コード例 #1
0
ファイル: visualization.py プロジェクト: ffmichel/lpstock
def edge_labels(graph_render):
    source = graph_render.edge_renderer.data_source
    xcoord = bkm.CustomJSTransform(v_func=EDGE_JS_CODE % "0",
                                   args=dict(
                                       provider=graph_render.layout_provider,
                                       source=source))
    ycoord = bkm.CustomJSTransform(v_func=EDGE_JS_CODE % "1",
                                   args=dict(
                                       provider=graph_render.layout_provider,
                                       source=source))

    source.data['labels'] = [
        str(datum) if not pd.isnull(datum) else ''
        for datum in source.data['relative_allocation']
    ]
    # Use the transforms to supply coords to a LabelSet
    labels = bkm.LabelSet(x=bkt.transform('start', xcoord),
                          y=bkt.transform('start', ycoord),
                          text='labels',
                          text_font_size="12px",
                          x_offset=0,
                          y_offset=0,
                          source=source,
                          render_mode='canvas')
    return labels
コード例 #2
0
ファイル: visualization.py プロジェクト: ffmichel/lpstock
def node_labels(graph_render):
    source = graph_render.node_renderer.data_source

    xcoord = bkm.CustomJSTransform(
        v_func=NODE_JS_CODE % "0",
        args=dict(provider=graph_render.layout_provider))
    ycoord = bkm.CustomJSTransform(
        v_func=NODE_JS_CODE % "1",
        args=dict(provider=graph_render.layout_provider))

    # Use the transforms to supply coords to a LabelSet
    labels = bkm.LabelSet(x=bkt.transform('index', xcoord),
                          y=bkt.transform('index', ycoord),
                          text='index',
                          text_font_size="10px",
                          x_offset=0,
                          y_offset=-5,
                          source=source,
                          render_mode='canvas',
                          text_align='center')
    return labels
コード例 #3
0
ファイル: link.py プロジェクト: samsgood0310/til
    def execute_callback(event) -> None:
        nonlocal render
        nonlocal dependency_source
        np.random.seed(0)

        all_pathes = nx.all_simple_paths(
            graph,
            source=f"{source_text.value}",
            target=f"{target_text.value}",
            cutoff=int(f"{cutoff_text.value}"),
        )
        pathes: Set = set()
        for path in all_pathes:
            pathes |= set(path)
        subgraph = graph.subgraph(pathes)
        render = bkgraphs.from_networkx(subgraph,
                                        nx.spring_layout,
                                        scale=1,
                                        center=(0, 0))
        render.node_renderer.glyph = bkmodels.Circle(
            size=8, fill_color=bkpalettes.Spectral4[0])
        p.renderers.clear()
        p.renderers.append(render)
        data_table.source = render.node_renderer.data_source

        x, y = zip(*render.layout_provider.graph_layout.values())
        render.node_renderer.data_source.data["x"] = x
        render.node_renderer.data_source.data["y"] = y
        labels = bkmodels.LabelSet(x="x",
                                   y="y",
                                   text="index",
                                   source=render.node_renderer.data_source)
        p.renderers.append(labels)

        dependency_df = df[df["name"].isin(pathes)
                           & df["parent"].isin(pathes)].drop_duplicates(
                               subset=["name", "parent"])
        dependency_source = bkmodels.ColumnDataSource(dependency_df)
        dependency_table.source = dependency_source
コード例 #4
0
def plot_task_communication(trace_events, workers, show_communication=False):
    """
    Plots individual tasks on workers into a grid chart (one chart per worker).

    :param show_communication: Merge all worker charts into one and plot communication edges.
    """
    from bokeh import models, plotting
    from bokeh.layouts import gridplot
    from pandas import DataFrame

    end_time = math.ceil(max([e.time for e in trace_events]))

    plots = []
    if show_communication:
        plot = plotting.figure(plot_width=1200,
                               plot_height=850,
                               x_range=(0, end_time),
                               title='CPU schedules')
        plot.yaxis.axis_label = 'Worker'
        plot.xaxis.axis_label = 'Time'
        plots.append(plot)

    def get_worker_plot():
        if show_communication:
            return plot
        else:
            p = plotting.figure(plot_width=600,
                                plot_height=300,
                                x_range=(0, end_time),
                                title='Worker task execution')
            p.yaxis.axis_label = 'Task'
            p.xaxis.axis_label = 'Time'
            plots.append(p)
            return p

    task_to_loc = {}

    # render task rectangles
    for index, worker in enumerate(workers):
        locations = list(build_task_locations(trace_events, worker))

        def normalize_height(height):
            if show_communication:
                return height / (worker.cpus * 2) + index
            return height

        worker_plot = get_worker_plot()
        rectangles = [(rect[0], rect[1], normalize_height(rect[2]),
                       normalize_height(rect[3]))
                      for (task, rect) in locations]

        render_rectangles(worker_plot, rectangles)

        for i, (task, _) in enumerate(locations):
            task_to_loc[task] = rectangles[i]

        frame = DataFrame()
        frame["label"] = [t[0].name for t in locations]
        frame["bottom"] = [normalize_height(t[1][2]) for t in locations]
        frame["left"] = [t[1][0] for t in locations]

        source = models.ColumnDataSource(frame)
        labels = models.LabelSet(x='left',
                                 y='bottom',
                                 x_offset=2,
                                 y_offset=2,
                                 text='label',
                                 source=source,
                                 text_color="white",
                                 render_mode='canvas')
        worker_plot.add_layout(labels)

    if show_communication:
        frame = DataFrame(
            merge_trace_events(
                trace_events,
                lambda e: isinstance(e, FetchStartTraceEvent),
                lambda e: isinstance(e, FetchEndTraceEvent),
                lambda e: (e.output, e.target_worker, e.source_worker),
                end_map=lambda e1, e2:
                (workers.index(e1.source_worker), e1.time,
                 workers.index(e2.target_worker), e2.time, "{}/{:.2f}".
                 format(e1.output.parent.name, e1.output.size), e1.output)),
            columns=["worker", "start", "worker2", "end", "label", "output"])
        frame["src_task_y"] = frame["output"].map(lambda o: (task_to_loc[
            o.parent][2] + task_to_loc[o.parent][3]) / 2)

        plot = plots[-1]
        source = models.ColumnDataSource(frame.drop(columns=["output"]))
        plot.segment(y0='src_task_y',
                     x0='start',
                     y1='worker2',
                     x1='end',
                     source=source,
                     line_color="black",
                     line_width=2)
        plot.circle(y="worker2",
                    x="end",
                    source=source,
                    size=15,
                    color="black")

        labels = models.LabelSet(x='end',
                                 y='worker2',
                                 text='label',
                                 x_offset=-10,
                                 source=source,
                                 text_color="black",
                                 text_align="right",
                                 render_mode='canvas')
        plot.add_layout(labels)

    return gridplot(plots, ncols=2)
コード例 #5
0
              'field': value_to_draw,
              'transform': color_mapper
          },
          line_color='black',
          line_width=1.0,
          source=plot_df)

color_bar = bm.ColorBar(color_mapper=color_mapper,
                        ticker=bm.LogTicker(),
                        label_standoff=12,
                        border_line_color=None,
                        location=(0, 0))
p.add_layout(color_bar, 'right')
p.add_tools(bm.WheelZoomTool())
labels = bm.LabelSet(
    x='x',
    y='y',
    text='text',
    source=plot_df,
    text_align='center',
    text_color='#FFFFFF',
    text_font_size={'value': '10px'},
    render_mode='canvas',
)
p.add_layout(labels)
bio.show(p)

try:
    bio.export_png(p, filename="{}.png".format(value_to_draw))
except:
    pass
コード例 #6
0
    def plot_network(network,
                     layout_algorithm=None,
                     scale=1.0,
                     threshold=0.0,
                     node_description=None,
                     node_proportions=None,
                     weight_scale=5.0,
                     normalize_weights=True,
                     node_opts=None,
                     line_opts=None,
                     element_id='nx_id3',
                     figsize=(900, 900)):
        if threshold > 0:
            values = nx.get_edge_attributes(network, 'weight').values()
            max_weight = max(1.0, max(values))

            print('Max weigth: {}'.format(max_weight))
            print('Mean weigth: {}'.format(sum(values) / len(values)))

            filter_edges = [(u, v) for u, v, d in network.edges(data=True) \
                            if d['weight'] >= (threshold * max_weight)]

            sub_network = network.edge_subgraph(filter_edges)
        else:
            sub_network = network

        args = PlotNetworkUtility.layout_args(layout_algorithm, sub_network,
                                              scale)
        layout = (PlotNetworkUtility.get_layout_algorithm(layout_algorithm))(
            sub_network, **args)
        lines_source = NetworkUtility.get_edges_source(
            sub_network,
            layout,
            scale=weight_scale,
            normalize=normalize_weights)
        nodes_source = NetworkUtility.create_nodes_data_source(
            sub_network, layout)

        nodes_community = NetworkMetricHelper.compute_partition(sub_network)
        community_colors = NetworkMetricHelper.partition_colors(
            nodes_community, bokeh.palettes.Category20[20])

        nodes_source.add(nodes_community, 'community')
        nodes_source.add(community_colors, 'community_color')

        nodes_size = 5
        if node_proportions is not None:
            # NOTE!!! By pd index - not iloc!!
            nodes_weight = node_proportions.loc[list(sub_network.nodes)]
            nodes_weight = PlotNetworkUtility.project_series_to_range(
                nodes_weight, 20, 60)
            nodes_size = 'size'
            nodes_source.add(nodes_weight, nodes_size)

        node_opts = extend(DFLT_NODE_OPTS, node_opts or {})
        line_opts = extend(DFLT_EDGE_OPTS, line_opts or {})

        p = figure(plot_width=figsize[0],
                   plot_height=figsize[1],
                   x_axis_type=None,
                   y_axis_type=None)
        #node_size = 'size' if node_proportions is not None else 5
        r_lines = p.multi_line('xs',
                               'ys',
                               line_width='weights',
                               source=lines_source,
                               **line_opts)
        r_nodes = p.circle('x',
                           'y',
                           size=nodes_size,
                           source=nodes_source,
                           **node_opts)

        p.add_tools(bm.HoverTool(renderers=[r_nodes], tooltips=None, callback=WidgetUtility.\
            glyph_hover_callback(nodes_source, 'node_id', text_ids=node_description.index, \
                                 text=node_description, element_id=element_id))
        )

        text_opts = dict(x='x',
                         y='y',
                         text='name',
                         level='overlay',
                         text_align='center',
                         text_baseline='middle')

        r_nodes.glyph.fill_color = 'lightgreen'  # 'community_color'

        p.add_layout(
            bm.LabelSet(source=nodes_source, text_color='black', **text_opts))

        return p
コード例 #7
0
def plot_bipartite_network(
    network: nx.Graph,
    layout_data: nu.NodesLayout,
    scale: float = 1.0,
    titles: pd.DataFrame = None,
    highlight_topic_ids=None,
    element_id: str = 'nx_id1',
    plot_width: int = 1000,
    plot_height: int = 600,
) -> bp.Figure:
    """Plot a bipartite network. Return bokeh.Figure"""
    tools: str = 'pan,wheel_zoom,box_zoom,reset,hover,save'

    source_nodes, target_nodes = nu.get_bipartite_node_set(network, bipartite=0)

    color_map: dict = (
        {x: 'brown' if x in highlight_topic_ids else 'skyblue' for x in target_nodes}
        if highlight_topic_ids is not None
        else None
    )
    color_specifier: str = 'colors' if highlight_topic_ids is not None else 'skyblue'

    source_source: bm.ColumnDataSource = layout_source.create_nodes_subset_data_source(
        network, layout_data, source_nodes
    )
    target_source: bm.ColumnDataSource = layout_source.create_nodes_subset_data_source(
        network, layout_data, target_nodes, color_map=color_map
    )
    lines_source: bm.ColumnDataSource = layout_source.create_edges_layout_data_source(
        network, layout_data, scale=6.0, normalize=False
    )

    edges_alphas: List[float] = metrics.compute_alpha_vector(lines_source.data['weights'])

    lines_source.add(edges_alphas, 'alphas')

    p: bp.Figure = bp.figure(
        plot_width=plot_width, plot_height=plot_height, x_axis_type=None, y_axis_type=None, tools=tools
    )

    _ = p.multi_line(
        xs='xs', ys='ys', line_width='weights', level='underlay', alpha='alphas', color='black', source=lines_source
    )
    _ = p.circle(x='x', y='y', size=40, source=source_source, color='lightgreen', line_width=1, alpha=1.0)

    r_targets: bm.GlyphRenderer = p.circle(
        x='x', y='y', size=25, source=target_source, color=color_specifier, alpha=1.0
    )

    p.add_tools(
        bm.HoverTool(
            renderers=[r_targets],
            tooltips=None,
            callback=wu.glyph_hover_callback2(
                glyph_source=target_source,
                glyph_id='node_id',
                text_ids=titles.index,
                text=titles,
                element_id=element_id,
            ),
        )
    )

    text_opts: dict = dict(x='x', y='y', text='name', level='overlay', x_offset=0, y_offset=0, text_font_size='8pt')

    p.add_layout(
        bm.LabelSet(source=source_source, text_color='black', text_align='center', text_baseline='middle', **text_opts)
    )

    target_source.data['name'] = [str(x) for x in target_source.data['name']]  # pylint: disable=unsubscriptable-object

    p.add_layout(
        bm.LabelSet(source=target_source, text_color='black', text_align='center', text_baseline='middle', **text_opts)
    )

    return p
コード例 #8
0
def _plot_network(
        network: nx.Graph,
        layout_algorithm: str = None,
        scale: float = 1.0,
        threshold: float = 0.0,
        node_description: pd.Series = None,
        node_proportions: Union[int, str] = None,
        weight_name: str = 'weight',
        weight_scale: float = 5.0,
        normalize_weights: bool = True,
        node_opts=None,
        line_opts=None,
        element_id: str = 'nx_id3',
        figsize: Tuple[int, int] = (900, 900),
        node_range: Tuple[int, int] = (20, 60),
        edge_range: Tuple[int, int] = (1.0, 5.0),
):
    if threshold > 0:

        values = nx.get_edge_attributes(network, weight_name).values()
        max_weight = max(1.0, max(values))

        print('Max weigth: {}'.format(max_weight))
        print('Mean weigth: {}'.format(sum(values) / len(values)))

        filter_edges = [(u, v) for u, v, d in network.edges(data=True)
                        if d[weight_name] >= (threshold * max_weight)]

        sub_network = network.edge_subgraph(filter_edges)
    else:
        sub_network = network

    args = _layout_args(layout_algorithm, sub_network, scale)
    layout = (_get_layout_algorithm(layout_algorithm))(sub_network, **args)
    lines_source = layout_source.create_edges_layout_data_source(
        sub_network,
        layout,
        weight=weight_name,
        scale=weight_scale,
        normalize=normalize_weights,
        project_range=edge_range,
    )

    nodes_source = layout_source.create_nodes_data_source(sub_network, layout)
    nodes_community = metrics.compute_partition(sub_network)
    community_colors = metrics.partition_colors(nodes_community,
                                                bokeh.palettes.Category20[20])

    nodes_source.add(nodes_community, 'community')
    nodes_source.add(community_colors, 'community_color')

    nodes_size = 5
    if node_proportions is not None:
        if isinstance(node_proportions, int):
            nodes_size = node_proportions
        else:
            nodes_size = 'size'
            nodes_weight = project_values_to_range(
                [node_proportions[n] for n in sub_network.nodes], *node_range)
            nodes_source.add(nodes_weight, nodes_size)

    node_opts = extend(dict(color='green', alpha=1.0), node_opts or {})
    line_opts = extend(dict(color='black', alpha=0.4), line_opts or {})

    p = figure(plot_width=figsize[0],
               plot_height=figsize[1],
               x_axis_type=None,
               y_axis_type=None)

    _ = p.multi_line('xs',
                     'ys',
                     line_width='weights',
                     level='underlay',
                     source=lines_source,
                     **line_opts)
    r_nodes = p.circle('x',
                       'y',
                       size=nodes_size,
                       source=nodes_source,
                       **node_opts)

    p.add_tools(
        bokeh.models.HoverTool(
            renderers=[r_nodes],
            tooltips=None,
            callback=wu.glyph_hover_callback2(nodes_source,
                                              'node_id',
                                              text_ids=node_description.index,
                                              text=node_description,
                                              element_id=element_id),
        ))

    text_opts = dict(x='x',
                     y='y',
                     text='name',
                     level='overlay',
                     x_offset=0,
                     y_offset=0,
                     text_font_size='12pt')

    r_nodes.glyph.fill_color = 'lightgreen'  # 'community_color'

    nodes_source.data['name'] = [str(x) for x in nodes_source.data['name']]  # pylint: disable=unsubscriptable-object
    p.add_layout(
        bm.LabelSet(source=nodes_source,
                    text_align='center',
                    text_baseline='middle',
                    text_color='black',
                    **text_opts))

    return p