m]
                            if(fx == fx) {
                                plotflux[j] = plotflux[j] + fx * kernel[k]
                                weight += kernel[k]
                            }
                        }
                    }
                    plotflux[j] = plotflux[j] / weight
                }
            }
            spectra[i].change.emit()

            tmp = get_y_minmax(0.01, 0.99, plotflux)
            ymin = Math.min(ymin, tmp[0])
            ymax = Math.max(ymax, tmp[1])
        }

        // update model
        if(model) {
            var plotflux = model.data['plotflux']
            var origflux = model.data['origflux'+ifiber]
            for (var j=0; j<plotflux.length; j++) {
                if(nsmooth == 0) {
                    plotflux[j] = origflux[j]
                } else {
                    plotflux[j] = 0.0
                    var weight = 0.0
                    // TODO: speed could be improved by moving `if` out of loop
                    for (var k=0; k<kernel.length; k++) {
                        var m = j+k-kernel_offset
                        if((m >= 0) && (m < plotflux.length)) {
                            var fx = origflux[m]
                            if(fx == fx) {
                                plotflux[j] = plotflux[j] + fx * kernel[k]
                                weight += kernel[k]
                            }
                        }
                    }
                    plotflux[j] = plotflux[j] / weight
                }
            }
            model.change.emit()
        }

        // update y_range
        if(ymin<0) {
            fig.y_range.start = ymin * 1.4
        } else {
            fig.y_range.start = ymin * 0.6
        }
        fig.y_range.end = ymax * 1.4
    """)
    smootherslider.js_on_change('value', update_plot)
    ifiberslider.js_on_change('value', update_plot)

    #-----
    #- Add navigation buttons
    navigation_button_width = 30
    prev_button = Button(label="<", width=navigation_button_width)
    next_button = Button(label=">", width=navigation_button_width)

    prev_callback = CustomJS(args=dict(ifiberslider=ifiberslider),
                             code="""
        if(ifiberslider.value>0) {
            ifiberslider.value--
        }
        """)
    next_callback = CustomJS(args=dict(ifiberslider=ifiberslider, nspec=nspec),
                             code="""
        if(ifiberslider.value<nspec+1) {
            ifiberslider.value++
        }
        """)

    prev_button.js_on_event('button_click', prev_callback)
    next_button.js_on_event('button_click', next_callback)

    #-----
    slider_width = plot_width - 2 * navigation_button_width
    navigator = bk.Row(
        widgetbox(prev_button, width=navigation_button_width),
        widgetbox(next_button, width=navigation_button_width + 20),
        widgetbox(ifiberslider, width=slider_width - 20))
    bk.show(
        bk.Column(
            bk.Row(fig, zoomfig),
            widgetbox(target_info_div, width=plot_width),
            navigator,
            widgetbox(smootherslider, width=plot_width // 2),
            bk.Row(
                widgetbox(waveframe_buttons, width=120),
                widgetbox(zslider, width=plot_width // 2 - 60),
                widgetbox(dzslider, width=plot_width // 2 - 60),
            ),
            widgetbox(lines_button_group),
        ))