コード例 #1
1
def _make_plot(dimensions="both", num_objects=0):
    source = ColumnDataSource(dict(x=[1, 2], y=[1, 1], width=[0.5, 0.5], height=[0.5, 0.5]))
    plot = Plot(plot_height=400, plot_width=400, x_range=Range1d(0, 3), y_range=Range1d(0, 3), min_border=0)
    renderer = plot.add_glyph(source, Rect(x='x', y='y', width='width', height='height'))
    tool = BoxEditTool(dimensions=dimensions, num_objects=num_objects, renderers=[renderer])
    plot.add_tools(tool)
    plot.toolbar.active_multi = tool
    code = RECORD("x", "source.data.x") + RECORD("y", "source.data.y") + RECORD("width", "source.data.width") + RECORD("height", "source.data.height")
    plot.add_tools(CustomAction(callback=CustomJS(args=dict(source=source), code=code)))
    plot.toolbar_sticky = False
    return plot
コード例 #2
0
    def modify_doc(doc):
        source = ColumnDataSource(
            dict(x=[1, 2], y=[1, 1], width=[0.5, 0.5], height=[0.5, 0.5]))
        plot = Plot(height=400,
                    width=400,
                    x_range=Range1d(0, 3),
                    y_range=Range1d(0, 3),
                    min_border=0)
        renderer = plot.add_glyph(
            source, Rect(x='x', y='y', width='width', height='height'))
        tool = BoxEditTool(dimensions='both',
                           num_objects=num_objects,
                           renderers=[renderer])
        plot.add_tools(tool)
        plot.toolbar.active_multi = tool
        div = Div(text='False')

        def cb(attr, old, new):
            if cds_data_almost_equal(new, expected):
                div.text = 'True'

        source.on_change('data', cb)
        code = RECORD("matches", "div.text")
        plot.add_tools(
            CustomAction(callback=CustomJS(args=dict(div=div), code=code)))
        doc.add_root(column(plot, div))
コード例 #3
0
 def initialize(self):
     try:
         from bokeh.models import BoxEditTool
     except:
         param.main.warning('BoxEdit requires bokeh >= 0.12.14')
         return
     plot = self.plot
     element = self.plot.current_frame
     xs, ys, widths, heights = [], [], [], []
     for el in element.split():
         x0, x1 = el.range(0)
         y0, y1 = el.range(1)
         xs.append((x0+x1)/2.)
         ys.append((y0+y1)/2.)
         widths.append(x1-x0)
         heights.append(y1-y0)
     data = {'x': xs, 'y': ys, 'width': widths, 'height': heights}
     data.update({vd.name: [] for vd in element.vdims})
     rect_source = ColumnDataSource(data=data)
     style = self.plot.style[self.plot.cyclic_index]
     style.pop('cmap', None)
     r1 = plot.state.rect('x', 'y', 'width', 'height', source=rect_source, **style)
     plot.handles['rect_source'] = rect_source
     box_tool = BoxEditTool(renderers=[r1])
     plot.state.tools.append(box_tool)
     self.plot.state.renderers.remove(plot.handles['glyph_renderer'])
     super(BoxEditCallback, self).initialize()
     for stream in self.streams:
         stream.update(data=self._process_msg({'data': data})['data'])
コード例 #4
0
ファイル: callbacks.py プロジェクト: zassa/holoviews
 def initialize(self, plot_id=None):
     plot = self.plot
     data = plot.handles['cds'].data
     element = self.plot.current_frame
     stream = self.streams[0]
     kwargs = {}
     if stream.num_objects:
         kwargs['num_objects'] = stream.num_objects
     xs, ys, widths, heights = [], [], [], []
     for x, y in zip(data['xs'], data['ys']):
         x0, x1 = (np.nanmin(x), np.nanmax(x))
         y0, y1 = (np.nanmin(y), np.nanmax(y))
         xs.append((x0+x1)/2.)
         ys.append((y0+y1)/2.)
         widths.append(x1-x0)
         heights.append(y1-y0)
     data = {'x': xs, 'y': ys, 'width': widths, 'height': heights}
     data.update({vd.name: element.dimension_values(vd, expanded=False) for vd in element.vdims})
     rect_source = ColumnDataSource(data=data)
     style = self.plot.style[self.plot.cyclic_index]
     style.pop('cmap', None)
     r1 = plot.state.rect('x', 'y', 'width', 'height', source=rect_source, **style)
     plot.handles['rect_source'] = rect_source
     if stream.styles:
         self._create_style_callback(rect_source, r1.glyph, 'x')
     box_tool = BoxEditTool(renderers=[r1], **kwargs)
     plot.state.tools.append(box_tool)
     if plot.handles['glyph_renderer'] in self.plot.state.renderers:
         self.plot.state.renderers.remove(plot.handles['glyph_renderer'])
     super(CDSCallback, self).initialize()
     data = self._process_msg({'data': data})['data']
     for stream in self.streams:
         stream.update(data=data)
コード例 #5
0
ファイル: callbacks.py プロジェクト: zertrin/holoviews
    def initialize(self, plot_id=None):
        try:
            from bokeh.models import BoxEditTool
        except:
            param.main.param.warning('BoxEdit requires bokeh >= 0.12.14')
            return

        plot = self.plot
        data = plot.handles['cds'].data
        element = self.plot.current_frame
        stream = self.streams[0]
        kwargs = {}
        if stream.num_objects:
            if bokeh_version >= '1.0.0':
                kwargs['num_objects'] = stream.num_objects
            else:
                param.main.param.warning(
                    'Specifying num_objects to BoxEdit stream requires '
                    'a bokeh version >=1.0.0.')
        xs, ys, widths, heights = [], [], [], []
        for x, y in zip(data['xs'], data['ys']):
            x0, x1 = (np.nanmin(x), np.nanmax(x))
            y0, y1 = (np.nanmin(y), np.nanmax(y))
            xs.append((x0 + x1) / 2.)
            ys.append((y0 + y1) / 2.)
            widths.append(x1 - x0)
            heights.append(y1 - y0)
        data = {'x': xs, 'y': ys, 'width': widths, 'height': heights}
        data.update({
            vd.name: element.dimension_values(vd, expanded=False)
            for vd in element.vdims
        })
        rect_source = ColumnDataSource(data=data)
        style = self.plot.style[self.plot.cyclic_index]
        style.pop('cmap', None)
        r1 = plot.state.rect('x',
                             'y',
                             'width',
                             'height',
                             source=rect_source,
                             **style)
        plot.handles['rect_source'] = rect_source
        box_tool = BoxEditTool(renderers=[r1], **kwargs)
        plot.state.tools.append(box_tool)
        if plot.handles['glyph_renderer'] in self.plot.state.renderers:
            self.plot.state.renderers.remove(plot.handles['glyph_renderer'])
        super(CDSCallback, self).initialize()
        data = self._process_msg({'data': data})['data']
        for stream in self.streams:
            stream.update(data=data)
コード例 #6
0
ファイル: callbacks.py プロジェクト: ldsalomone/holoviews
    def initialize(self, plot_id=None):
        from .path import PathPlot

        stream = self.streams[0]
        cds = self.plot.handles['cds']

        kwargs = {}
        if stream.num_objects:
            kwargs['num_objects'] = stream.num_objects
        if stream.tooltip:
            kwargs[CUSTOM_TOOLTIP] = stream.tooltip

        renderer = self.plot.handles['glyph_renderer']
        if isinstance(self.plot, PathPlot):
            renderer = self._path_initialize()
        if stream.styles:
            self._create_style_callback(cds, renderer.glyph)
        box_tool = BoxEditTool(renderers=[renderer], **kwargs)
        self.plot.state.tools.append(box_tool)
        self._update_cds_vdims(cds.data)
        super(CDSCallback, self).initialize()
コード例 #7
0
def fig_sample02(name):

    x_ax_typ = bc.AxisTyp.X_LINEAR
    set_title = "bokeh plot sample [" + name + "]"

    set_tools = "reset"
    p = figure(x_axis_type=x_ax_typ, tools=set_tools, title=set_title)

    output_file_name = "out/bokeh_plot_sample_" + name + ".html"
    output_file(output_file_name, title=set_title)

    src = ColumnDataSource({
        'x': [5, 2, 8], 'y': [5, 7, 8], 'width': [2, 1, 2],
        'height': [2, 1, 1.5], 'alpha': [0.5, 0.5, 0.5]
    })

    renderer = p.rect('x', 'y', 'width', 'height', source=src, alpha='alpha')

    draw_tool = BoxEditTool(renderers=[renderer], empty_value=1)
    p.add_tools(draw_tool)
    p.toolbar.active_drag = draw_tool

    show(p)  # open a browser
コード例 #8
0
ファイル: test_box_edit_tool.py プロジェクト: zebulon2/bokeh
def _make_plot(dimensions="both", num_objects: int = 0) -> Plot:
    source = ColumnDataSource(
        dict(x=[1, 2], y=[1, 1], width=[0.5, 0.5], height=[0.5, 0.5]))
    plot = Plot(height=400,
                width=400,
                x_range=Range1d(0, 3),
                y_range=Range1d(0, 3),
                min_border=0)
    renderer = plot.add_glyph(
        source, Rect(x='x', y='y', width='width', height='height'))
    tool = BoxEditTool(dimensions=dimensions,
                       num_objects=num_objects,
                       renderers=[renderer])
    plot.add_tools(tool)
    plot.toolbar.active_multi = tool
    code = RECORD("x", "source.data.x", final=False) + \
           RECORD("y", "source.data.y", final=False) + \
           RECORD("width", "source.data.width", final=False) + \
           RECORD("height", "source.data.height")
    plot.tags.append(
        CustomJS(name="custom-action", args=dict(source=source), code=code))
    plot.toolbar_sticky = False
    return plot
コード例 #9
0
def create():
    doc = curdoc()
    det_data = {}
    cami_meta = {}

    def proposal_textinput_callback(_attr, _old, new):
        nonlocal cami_meta
        proposal = new.strip()
        for zebra_proposals_path in pyzebra.ZEBRA_PROPOSALS_PATHS:
            proposal_path = os.path.join(zebra_proposals_path, proposal)
            if os.path.isdir(proposal_path):
                # found it
                break
        else:
            raise ValueError(f"Can not find data for proposal '{proposal}'.")

        file_list = []
        for file in os.listdir(proposal_path):
            if file.endswith(".hdf"):
                file_list.append((os.path.join(proposal_path, file), file))
        file_select.options = file_list

        cami_meta = {}

    proposal_textinput = TextInput(title="Proposal number:", width=210)
    proposal_textinput.on_change("value", proposal_textinput_callback)

    def upload_button_callback(_attr, _old, new):
        nonlocal cami_meta
        with io.StringIO(base64.b64decode(new).decode()) as file:
            cami_meta = pyzebra.parse_h5meta(file)
            file_list = cami_meta["filelist"]
            file_select.options = [(entry, os.path.basename(entry))
                                   for entry in file_list]

    upload_div = Div(text="or upload .cami file:", margin=(5, 5, 0, 5))
    upload_button = FileInput(accept=".cami", width=200)
    upload_button.on_change("value", upload_button_callback)

    def update_image(index=None):
        if index is None:
            index = index_spinner.value

        current_image = det_data["data"][index]
        proj_v_line_source.data.update(x=np.arange(0, IMAGE_W) + 0.5,
                                       y=np.mean(current_image, axis=0))
        proj_h_line_source.data.update(x=np.mean(current_image, axis=1),
                                       y=np.arange(0, IMAGE_H) + 0.5)

        image_source.data.update(
            h=[np.zeros((1, 1))],
            k=[np.zeros((1, 1))],
            l=[np.zeros((1, 1))],
        )
        image_source.data.update(image=[current_image])

        if main_auto_checkbox.active:
            im_min = np.min(current_image)
            im_max = np.max(current_image)

            display_min_spinner.value = im_min
            display_max_spinner.value = im_max

            image_glyph.color_mapper.low = im_min
            image_glyph.color_mapper.high = im_max

        if "mf" in det_data:
            metadata_table_source.data.update(mf=[det_data["mf"][index]])
        else:
            metadata_table_source.data.update(mf=[None])

        if "temp" in det_data:
            metadata_table_source.data.update(temp=[det_data["temp"][index]])
        else:
            metadata_table_source.data.update(temp=[None])

        gamma, nu = calculate_pol(det_data, index)
        omega = np.ones((IMAGE_H, IMAGE_W)) * det_data["omega"][index]
        image_source.data.update(gamma=[gamma], nu=[nu], omega=[omega])

    def update_overview_plot():
        h5_data = det_data["data"]
        n_im, n_y, n_x = h5_data.shape
        overview_x = np.mean(h5_data, axis=1)
        overview_y = np.mean(h5_data, axis=2)

        overview_plot_x_image_source.data.update(image=[overview_x],
                                                 dw=[n_x],
                                                 dh=[n_im])
        overview_plot_y_image_source.data.update(image=[overview_y],
                                                 dw=[n_y],
                                                 dh=[n_im])

        if proj_auto_checkbox.active:
            im_min = min(np.min(overview_x), np.min(overview_y))
            im_max = max(np.max(overview_x), np.max(overview_y))

            proj_display_min_spinner.value = im_min
            proj_display_max_spinner.value = im_max

            overview_plot_x_image_glyph.color_mapper.low = im_min
            overview_plot_y_image_glyph.color_mapper.low = im_min
            overview_plot_x_image_glyph.color_mapper.high = im_max
            overview_plot_y_image_glyph.color_mapper.high = im_max

        frame_range.start = 0
        frame_range.end = n_im
        frame_range.reset_start = 0
        frame_range.reset_end = n_im
        frame_range.bounds = (0, n_im)

        scan_motor = det_data["scan_motor"]
        overview_plot_y.axis[1].axis_label = f"Scanning motor, {scan_motor}"

        var = det_data[scan_motor]
        var_start = var[0]
        var_end = var[-1] + (var[-1] - var[0]) / (n_im - 1)

        scanning_motor_range.start = var_start
        scanning_motor_range.end = var_end
        scanning_motor_range.reset_start = var_start
        scanning_motor_range.reset_end = var_end
        # handle both, ascending and descending sequences
        scanning_motor_range.bounds = (min(var_start,
                                           var_end), max(var_start, var_end))

    def file_select_callback(_attr, old, new):
        nonlocal det_data
        if not new:
            # skip empty selections
            return

        # Avoid selection of multiple indicies (via Shift+Click or Ctrl+Click)
        if len(new) > 1:
            # drop selection to the previous one
            file_select.value = old
            return

        if len(old) > 1:
            # skip unnecessary update caused by selection drop
            return

        det_data = pyzebra.read_detector_data(new[0])

        if cami_meta and "crystal" in cami_meta:
            det_data["ub"] = cami_meta["crystal"]["UB"]

        index_spinner.value = 0
        index_spinner.high = det_data["data"].shape[0] - 1
        index_slider.end = det_data["data"].shape[0] - 1

        zebra_mode = det_data["zebra_mode"]
        if zebra_mode == "nb":
            metadata_table_source.data.update(geom=["normal beam"])
        else:  # zebra_mode == "bi"
            metadata_table_source.data.update(geom=["bisecting"])

        update_image(0)
        update_overview_plot()

    file_select = MultiSelect(title="Available .hdf files:",
                              width=210,
                              height=250)
    file_select.on_change("value", file_select_callback)

    def index_callback(_attr, _old, new):
        update_image(new)

    index_slider = Slider(value=0, start=0, end=1, show_value=False, width=400)

    index_spinner = Spinner(title="Image index:", value=0, low=0, width=100)
    index_spinner.on_change("value", index_callback)

    index_slider.js_link("value_throttled", index_spinner, "value")
    index_spinner.js_link("value", index_slider, "value")

    plot = Plot(
        x_range=Range1d(0, IMAGE_W, bounds=(0, IMAGE_W)),
        y_range=Range1d(0, IMAGE_H, bounds=(0, IMAGE_H)),
        plot_height=IMAGE_PLOT_H,
        plot_width=IMAGE_PLOT_W,
        toolbar_location="left",
    )

    # ---- tools
    plot.toolbar.logo = None

    # ---- axes
    plot.add_layout(LinearAxis(), place="above")
    plot.add_layout(LinearAxis(major_label_orientation="vertical"),
                    place="right")

    # ---- grid lines
    plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
    plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))

    # ---- rgba image glyph
    image_source = ColumnDataSource(
        dict(
            image=[np.zeros((IMAGE_H, IMAGE_W), dtype="float32")],
            h=[np.zeros((1, 1))],
            k=[np.zeros((1, 1))],
            l=[np.zeros((1, 1))],
            gamma=[np.zeros((1, 1))],
            nu=[np.zeros((1, 1))],
            omega=[np.zeros((1, 1))],
            x=[0],
            y=[0],
            dw=[IMAGE_W],
            dh=[IMAGE_H],
        ))

    h_glyph = Image(image="h", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
    k_glyph = Image(image="k", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
    l_glyph = Image(image="l", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
    gamma_glyph = Image(image="gamma",
                        x="x",
                        y="y",
                        dw="dw",
                        dh="dh",
                        global_alpha=0)
    nu_glyph = Image(image="nu",
                     x="x",
                     y="y",
                     dw="dw",
                     dh="dh",
                     global_alpha=0)
    omega_glyph = Image(image="omega",
                        x="x",
                        y="y",
                        dw="dw",
                        dh="dh",
                        global_alpha=0)

    plot.add_glyph(image_source, h_glyph)
    plot.add_glyph(image_source, k_glyph)
    plot.add_glyph(image_source, l_glyph)
    plot.add_glyph(image_source, gamma_glyph)
    plot.add_glyph(image_source, nu_glyph)
    plot.add_glyph(image_source, omega_glyph)

    image_glyph = Image(image="image", x="x", y="y", dw="dw", dh="dh")
    plot.add_glyph(image_source, image_glyph, name="image_glyph")

    # ---- projections
    proj_v = Plot(
        x_range=plot.x_range,
        y_range=DataRange1d(),
        plot_height=150,
        plot_width=IMAGE_PLOT_W,
        toolbar_location=None,
    )

    proj_v.add_layout(LinearAxis(major_label_orientation="vertical"),
                      place="right")
    proj_v.add_layout(LinearAxis(major_label_text_font_size="0pt"),
                      place="below")

    proj_v.add_layout(Grid(dimension=0, ticker=BasicTicker()))
    proj_v.add_layout(Grid(dimension=1, ticker=BasicTicker()))

    proj_v_line_source = ColumnDataSource(dict(x=[], y=[]))
    proj_v.add_glyph(proj_v_line_source,
                     Line(x="x", y="y", line_color="steelblue"))

    proj_h = Plot(
        x_range=DataRange1d(),
        y_range=plot.y_range,
        plot_height=IMAGE_PLOT_H,
        plot_width=150,
        toolbar_location=None,
    )

    proj_h.add_layout(LinearAxis(), place="above")
    proj_h.add_layout(LinearAxis(major_label_text_font_size="0pt"),
                      place="left")

    proj_h.add_layout(Grid(dimension=0, ticker=BasicTicker()))
    proj_h.add_layout(Grid(dimension=1, ticker=BasicTicker()))

    proj_h_line_source = ColumnDataSource(dict(x=[], y=[]))
    proj_h.add_glyph(proj_h_line_source,
                     Line(x="x", y="y", line_color="steelblue"))

    # add tools
    hovertool = HoverTool(tooltips=[
        ("intensity", "@image"),
        ("gamma", "@gamma"),
        ("nu", "@nu"),
        ("omega", "@omega"),
        ("h", "@h"),
        ("k", "@k"),
        ("l", "@l"),
    ])

    box_edit_source = ColumnDataSource(dict(x=[], y=[], width=[], height=[]))
    box_edit_glyph = Rect(x="x",
                          y="y",
                          width="width",
                          height="height",
                          fill_alpha=0,
                          line_color="red")
    box_edit_renderer = plot.add_glyph(box_edit_source, box_edit_glyph)
    boxedittool = BoxEditTool(renderers=[box_edit_renderer], num_objects=1)

    def box_edit_callback(_attr, _old, new):
        if new["x"]:
            h5_data = det_data["data"]
            x_val = np.arange(h5_data.shape[0])
            left = int(np.floor(new["x"][0]))
            right = int(np.ceil(new["x"][0] + new["width"][0]))
            bottom = int(np.floor(new["y"][0]))
            top = int(np.ceil(new["y"][0] + new["height"][0]))
            y_val = np.sum(h5_data[:, bottom:top, left:right], axis=(1, 2))
        else:
            x_val = []
            y_val = []

        roi_avg_plot_line_source.data.update(x=x_val, y=y_val)

    box_edit_source.on_change("data", box_edit_callback)

    wheelzoomtool = WheelZoomTool(maintain_focus=False)
    plot.add_tools(
        PanTool(),
        BoxZoomTool(),
        wheelzoomtool,
        ResetTool(),
        hovertool,
        boxedittool,
    )
    plot.toolbar.active_scroll = wheelzoomtool

    # shared frame ranges
    frame_range = Range1d(0, 1, bounds=(0, 1))
    scanning_motor_range = Range1d(0, 1, bounds=(0, 1))

    det_x_range = Range1d(0, IMAGE_W, bounds=(0, IMAGE_W))
    overview_plot_x = Plot(
        title=Title(text="Projections on X-axis"),
        x_range=det_x_range,
        y_range=frame_range,
        extra_y_ranges={"scanning_motor": scanning_motor_range},
        plot_height=400,
        plot_width=IMAGE_PLOT_W - 3,
    )

    # ---- tools
    wheelzoomtool = WheelZoomTool(maintain_focus=False)
    overview_plot_x.toolbar.logo = None
    overview_plot_x.add_tools(
        PanTool(),
        BoxZoomTool(),
        wheelzoomtool,
        ResetTool(),
    )
    overview_plot_x.toolbar.active_scroll = wheelzoomtool

    # ---- axes
    overview_plot_x.add_layout(LinearAxis(axis_label="Coordinate X, pix"),
                               place="below")
    overview_plot_x.add_layout(LinearAxis(axis_label="Frame",
                                          major_label_orientation="vertical"),
                               place="left")

    # ---- grid lines
    overview_plot_x.add_layout(Grid(dimension=0, ticker=BasicTicker()))
    overview_plot_x.add_layout(Grid(dimension=1, ticker=BasicTicker()))

    # ---- rgba image glyph
    overview_plot_x_image_source = ColumnDataSource(
        dict(image=[np.zeros((1, 1), dtype="float32")],
             x=[0],
             y=[0],
             dw=[IMAGE_W],
             dh=[1]))

    overview_plot_x_image_glyph = Image(image="image",
                                        x="x",
                                        y="y",
                                        dw="dw",
                                        dh="dh")
    overview_plot_x.add_glyph(overview_plot_x_image_source,
                              overview_plot_x_image_glyph,
                              name="image_glyph")

    det_y_range = Range1d(0, IMAGE_H, bounds=(0, IMAGE_H))
    overview_plot_y = Plot(
        title=Title(text="Projections on Y-axis"),
        x_range=det_y_range,
        y_range=frame_range,
        extra_y_ranges={"scanning_motor": scanning_motor_range},
        plot_height=400,
        plot_width=IMAGE_PLOT_H + 22,
    )

    # ---- tools
    wheelzoomtool = WheelZoomTool(maintain_focus=False)
    overview_plot_y.toolbar.logo = None
    overview_plot_y.add_tools(
        PanTool(),
        BoxZoomTool(),
        wheelzoomtool,
        ResetTool(),
    )
    overview_plot_y.toolbar.active_scroll = wheelzoomtool

    # ---- axes
    overview_plot_y.add_layout(LinearAxis(axis_label="Coordinate Y, pix"),
                               place="below")
    overview_plot_y.add_layout(
        LinearAxis(
            y_range_name="scanning_motor",
            axis_label="Scanning motor",
            major_label_orientation="vertical",
        ),
        place="right",
    )

    # ---- grid lines
    overview_plot_y.add_layout(Grid(dimension=0, ticker=BasicTicker()))
    overview_plot_y.add_layout(Grid(dimension=1, ticker=BasicTicker()))

    # ---- rgba image glyph
    overview_plot_y_image_source = ColumnDataSource(
        dict(image=[np.zeros((1, 1), dtype="float32")],
             x=[0],
             y=[0],
             dw=[IMAGE_H],
             dh=[1]))

    overview_plot_y_image_glyph = Image(image="image",
                                        x="x",
                                        y="y",
                                        dw="dw",
                                        dh="dh")
    overview_plot_y.add_glyph(overview_plot_y_image_source,
                              overview_plot_y_image_glyph,
                              name="image_glyph")

    roi_avg_plot = Plot(
        x_range=DataRange1d(),
        y_range=DataRange1d(),
        plot_height=150,
        plot_width=IMAGE_PLOT_W,
        toolbar_location="left",
    )

    # ---- tools
    roi_avg_plot.toolbar.logo = None

    # ---- axes
    roi_avg_plot.add_layout(LinearAxis(), place="below")
    roi_avg_plot.add_layout(LinearAxis(major_label_orientation="vertical"),
                            place="left")

    # ---- grid lines
    roi_avg_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
    roi_avg_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))

    roi_avg_plot_line_source = ColumnDataSource(dict(x=[], y=[]))
    roi_avg_plot.add_glyph(roi_avg_plot_line_source,
                           Line(x="x", y="y", line_color="steelblue"))

    cmap_dict = {
        "gray": Greys256,
        "gray_reversed": Greys256[::-1],
        "plasma": Plasma256,
        "cividis": Cividis256,
    }

    def colormap_callback(_attr, _old, new):
        image_glyph.color_mapper = LinearColorMapper(palette=cmap_dict[new])
        overview_plot_x_image_glyph.color_mapper = LinearColorMapper(
            palette=cmap_dict[new])
        overview_plot_y_image_glyph.color_mapper = LinearColorMapper(
            palette=cmap_dict[new])

    colormap = Select(title="Colormap:",
                      options=list(cmap_dict.keys()),
                      width=210)
    colormap.on_change("value", colormap_callback)
    colormap.value = "plasma"

    STEP = 1

    def main_auto_checkbox_callback(state):
        if state:
            display_min_spinner.disabled = True
            display_max_spinner.disabled = True
        else:
            display_min_spinner.disabled = False
            display_max_spinner.disabled = False

        update_image()

    main_auto_checkbox = CheckboxGroup(labels=["Main Auto Range"],
                                       active=[0],
                                       width=145,
                                       margin=[10, 5, 0, 5])
    main_auto_checkbox.on_click(main_auto_checkbox_callback)

    def display_max_spinner_callback(_attr, _old_value, new_value):
        display_min_spinner.high = new_value - STEP
        image_glyph.color_mapper.high = new_value

    display_max_spinner = Spinner(
        low=0 + STEP,
        value=1,
        step=STEP,
        disabled=bool(main_auto_checkbox.active),
        width=100,
        height=31,
    )
    display_max_spinner.on_change("value", display_max_spinner_callback)

    def display_min_spinner_callback(_attr, _old_value, new_value):
        display_max_spinner.low = new_value + STEP
        image_glyph.color_mapper.low = new_value

    display_min_spinner = Spinner(
        low=0,
        high=1 - STEP,
        value=0,
        step=STEP,
        disabled=bool(main_auto_checkbox.active),
        width=100,
        height=31,
    )
    display_min_spinner.on_change("value", display_min_spinner_callback)

    PROJ_STEP = 0.1

    def proj_auto_checkbox_callback(state):
        if state:
            proj_display_min_spinner.disabled = True
            proj_display_max_spinner.disabled = True
        else:
            proj_display_min_spinner.disabled = False
            proj_display_max_spinner.disabled = False

        update_overview_plot()

    proj_auto_checkbox = CheckboxGroup(labels=["Projections Auto Range"],
                                       active=[0],
                                       width=145,
                                       margin=[10, 5, 0, 5])
    proj_auto_checkbox.on_click(proj_auto_checkbox_callback)

    def proj_display_max_spinner_callback(_attr, _old_value, new_value):
        proj_display_min_spinner.high = new_value - PROJ_STEP
        overview_plot_x_image_glyph.color_mapper.high = new_value
        overview_plot_y_image_glyph.color_mapper.high = new_value

    proj_display_max_spinner = Spinner(
        low=0 + PROJ_STEP,
        value=1,
        step=PROJ_STEP,
        disabled=bool(proj_auto_checkbox.active),
        width=100,
        height=31,
    )
    proj_display_max_spinner.on_change("value",
                                       proj_display_max_spinner_callback)

    def proj_display_min_spinner_callback(_attr, _old_value, new_value):
        proj_display_max_spinner.low = new_value + PROJ_STEP
        overview_plot_x_image_glyph.color_mapper.low = new_value
        overview_plot_y_image_glyph.color_mapper.low = new_value

    proj_display_min_spinner = Spinner(
        low=0,
        high=1 - PROJ_STEP,
        value=0,
        step=PROJ_STEP,
        disabled=bool(proj_auto_checkbox.active),
        width=100,
        height=31,
    )
    proj_display_min_spinner.on_change("value",
                                       proj_display_min_spinner_callback)

    def hkl_button_callback():
        index = index_spinner.value
        h, k, l = calculate_hkl(det_data, index)
        image_source.data.update(h=[h], k=[k], l=[l])

    hkl_button = Button(label="Calculate hkl (slow)", width=210)
    hkl_button.on_click(hkl_button_callback)

    def events_list_callback(_attr, _old, new):
        doc.events_list_spind.value = new

    events_list = TextAreaInput(rows=7, width=830)
    events_list.on_change("value", events_list_callback)
    doc.events_list_hdf_viewer = events_list

    def add_event_button_callback():
        diff_vec = []
        p0 = [1.0, 0.0, 1.0]
        maxfev = 100000

        wave = det_data["wave"]
        ddist = det_data["ddist"]

        gamma = det_data["gamma"][0]
        omega = det_data["omega"][0]
        nu = det_data["nu"][0]
        chi = det_data["chi"][0]
        phi = det_data["phi"][0]

        scan_motor = det_data["scan_motor"]
        var_angle = det_data[scan_motor]

        x0 = int(np.floor(det_x_range.start))
        xN = int(np.ceil(det_x_range.end))
        y0 = int(np.floor(det_y_range.start))
        yN = int(np.ceil(det_y_range.end))
        fr0 = int(np.floor(frame_range.start))
        frN = int(np.ceil(frame_range.end))
        data_roi = det_data["data"][fr0:frN, y0:yN, x0:xN]

        cnts = np.sum(data_roi, axis=(1, 2))
        coeff, _ = curve_fit(gauss,
                             range(len(cnts)),
                             cnts,
                             p0=p0,
                             maxfev=maxfev)

        m = cnts.mean()
        sd = cnts.std()
        snr_cnts = np.where(sd == 0, 0, m / sd)

        frC = fr0 + coeff[1]
        var_F = var_angle[math.floor(frC)]
        var_C = var_angle[math.ceil(frC)]
        frStep = frC - math.floor(frC)
        var_step = var_C - var_F
        var_p = var_F + var_step * frStep

        if scan_motor == "gamma":
            gamma = var_p
        elif scan_motor == "omega":
            omega = var_p
        elif scan_motor == "nu":
            nu = var_p
        elif scan_motor == "chi":
            chi = var_p
        elif scan_motor == "phi":
            phi = var_p

        intensity = coeff[1] * abs(
            coeff[2] * var_step) * math.sqrt(2) * math.sqrt(np.pi)

        projX = np.sum(data_roi, axis=(0, 1))
        coeff, _ = curve_fit(gauss,
                             range(len(projX)),
                             projX,
                             p0=p0,
                             maxfev=maxfev)
        x_pos = x0 + coeff[1]

        projY = np.sum(data_roi, axis=(0, 2))
        coeff, _ = curve_fit(gauss,
                             range(len(projY)),
                             projY,
                             p0=p0,
                             maxfev=maxfev)
        y_pos = y0 + coeff[1]

        ga, nu = pyzebra.det2pol(ddist, gamma, nu, x_pos, y_pos)
        diff_vector = pyzebra.z1frmd(wave, ga, omega, chi, phi, nu)
        d_spacing = float(pyzebra.dandth(wave, diff_vector)[0])
        diff_vector = diff_vector.flatten() * 1e10
        dv1, dv2, dv3 = diff_vector

        diff_vec.append(diff_vector)

        if events_list.value and not events_list.value.endswith("\n"):
            events_list.value = events_list.value + "\n"

        events_list.value = (
            events_list.value +
            f"{x_pos} {y_pos} {intensity} {snr_cnts} {dv1} {dv2} {dv3} {d_spacing}"
        )

    add_event_button = Button(label="Add spind event")
    add_event_button.on_click(add_event_button_callback)

    metadata_table_source = ColumnDataSource(
        dict(geom=[""], temp=[None], mf=[None]))
    num_formatter = NumberFormatter(format="0.00", nan_format="")
    metadata_table = DataTable(
        source=metadata_table_source,
        columns=[
            TableColumn(field="geom", title="Geometry", width=100),
            TableColumn(field="temp",
                        title="Temperature",
                        formatter=num_formatter,
                        width=100),
            TableColumn(field="mf",
                        title="Magnetic Field",
                        formatter=num_formatter,
                        width=100),
        ],
        width=300,
        height=50,
        autosize_mode="none",
        index_position=None,
    )

    # Final layout
    import_layout = column(proposal_textinput, upload_div, upload_button,
                           file_select)
    layout_image = column(
        gridplot([[proj_v, None], [plot, proj_h]], merge_tools=False))
    colormap_layout = column(
        colormap,
        main_auto_checkbox,
        row(display_min_spinner, display_max_spinner),
        proj_auto_checkbox,
        row(proj_display_min_spinner, proj_display_max_spinner),
    )

    layout_controls = column(
        row(metadata_table, index_spinner,
            column(Spacer(height=25), index_slider)),
        row(add_event_button, hkl_button),
        row(events_list),
    )

    layout_overview = column(
        gridplot(
            [[overview_plot_x, overview_plot_y]],
            toolbar_options=dict(logo=None),
            merge_tools=True,
            toolbar_location="left",
        ), )

    tab_layout = row(
        column(import_layout, colormap_layout),
        column(layout_overview, layout_controls),
        column(roi_avg_plot, layout_image),
    )

    return Panel(child=tab_layout, title="hdf viewer")
コード例 #10
0
from bokeh.models import BoxEditTool, ColumnDataSource
from bokeh.plotting import figure, output_file, show

output_file("tools_box_edit.html")

p = figure(x_range=(0, 10), y_range=(0, 10), width=400, height=400,
           title='Box Edit Tool')

src = ColumnDataSource({
    'x': [5, 2, 8], 'y': [5, 7, 8], 'width': [2, 1, 2],
    'height': [2, 1, 1.5], 'alpha': [0.5, 0.5, 0.5]
})

renderer = p.rect('x', 'y', 'width', 'height', source=src, alpha='alpha')

draw_tool = BoxEditTool(renderers=[renderer], empty_value=1)
p.add_tools(draw_tool)
p.toolbar.active_drag = draw_tool

show(p)
コード例 #11
0
def create():
    det_data = {}
    roi_selection = {}

    upload_div = Div(text="Open .cami file:")

    def upload_button_callback(_attr, _old, new):
        with io.StringIO(base64.b64decode(new).decode()) as file:
            h5meta_list = pyzebra.parse_h5meta(file)
            file_list = h5meta_list["filelist"]
            filelist.options = file_list
            filelist.value = file_list[0]

    upload_button = FileInput(accept=".cami")
    upload_button.on_change("value", upload_button_callback)

    def update_image(index=None):
        if index is None:
            index = index_spinner.value

        current_image = det_data["data"][index]
        proj_v_line_source.data.update(x=np.arange(0, IMAGE_W) + 0.5,
                                       y=np.mean(current_image, axis=0))
        proj_h_line_source.data.update(x=np.mean(current_image, axis=1),
                                       y=np.arange(0, IMAGE_H) + 0.5)

        image_source.data.update(
            h=[np.zeros((1, 1))],
            k=[np.zeros((1, 1))],
            l=[np.zeros((1, 1))],
        )
        image_source.data.update(image=[current_image])

        if auto_toggle.active:
            im_max = int(np.max(current_image))
            im_min = int(np.min(current_image))

            display_min_spinner.value = im_min
            display_max_spinner.value = im_max

            image_glyph.color_mapper.low = im_min
            image_glyph.color_mapper.high = im_max

    def update_overview_plot():
        h5_data = det_data["data"]
        n_im, n_y, n_x = h5_data.shape
        overview_x = np.mean(h5_data, axis=1)
        overview_y = np.mean(h5_data, axis=2)

        overview_plot_x_image_source.data.update(image=[overview_x], dw=[n_x])
        overview_plot_y_image_source.data.update(image=[overview_y], dw=[n_y])

        if frame_button_group.active == 0:  # Frame
            overview_plot_x.axis[1].axis_label = "Frame"
            overview_plot_y.axis[1].axis_label = "Frame"

            overview_plot_x_image_source.data.update(y=[0], dh=[n_im])
            overview_plot_y_image_source.data.update(y=[0], dh=[n_im])

        elif frame_button_group.active == 1:  # Omega
            overview_plot_x.axis[1].axis_label = "Omega"
            overview_plot_y.axis[1].axis_label = "Omega"

            om = det_data["rot_angle"]
            om_start = om[0]
            om_end = (om[-1] - om[0]) * n_im / (n_im - 1)
            overview_plot_x_image_source.data.update(y=[om_start], dh=[om_end])
            overview_plot_y_image_source.data.update(y=[om_start], dh=[om_end])

    def filelist_callback(_attr, _old, new):
        nonlocal det_data
        det_data = pyzebra.read_detector_data(new)

        index_spinner.value = 0
        index_spinner.high = det_data["data"].shape[0] - 1
        update_image(0)
        update_overview_plot()

    filelist = Select()
    filelist.on_change("value", filelist_callback)

    def index_spinner_callback(_attr, _old, new):
        update_image(new)

    index_spinner = Spinner(title="Image index:", value=0, low=0)
    index_spinner.on_change("value", index_spinner_callback)

    plot = Plot(
        x_range=Range1d(0, IMAGE_W, bounds=(0, IMAGE_W)),
        y_range=Range1d(0, IMAGE_H, bounds=(0, IMAGE_H)),
        plot_height=IMAGE_H * 3,
        plot_width=IMAGE_W * 3,
        toolbar_location="left",
    )

    # ---- tools
    plot.toolbar.logo = None

    # ---- axes
    plot.add_layout(LinearAxis(), place="above")
    plot.add_layout(LinearAxis(major_label_orientation="vertical"),
                    place="right")

    # ---- grid lines
    plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
    plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))

    # ---- rgba image glyph
    image_source = ColumnDataSource(
        dict(
            image=[np.zeros((IMAGE_H, IMAGE_W), dtype="float32")],
            h=[np.zeros((1, 1))],
            k=[np.zeros((1, 1))],
            l=[np.zeros((1, 1))],
            x=[0],
            y=[0],
            dw=[IMAGE_W],
            dh=[IMAGE_H],
        ))

    h_glyph = Image(image="h", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
    k_glyph = Image(image="k", x="x", y="y", dw="dw", dh="dh", global_alpha=0)
    l_glyph = Image(image="l", x="x", y="y", dw="dw", dh="dh", global_alpha=0)

    plot.add_glyph(image_source, h_glyph)
    plot.add_glyph(image_source, k_glyph)
    plot.add_glyph(image_source, l_glyph)

    image_glyph = Image(image="image", x="x", y="y", dw="dw", dh="dh")
    plot.add_glyph(image_source, image_glyph, name="image_glyph")

    # ---- projections
    proj_v = Plot(
        x_range=plot.x_range,
        y_range=DataRange1d(),
        plot_height=200,
        plot_width=IMAGE_W * 3,
        toolbar_location=None,
    )

    proj_v.add_layout(LinearAxis(major_label_orientation="vertical"),
                      place="right")
    proj_v.add_layout(LinearAxis(major_label_text_font_size="0pt"),
                      place="below")

    proj_v.add_layout(Grid(dimension=0, ticker=BasicTicker()))
    proj_v.add_layout(Grid(dimension=1, ticker=BasicTicker()))

    proj_v_line_source = ColumnDataSource(dict(x=[], y=[]))
    proj_v.add_glyph(proj_v_line_source,
                     Line(x="x", y="y", line_color="steelblue"))

    proj_h = Plot(
        x_range=DataRange1d(),
        y_range=plot.y_range,
        plot_height=IMAGE_H * 3,
        plot_width=200,
        toolbar_location=None,
    )

    proj_h.add_layout(LinearAxis(), place="above")
    proj_h.add_layout(LinearAxis(major_label_text_font_size="0pt"),
                      place="left")

    proj_h.add_layout(Grid(dimension=0, ticker=BasicTicker()))
    proj_h.add_layout(Grid(dimension=1, ticker=BasicTicker()))

    proj_h_line_source = ColumnDataSource(dict(x=[], y=[]))
    proj_h.add_glyph(proj_h_line_source,
                     Line(x="x", y="y", line_color="steelblue"))

    # add tools
    hovertool = HoverTool(tooltips=[("intensity",
                                     "@image"), ("h", "@h"), ("k",
                                                              "@k"), ("l",
                                                                      "@l")])

    box_edit_source = ColumnDataSource(dict(x=[], y=[], width=[], height=[]))
    box_edit_glyph = Rect(x="x",
                          y="y",
                          width="width",
                          height="height",
                          fill_alpha=0,
                          line_color="red")
    box_edit_renderer = plot.add_glyph(box_edit_source, box_edit_glyph)
    boxedittool = BoxEditTool(renderers=[box_edit_renderer], num_objects=1)

    def box_edit_callback(_attr, _old, new):
        if new["x"]:
            h5_data = det_data["data"]
            x_val = np.arange(h5_data.shape[0])
            left = int(np.floor(new["x"][0]))
            right = int(np.ceil(new["x"][0] + new["width"][0]))
            bottom = int(np.floor(new["y"][0]))
            top = int(np.ceil(new["y"][0] + new["height"][0]))
            y_val = np.sum(h5_data[:, bottom:top, left:right], axis=(1, 2))
        else:
            x_val = []
            y_val = []

        roi_avg_plot_line_source.data.update(x=x_val, y=y_val)

    box_edit_source.on_change("data", box_edit_callback)

    wheelzoomtool = WheelZoomTool(maintain_focus=False)
    plot.add_tools(
        PanTool(),
        BoxZoomTool(),
        wheelzoomtool,
        ResetTool(),
        hovertool,
        boxedittool,
    )
    plot.toolbar.active_scroll = wheelzoomtool

    # shared frame range
    frame_range = DataRange1d()
    det_x_range = DataRange1d()
    overview_plot_x = Plot(
        title=Title(text="Projections on X-axis"),
        x_range=det_x_range,
        y_range=frame_range,
        plot_height=400,
        plot_width=400,
        toolbar_location="left",
    )

    # ---- tools
    wheelzoomtool = WheelZoomTool(maintain_focus=False)
    overview_plot_x.toolbar.logo = None
    overview_plot_x.add_tools(
        PanTool(),
        BoxZoomTool(),
        wheelzoomtool,
        ResetTool(),
    )
    overview_plot_x.toolbar.active_scroll = wheelzoomtool

    # ---- axes
    overview_plot_x.add_layout(LinearAxis(axis_label="Coordinate X, pix"),
                               place="below")
    overview_plot_x.add_layout(LinearAxis(axis_label="Frame",
                                          major_label_orientation="vertical"),
                               place="left")

    # ---- grid lines
    overview_plot_x.add_layout(Grid(dimension=0, ticker=BasicTicker()))
    overview_plot_x.add_layout(Grid(dimension=1, ticker=BasicTicker()))

    # ---- rgba image glyph
    overview_plot_x_image_source = ColumnDataSource(
        dict(image=[np.zeros((1, 1), dtype="float32")],
             x=[0],
             y=[0],
             dw=[1],
             dh=[1]))

    overview_plot_x_image_glyph = Image(image="image",
                                        x="x",
                                        y="y",
                                        dw="dw",
                                        dh="dh")
    overview_plot_x.add_glyph(overview_plot_x_image_source,
                              overview_plot_x_image_glyph,
                              name="image_glyph")

    det_y_range = DataRange1d()
    overview_plot_y = Plot(
        title=Title(text="Projections on Y-axis"),
        x_range=det_y_range,
        y_range=frame_range,
        plot_height=400,
        plot_width=400,
        toolbar_location="left",
    )

    # ---- tools
    wheelzoomtool = WheelZoomTool(maintain_focus=False)
    overview_plot_y.toolbar.logo = None
    overview_plot_y.add_tools(
        PanTool(),
        BoxZoomTool(),
        wheelzoomtool,
        ResetTool(),
    )
    overview_plot_y.toolbar.active_scroll = wheelzoomtool

    # ---- axes
    overview_plot_y.add_layout(LinearAxis(axis_label="Coordinate Y, pix"),
                               place="below")
    overview_plot_y.add_layout(LinearAxis(axis_label="Frame",
                                          major_label_orientation="vertical"),
                               place="left")

    # ---- grid lines
    overview_plot_y.add_layout(Grid(dimension=0, ticker=BasicTicker()))
    overview_plot_y.add_layout(Grid(dimension=1, ticker=BasicTicker()))

    # ---- rgba image glyph
    overview_plot_y_image_source = ColumnDataSource(
        dict(image=[np.zeros((1, 1), dtype="float32")],
             x=[0],
             y=[0],
             dw=[1],
             dh=[1]))

    overview_plot_y_image_glyph = Image(image="image",
                                        x="x",
                                        y="y",
                                        dw="dw",
                                        dh="dh")
    overview_plot_y.add_glyph(overview_plot_y_image_source,
                              overview_plot_y_image_glyph,
                              name="image_glyph")

    def frame_button_group_callback(_active):
        update_overview_plot()

    frame_button_group = RadioButtonGroup(labels=["Frames", "Omega"], active=0)
    frame_button_group.on_click(frame_button_group_callback)

    roi_avg_plot = Plot(
        x_range=DataRange1d(),
        y_range=DataRange1d(),
        plot_height=IMAGE_H * 3,
        plot_width=IMAGE_W * 3,
        toolbar_location="left",
    )

    # ---- tools
    roi_avg_plot.toolbar.logo = None

    # ---- axes
    roi_avg_plot.add_layout(LinearAxis(), place="below")
    roi_avg_plot.add_layout(LinearAxis(major_label_orientation="vertical"),
                            place="left")

    # ---- grid lines
    roi_avg_plot.add_layout(Grid(dimension=0, ticker=BasicTicker()))
    roi_avg_plot.add_layout(Grid(dimension=1, ticker=BasicTicker()))

    roi_avg_plot_line_source = ColumnDataSource(dict(x=[], y=[]))
    roi_avg_plot.add_glyph(roi_avg_plot_line_source,
                           Line(x="x", y="y", line_color="steelblue"))

    cmap_dict = {
        "gray": Greys256,
        "gray_reversed": Greys256[::-1],
        "plasma": Plasma256,
        "cividis": Cividis256,
    }

    def colormap_callback(_attr, _old, new):
        image_glyph.color_mapper = LinearColorMapper(palette=cmap_dict[new])
        overview_plot_x_image_glyph.color_mapper = LinearColorMapper(
            palette=cmap_dict[new])
        overview_plot_y_image_glyph.color_mapper = LinearColorMapper(
            palette=cmap_dict[new])

    colormap = Select(title="Colormap:", options=list(cmap_dict.keys()))
    colormap.on_change("value", colormap_callback)
    colormap.value = "plasma"

    radio_button_group = RadioButtonGroup(labels=["nb", "nb_bi"], active=0)

    STEP = 1

    # ---- colormap auto toggle button
    def auto_toggle_callback(state):
        if state:
            display_min_spinner.disabled = True
            display_max_spinner.disabled = True
        else:
            display_min_spinner.disabled = False
            display_max_spinner.disabled = False

        update_image()

    auto_toggle = Toggle(label="Auto Range",
                         active=True,
                         button_type="default")
    auto_toggle.on_click(auto_toggle_callback)

    # ---- colormap display max value
    def display_max_spinner_callback(_attr, _old_value, new_value):
        display_min_spinner.high = new_value - STEP
        image_glyph.color_mapper.high = new_value

    display_max_spinner = Spinner(
        title="Maximal Display Value:",
        low=0 + STEP,
        value=1,
        step=STEP,
        disabled=auto_toggle.active,
    )
    display_max_spinner.on_change("value", display_max_spinner_callback)

    # ---- colormap display min value
    def display_min_spinner_callback(_attr, _old_value, new_value):
        display_max_spinner.low = new_value + STEP
        image_glyph.color_mapper.low = new_value

    display_min_spinner = Spinner(
        title="Minimal Display Value:",
        high=1 - STEP,
        value=0,
        step=STEP,
        disabled=auto_toggle.active,
    )
    display_min_spinner.on_change("value", display_min_spinner_callback)

    def hkl_button_callback():
        index = index_spinner.value
        setup_type = "nb_bi" if radio_button_group.active else "nb"
        h, k, l = calculate_hkl(det_data, index, setup_type)
        image_source.data.update(h=[h], k=[k], l=[l])

    hkl_button = Button(label="Calculate hkl (slow)")
    hkl_button.on_click(hkl_button_callback)

    selection_list = TextAreaInput(rows=7)

    def selection_button_callback():
        nonlocal roi_selection
        selection = [
            int(np.floor(det_x_range.start)),
            int(np.ceil(det_x_range.end)),
            int(np.floor(det_y_range.start)),
            int(np.ceil(det_y_range.end)),
            int(np.floor(frame_range.start)),
            int(np.ceil(frame_range.end)),
        ]

        filename_id = filelist.value[-8:-4]
        if filename_id in roi_selection:
            roi_selection[f"{filename_id}"].append(selection)
        else:
            roi_selection[f"{filename_id}"] = [selection]

        selection_list.value = str(roi_selection)

    selection_button = Button(label="Add selection")
    selection_button.on_click(selection_button_callback)

    # Final layout
    layout_image = column(
        gridplot([[proj_v, None], [plot, proj_h]], merge_tools=False),
        row(index_spinner))
    colormap_layout = column(colormap, auto_toggle, display_max_spinner,
                             display_min_spinner)
    hkl_layout = column(radio_button_group, hkl_button)

    layout_overview = column(
        gridplot(
            [[overview_plot_x, overview_plot_y]],
            toolbar_options=dict(logo=None),
            merge_tools=True,
        ),
        frame_button_group,
    )

    tab_layout = row(
        column(
            upload_div,
            upload_button,
            filelist,
            layout_image,
            row(colormap_layout, hkl_layout),
        ),
        column(
            roi_avg_plot,
            layout_overview,
            row(selection_button, selection_list),
        ),
    )

    return Panel(child=tab_layout, title="Data Viewer")
コード例 #12
0
def create_image_figure(
        image_source: ColumnDataSource,
        roi_source: ColumnDataSource,
        vector_source: ColumnDataSource,
) -> Figure:

    try:
        image = image_source.data['image'][0]
        width = image.shape[1]
        height = image.shape[0]
    except IndexError:
        width = 800
        height = 800

    plot = figure(
        plot_width=min(width, 800),
        plot_height=min(height, 800),
        x_range=[0, width],
        y_range=[0, height],
        title='Selected Image',
        name='image_figure',
    )

    plot.image(
        image='image',
        x=0,
        y=0,
        dw='dw',
        dh='dh',
        source=image_source,
        palette='Spectral11',
        name='image_plot',
    )

    hover = HoverTool(tooltips=[('x', '$x'), ('y', '$y'), ('value', '@image')])
    r1 = plot.rect(
        x='x',
        y='y',
        width='width',
        height='height',
        source=roi_source,
        fill_alpha=0.5,
        fill_color='#DAF7A6',
        name='rois',
    )

    lines = plot.multi_line(
        xs='xs',
        ys='ys',
        source=vector_source,
        line_color='red',
        line_width=2,
        name='vectors',
    )

    circles = plot.circle(
        x=[],
        y=[],
        size=10,
        color='yellow',
    )

    plot.tools = [
        hover,
        BoxEditTool(renderers=[r1]),
        PolyDrawTool(renderers=[lines]),
        PolyEditTool(renderers=[lines], vertex_renderer=circles),
    ]
    plot.toolbar.active_inspect = []

    return plot