コード例 #1
0
    def __init__(self, kind="scatter", **kwargs):
        """Useful Chart kwargs:

        Parameters:
            xlabel (str): override the automatic x_axis_label. Default is None.
            ylabel (str): override the automatic y_axis_label. Default is None.
            callback (str): clicking on a point will link to the given HTML address. `@<IdProperty>` can be used as placeholder for the point id (e.g. Compound_Id). Default is None."""

        self.data = {}
        self.kwargs = kwargs
        self.kind = kind
        self.height = kwargs.get("height", 450)
        self.title = kwargs.get("title", "Scatter Plot")
        self.position = kwargs.get("position", kwargs.get("pos", "top_left"))

        self.series_counter = 0
        self.tools_added = False
        tools = ["pan", "wheel_zoom", "box_zoom", "reset", "resize", "save"]
        self.callback = kwargs.get("callback", None)
        if self.callback is not None:
            tools.append("tap")

        self.plot = figure(plot_height=self.height, title=self.title, tools=tools)
        self.plot.axis.axis_label_text_font_size = "14pt"
        self.plot.axis.major_label_text_font_size = "14pt"
        self.plot.title.text_font_size = "18pt"
        if self.callback is not None:
            taptool = self.plot.select(type=TapTool)
            taptool.callback = OpenURL(url=self.callback)
コード例 #2
0
def make_plot_bio_overview(df, x_val, label_bio_overview,
                           tooltips_bio_overview):
    hov_bio_overview = HoverTool(tooltips=tooltips_bio_overview, mode='mouse')
    p_bio_overview = figure(y_range=sorted(df.name, reverse=True),
                            title=label_bio_overview + ' by Bioregion',
                            width=fig_width,
                            height=fig_height,
                            x_axis_label=label_bio_overview,
                            y_axis_label="Bioregion",
                            tools=[
                                hov_bio_overview,
                                TapTool(),
                                BoxZoomTool(),
                                WheelZoomTool(),
                                SaveTool(),
                                ResetTool()
                            ])
    p_bio_overview.hbar(y='name',
                        height=0.9,
                        left=0,
                        right=x_val,
                        color=primary_color,
                        source=df)
    p_bio_overview.xaxis.major_label_orientation = x_angle
    p_bio_overview.xgrid.grid_line_color = None
    p_bio_overview.ygrid.grid_line_color = '#BFBFBF'
    p_bio_overview.x_range.start = 0
    p_bio_overview.yaxis.minor_tick_line_color = None
    p_bio_overview.xaxis[0].formatter = NumeralTickFormatter(format="0")
    p_bio_overview_url = "https://www.antweb.org/bioregion.do?name=@name"
    taptoo1__bio_overview = p_bio_overview.select(type=TapTool)
    taptoo1__bio_overview.callback = OpenURL(url=p_bio_overview_url)
    return p_bio_overview
コード例 #3
0
    def chart_remaining_assignees(self, stats_data):
        self.log.info('Generating graph about remaining effort per assignee')
        plot_values, total_metric = self.get_points_per_assignee(stats_data)

        dat = pd.DataFrame(plot_values, columns=['entity', 'value', 'jira_url'])
        source = self.get_remaining_source(dat)
        # Declare tools
        hover = HoverTool(
            tooltips=[
                ('Assignee:', '@x_values'),
                ('Points:', '@y_values')
            ]
        )
        plot = figure(
            plot_width=600
            , plot_height=300
            , x_axis_label='Assignee'
            , y_axis_label=self.config.get_config_value('stats_metric')
            , title='Remaining ' + self.config.get_config_value('stats_metric') + ' per Jira Assignee (Total: ' + str(
                total_metric) + ')'
            , x_range=FactorRange(factors=list(dat.entity))
            , tools=['save', 'pan', 'box_zoom', 'reset', hover, 'tap']
        )
        taptool = plot.select(type=TapTool)
        taptool.callback = OpenURL(url='@jira_url')

        plot.vbar(source=source, x='x_values', top='y_values', bottom=0, width=0.3, color='blue')
        return plot
コード例 #4
0
ファイル: scheduler.py プロジェクト: dailu/distributed
    def __init__(self, scheduler, width=600, **kwargs):
        with log_errors():
            self.last = 0
            self.scheduler = scheduler
            self.source = ColumnDataSource({'nprocessing': [1, 2],
                                            'nprocessing-half': [0.5, 1],
                                            'nprocessing-color': ['red', 'blue'],
                                            'nbytes': [1, 2],
                                            'nbytes-half': [0.5, 1],
                                            'worker': ['a', 'b'],
                                            'y': [1, 2],
                                            'nbytes-color': ['blue', 'blue'],
                                            'bokeh_address': ['', '']})

            processing = figure(title='Tasks Processing', tools='resize', id='bk-nprocessing-plot',
                                width=int(width / 2), **kwargs)
            processing.rect(source=self.source,
                            x='nprocessing-half', y='y',
                            width='nprocessing', height=1,
                            color='nprocessing-color')
            processing.x_range.start = 0

            nbytes = figure(title='Bytes stored', tools='resize',
                            id='bk-nbytes-worker-plot', width=int(width / 2),
                            **kwargs)
            nbytes.rect(source=self.source,
                        x='nbytes-half', y='y',
                        width='nbytes', height=1,
                        color='nbytes-color')
            nbytes.xaxis[0].formatter = NumeralTickFormatter(format='0.0 b')
            nbytes.xaxis.major_label_orientation = -math.pi / 12
            nbytes.x_range.start = 0

            for fig in [processing, nbytes]:
                fig.xaxis.minor_tick_line_alpha = 0
                fig.yaxis.visible = False
                fig.ygrid.visible = False

                tap = TapTool(callback=OpenURL(url='http://@bokeh_address/'))
                fig.add_tools(tap)

                fig.toolbar.logo = None
                fig.toolbar_location = None
                fig.yaxis.visible = False

            hover = HoverTool()
            hover.tooltips = "@worker : @nprocessing tasks.  Click for worker page"
            hover.point_policy = 'follow_mouse'
            processing.add_tools(hover)

            hover = HoverTool()
            hover.tooltips = "@worker : @nbytes bytes.  Click for worker page"
            hover.point_policy = 'follow_mouse'
            nbytes.add_tools(hover)

            self.processing_figure = processing
            self.nbytes_figure = nbytes

            processing.y_range = nbytes.y_range
            self.root = row(nbytes, processing, sizing_mode='scale_width')
コード例 #5
0
ファイル: __init__.py プロジェクト: ozroc/c0v1d
 def plot_map(self):
     today = self.df.groupby('location').last()
     
     today['size']=today.C/today.C.max()*50+5
     
     wgs84_to_web_mercator(today)
     tile_provider = get_provider(CARTODBPOSITRON)
     p = figure(plot_width=900, plot_height=600,
                #x_range=x_range, y_range=y_range,
                #x_range=(today.long.min(), today.long.max()), y_range=(today.lat.min(), today.long.max()),
                x_axis_type="mercator", y_axis_type="mercator", tools='tap')
     p.add_tile(tile_provider)
     p.circle(x="x", y="y", size="size", fill_color="blue", fill_alpha=0.5, source=today)
     htool = HoverTool(
         tooltips=[
             ("Location", "@location"),
             ("Confirmed", "@C"),
             ("Recovered", "@R"),
             ("Deaths", "@D")
         ]    
     )
     wzt = WheelZoomTool()
     p.add_tools(htool)
     p.add_tools(wzt)
     p.toolbar.active_scroll = wzt
     url = "/plot/@location"
     taptool = p.select(type=TapTool)
     taptool.callback = OpenURL(url=url, same_tab=True)
     return components(p)
コード例 #6
0
    def __init__(self, scheduler, **kwargs):
        with log_errors():
            self.scheduler = scheduler
            self.source = ColumnDataSource({'occupancy': [0, 0],
                                            'worker': ['a', 'b'],
                                            'x': [0.0, 0.1],
                                            'y': [1, 2],
                                            'ms': [1, 2],
                                            'color': ['red', 'blue'],
                                            'bokeh_address': ['', '']})

            fig = figure(title='Occupancy', tools='', id='bk-occupancy-plot',
                         x_axis_type='datetime', **kwargs)
            rect = fig.rect(source=self.source, x='x', width='ms', y='y', height=1,
                            color='color')
            rect.nonselection_glyph = None

            fig.xaxis.minor_tick_line_alpha = 0
            fig.yaxis.visible = False
            fig.ygrid.visible = False
            # fig.xaxis[0].formatter = NumeralTickFormatter(format='0.0s')
            fig.x_range.start = 0

            tap = TapTool(callback=OpenURL(url='http://@bokeh_address/'))

            hover = HoverTool()
            hover.tooltips = "@worker : @occupancy s."
            hover.point_policy = 'follow_mouse'
            fig.add_tools(hover, tap)

            self.root = fig
コード例 #7
0
def graph_abs_magnitude(abs_mag=None, velocity=None):
    """Create Bokeh Scatter Plot."""

    if len(abs_mag) != len(velocity):
        raise UnknownAxisException

    if abs_mag == None and velocity == None:
        abs_mag = []
        velocity = []

    here = os.path.abspath(__file__)
    graph_file_path = os.path.join(os.path.dirname(os.path.dirname(here)),
                                   "static/abs_magnitude.html")

    output_file(graph_file_path)

    p = figure(title="Brightness and Velocity",
               tools="tap",
               x_axis_label='Absolute Magnitude',
               y_axis_label='Velocity km/s')

    source = ColumnDataSource(data=dict(
        x=abs_mag, y=velocity, color=["navy" for i in range(len(abs_mag))]))
    p.circle('x', 'y', color='color', size=20, source=source)

    url = "static/details_neo1.html"
    #url = "http://www.colors.commutercreative.com/@color/" <---- save this for now, it is an example for later
    taptool = p.select(type=TapTool)
    taptool.callback = OpenURL(url=url)

    show(p)
コード例 #8
0
ファイル: app.py プロジェクト: yangtuocn/TweetAdventure
def build_plot(tweet_feature):

    tweet_source = ColumnDataSource(data=dict(x=tweet_feature['x'],
                                    y=tweet_feature['y'],
                                    text=tweet_feature['text'],
                                    url=tweet_feature['url'],
                                    color=tweet_feature['color']))

    p = figure(plot_width=600, plot_height=600,
               tools=[HoverTool(tooltips="""<div style="width:300px">@text</div>"""),
                       TapTool()],
               toolbar_location=None,
               title='hover to view tweet text, click to view tweet in a pop-up window')
    tap = p.select(type=TapTool)
    tap.callback = OpenURL(url='@url')
    p.axis.visible = False
    p.xgrid.grid_line_color = None
    p.ygrid.grid_line_color = None

    color_mapper=LogColorMapper(palette='Viridis256',
                                low=1, high=max(tweet_feature['popularity'])+1)
    color_bar=ColorBar(color_mapper=color_mapper, ticker=LogTicker(),
                       label_standoff=6, border_line_color=None, location=(0,0),
                       title="likes")

    p.circle(x='x', y='y', source=tweet_source, size=8,
              fill_color='color', line_color='color')
    p.add_layout(color_bar, 'right')
    
    return components(p)
コード例 #9
0
ファイル: statistics.py プロジェクト: mrlvsb/kelvin
def create_submit_chart_html(submits: List[Submit],
                             assignments: List[AssignedTask]) -> str:
    main_assignment = assignments[0] if assignments else None

    def format_points(submit: Submit):
        if not main_assignment or not main_assignment.max_points:
            return "not graded"
        points = submit.points or submit.assigned_points
        if points is None:
            return "no points assigned"
        return f"{points}/{main_assignment.max_points}"

    frame = pd.DataFrame({
        "date": [submit.created_at for submit in submits],
        "student": [submit.student.username for submit in submits],
        "submit_num": [submit.submit_num for submit in submits],
        "submit_url": [
            reverse("task_detail",
                    kwargs=dict(assignment_id=submit.assignment.id,
                                login=submit.student.username,
                                submit_num=submit.submit_num))
            for submit in submits
        ],
        "points": [format_points(submit) for submit in submits],
    })
    frame["count"] = 1
    frame["cumsum"] = frame["count"].cumsum()

    source = ColumnDataSource(data=frame)

    plot = figure(plot_width=1200,
                  plot_height=400,
                  x_axis_type="datetime",
                  tools="pan,wheel_zoom,box_zoom,save,reset,tap")
    plot.line("date", "cumsum", source=source)

    students = sorted(set(frame["student"]))
    mapper = factor_cmap(field_name="student",
                         palette=CategoricalPalette,
                         factors=students)
    points = plot.circle("date", "cumsum", color=mapper, source=source, size=8)
    plot.yaxis.axis_label = "# submits"

    url = "@submit_url#src"
    taptool = plot.select(type=TapTool)
    taptool.callback = OpenURL(url=url)

    hover = HoverTool(tooltips=[("submit", "@student #@submit_num"),
                                ("points", "@points"),
                                ("date", "@date{%d. %m. %Y %H:%M:%S}")],
                      formatters={'@date': 'datetime'},
                      renderers=[points])
    plot.add_tools(hover)

    for assignment in assignments:
        if assignment.deadline is not None:
            draw_deadline_line(plot, assignment.deadline)

    return file_html(plot, CDN, "Submits over time")
コード例 #10
0
def patches(plot, div, patch_data):
    color_mapper = LinearColorMapper(palette=palette)
    patches = MultiPolygons(xs='xs',
                            ys='ys',
                            fill_color={
                                'field': 'rank',
                                'transform': color_mapper
                            },
                            fill_alpha=0.5,
                            line_color="lightblue",
                            line_alpha=0.3,
                            line_width=3.0)
    hover_patches = MultiPolygons(xs='xs',
                                  ys='ys',
                                  fill_color={
                                      'field': 'rank',
                                      'transform': color_mapper
                                  },
                                  fill_alpha=0.5,
                                  line_color="purple",
                                  line_alpha=0.8,
                                  line_width=3.0)
    patch_source = geodf_patches_to_geods(patch_data)
    render = plot.add_glyph(patch_source,
                            patches,
                            hover_glyph=hover_patches,
                            selection_glyph=patches,
                            nonselection_glyph=patches)

    parsed_geojson = json.loads(patch_source.geojson)
    # str.source.selected.indices gives you a list of things that you
    # immediately clicked on
    code = """
        var features = json_source['features'];
        var properties = features[cb_data.index.indices[0]];
        if (properties != undefined) {
            var rank = properties['properties']['rank'] + 1;
            var name = properties['properties']['name'];
            var protestcount = properties['properties']['protestcount'];
            div.text = name +
                       '<br>' + 'Protest Count: ' + protestcount
            }
    """

    callback = CustomJS(args=dict(json_source=parsed_geojson, div=div),
                        code=code)

    hover = HoverTool(tooltips=None,
                      renderers=[render],
                      point_policy="follow_mouse",
                      callback=callback)
    plot.add_tools(hover)
    plot.toolbar.active_inspect = hover

    tap = TapTool(renderers=[render],
                  callback=OpenURL(url='/spa/@perma{safe}'))
    plot.add_tools(tap)

    return plot
コード例 #11
0
def plot_t_sne(read_counting_table, tsne_result,
               output_file_colorized_by_clusters):
    read_counting_table["t-SNE-component_1"] = [pos[0] for pos in tsne_result]
    read_counting_table["t-SNE-component_2"] = [pos[1] for pos in tsne_result]

    color_palette = bokeh.palettes.Colorblind[(len(
        read_counting_table["Cluster_label"].unique()))]
    color = read_counting_table["Cluster_label"].apply(
        lambda lable: color_palette[lable])
    label = read_counting_table.apply(_label_clustering, axis=1)

    hower_data = dict(x=read_counting_table["t-SNE-component_1"],
                      y=read_counting_table["t-SNE-component_2"],
                      feature=read_counting_table["Protein.names"],
                      id=read_counting_table["Protein.IDs"],
                      cluster_label=read_counting_table["Cluster_label"],
                      color=color,
                      label=label)

    hower_data_df = pd.DataFrame.from_dict(hower_data)
    hower_data_df.to_csv("hower_data_df.csv", sep='\t', index=None)
    source = ColumnDataSource(hower_data)

    hover = HoverTool(tooltips=[("Protein.names",
                                 "@feature"), ("Protein.IDs", "@id")])

    plot = figure(plot_width=900,
                  plot_height=900,
                  tools=[
                      hover,
                      BoxZoomTool(),
                      ResetTool(),
                      PanTool(),
                      WheelZoomTool(), "tap"
                  ],
                  title="Grad-Seq t-SNE proteins")

    plot.circle("x",
                "y",
                source=source,
                size=7,
                alpha=3,
                color='color',
                legend="label",
                line_color="black")
    plot.yaxis.axis_label_text_font_size = "15pt"
    plot.xaxis.axis_label_text_font_size = "15pt"
    plot.title.text_font_size = '15pt'

    url = "https://www.uniprot.org/uniprot/?query=@feature"
    taptool = plot.select(type=TapTool)
    taptool.callback = OpenURL(url=url)

    plot.xaxis.axis_label = "Dimension 1"
    plot.yaxis.axis_label = "Dimension 2"

    output_file(output_file_colorized_by_clusters)
    save(plot)
コード例 #12
0
def generateNavigatorFigure(dataframe, i, title):

    global pixelsForTitle;
    global pixelsPerHeightUnit;
    global plotWidth;

    # Generate the colors, such that the current interval is shown in a
    # different color than the rest.
    #
    numIntervals = dataframe['intervalnumber'].size;
    color = ["white" for x in range(numIntervals)];
    color[i] = "salmon";
    dataframe['color'] = color;

    cds = ColumnDataSource(dataframe);

    title = title + " CLICK TO NAVIGATE";

    hover = HoverTool(tooltips = [
        ("interval #", "@intervalnumber"),
        ("interval start", "@intervalbegin{0,0}"),
        ("interval end", "@intervalend{0,0}")]);

    TOOLS = [hover, "tap"];

    p = figure(title = title, plot_width = plotWidth,
               x_range = (0, numIntervals),
               plot_height =  2 * pixelsPerHeightUnit + pixelsForTitle,
               x_axis_label = "",
               y_axis_label = "", tools = TOOLS,
               toolbar_location="above");

    # No minor ticks or labels on the y-axis
    p.yaxis.major_tick_line_color = None;
    p.yaxis.minor_tick_line_color = None;
    p.yaxis.major_label_text_font_size = '0pt';
    p.yaxis.ticker = FixedTicker(ticks = range(0, 1));
    p.ygrid.ticker = FixedTicker(ticks = range(0, 1));

    p.xaxis.formatter = NumeralTickFormatter(format="0,");

    p.title.align = "center";
    p.title.text_font_style = "normal";

    p.quad(left = 'intervalnumber', right = 'intervalnumbernext',
           bottom = 0, top = 2, color = 'color', source = cds,
           nonselection_fill_color='color',
           nonselection_fill_alpha = 1.0,
           line_color = "aliceblue",
           selection_fill_color = "white",
           selection_line_color="lightgrey"
    );

    url = "@bucketfiles";
    taptool = p.select(type=TapTool);
    taptool.callback = OpenURL(url=url);

    return p;
コード例 #13
0
def bokeh_scatter(df,
                  colourDimension='EmployerSize',
                  title="Mean (x)  vs Median (y) Scatter"):
    '''
    Make a scatter plot from a dataframe
    :param df:
    :param colors:
    :return:
    '''
    from bokeh.plotting import figure, output_file, show
    from bokeh.models import ColumnDataSource, HoverTool, TapTool, OpenURL
    from bokeh.transform import factor_cmap
    #bokeh data
    srce = ColumnDataSource(df[[
        'DiffMeanHourlyPercent', 'DiffMedianHourlyPercent', 'CurrentName',
        'EmployerSize', 'DiffMeanHourlyPercent', 'DiffMedianHourlyPercent',
        'CompanyLinkToGPGInfo', 'Sector'
    ]])

    # output to static HTML file
    output_file("{}.html".format(title))

    # create a new plot
    p = figure(tools="pan,box_zoom,reset,save, tap",
               title=title,
               x_axis_label='mean gap %',
               y_axis_label='median gap %')
    p.circle(source=srce,
             x='DiffMeanHourlyPercent',
             y='DiffMedianHourlyPercent',
             legend="y=x",
             color=colourDimension,
             fill_color=colourDimension,
             size=8)
    ##attempts to get colour grouping workings
    # color_map = CategoricalColorMapper(factors=df[colourDimension].unique())
    # p.circle(source=srce, x='DiffMeanHourlyPercent', y='DiffMedianHourlyPercent', legend="y=x", color={'field': colourDimension, 'transform': color_map}, size=8)

    url = '@CompanyLinkToGPGInfo/'
    #make the axes stand out -- got rid of this as couldn't work out how to
    # p.xaxis.axis_line_width = 3
    # p.yaxis.axis_line_width = 3
    # p.xaxis.axis_line_color = "Black"
    # p.xaxis.axis_line_join()
    # add some renderers
    # index_cmap = factor_cmap('DiffMeanHourlyPercent', palette = Spectral6,  factors=sorted(df[colourDimension].unique()), end=1)
    p.add_tools(
        HoverTool(tooltips=[(
            "Name", "@CurrentName"), (
                "EmployerSize",
                "@EmployerSize"), ("MedianDiff", "@DiffMedianHourlyPercent"
                                   ), ("MeanDiff", "@DiffMeanHourlyPercent")]))
    # p.add_tools(TapTool())
    # p.add_tools(TapTool(behaviour = '', tooltips=[("Name", "@CurrentName"), ("EmployerSize", "@EmployerSize"), ("MedianDiff", "@DiffMedianHourlyPercent"), ("MeanDiff", "@DiffMeanHourlyPercent")]))
    t = p.select(type=TapTool)
    t.callback = OpenURL(url=url)
    return p, t
def make_plot(source, title):
    plot = figure(
        tools="pan,wheel_zoom,box_zoom,reset,tap,lasso_select,save,hover",
        toolbar_location="above",
        plot_width=1100,
        plot_height=600)
    #plot2=figure()

    plot.title.text = title

    legends = [
        "January", "february", "March", "April", "May", "June", "July",
        "August", "September", "October", "November", "December"
    ]
    color_list = [
        "Red", "orange", "yellow", "maroon", "black", "blue", "blue", "black",
        "green", "blue", "blue", "Red"
    ]

    for i, j, k in zip(All_record, legends, color_list):

        plot.line(x='YEAR',
                  y=i,
                  source=source,
                  color=k,
                  legend=str(j),
                  line_cap='butt',
                  line_width=2)


#    plot.line(x='YEAR',y='JAN',source=source,color="black", legend="january",line_cap='butt',line_width=4)
#    plot.line(x='YEAR',y='FEB',source=source,color="yellow", legend="February")
#    plot.line(x='YEAR',y='MAR',source=source, legend="March",color="green")
#    plot.line(x='YEAR',y='APR',source=source, legend="April",color="red")
#    plot.line(x='YEAR',y='JUN',source=source, legend="june",color="orange")
#    plot.line(x='YEAR',y='JUL',source=source, legend="july")
#    plot.line(x='YEAR',y='AUG',source=source, legend="august")
#    plot.line(x='YEAR',y='SEP',source=source, legend="september")
#    plot.line(x='YEAR',y='OCT',source=source, legend="october")
#    plot.line(x='YEAR',y='NOV',source=source, legend="november")
#    plot.line(x='YEAR',y='DEC',source=source, legend="december")
    url = "https://data.gov.in/keywords/annual-rainfall"
    taptool = plot.select(type=TapTool)
    taptool.callback = OpenURL(url=url)

    #chup=source._df_index_name
    plot.xaxis.axis_label = "Year"
    plot.yaxis.axis_label = "Rain (mm)"
    plot.legend.click_policy = "hide"

    hover = plot.select(dict(type=HoverTool))
    hover.tooltips = [
        ("Year", "@YEAR"),
    ]
    hover.mode = 'mouse'

    return plot
コード例 #15
0
def generate_plot(title, cds, x, y, tooltip):
    plot = figure(x_axis_type="datetime", title=title, tooltips=tooltip)
    plot.circle(x=x, y=y, source=cds, size=8)
    taptool = TapTool()
    # taptool.callback = OpenURL(url='http://www.dilbert.com/strip/@{AAPL_p}')
    # craft URL by hand, as flask escapes all the symbols - so bokeh doesnt interpolate
    taptool.callback = OpenURL(url="/display/@{AAPL_p}")
    plot.add_tools(taptool)
    script, div = components(plot)
    return {'script': script, 'div': div}
コード例 #16
0
    def __init__(self, scheduler, **kwargs):
        self.scheduler = scheduler
        self.layout = GraphLayout(scheduler)
        self.invisible_count = 0  # number of invisible nodes

        self.node_source = ColumnDataSource({
            'x': [],
            'y': [],
            'name': [],
            'state': [],
            'visible': [],
            'key': []
        })
        self.edge_source = ColumnDataSource({'x': [], 'y': [], 'visible': []})

        node_view = CDSView(
            source=self.node_source,
            filters=[GroupFilter(column_name='visible', group='True')])
        edge_view = CDSView(
            source=self.edge_source,
            filters=[GroupFilter(column_name='visible', group='True')])

        node_colors = factor_cmap(
            'state',
            factors=['waiting', 'processing', 'memory', 'released', 'erred'],
            palette=['gray', 'green', 'red', 'blue', 'black'])

        self.root = figure(title='Task Graph', **kwargs)
        self.root.multi_line(xs='x',
                             ys='y',
                             source=self.edge_source,
                             line_width=1,
                             view=edge_view,
                             color='black',
                             alpha=0.3)
        rect = self.root.square(x='x',
                                y='y',
                                size=10,
                                color=node_colors,
                                source=self.node_source,
                                view=node_view,
                                legend='state')
        self.root.xgrid.grid_line_color = None
        self.root.ygrid.grid_line_color = None

        hover = HoverTool(point_policy="follow_mouse",
                          tooltips="<b>@name</b>: @state",
                          renderers=[rect])
        tap = TapTool(callback=OpenURL(url='info/task/@key.html'),
                      renderers=[rect])
        rect.nonselection_glyph = None
        self.root.add_tools(hover, tap)
コード例 #17
0
ファイル: app_onc.py プロジェクト: dterach/SIMPLE-web
def onc_skyplot(t):
    """
    Create a sky plot of the database objects
    """
    # Convert to Pandas data frame
    data = t.to_pandas()
    data.index = data['id']
    script, div, warning_message = '', '', ''

    if 'ra' in data and 'dec' in data:

        # Remove objects without RA/Dec
        num_missing = np.sum(pd.isnull(data.get('ra')))
        if num_missing > 0:
            warning_message = 'Note: {} objects had missing coordinate information and were removed.'.format(
                num_missing)
            data = data[pd.notnull(data.get('ra'))]
        else:
            warning_message = ''

        # Coerce to numeric
        data['ra'] = pd.to_numeric(data['ra'])
        data['dec'] = pd.to_numeric(data['dec'])

        source = ColumnDataSource(data=data)

        tools = "resize,tap,pan,wheel_zoom,box_zoom,reset"
        p = figure(tools=tools,
                   title='',
                   plot_width=500,
                   plot_height=300,
                   min_border=0,
                   min_border_bottom=0)

        # Add the data
        p.scatter('ra', 'dec', source=source, size=8, alpha=0.6)
        tooltip = [("Source ID", "@id"), ("Name", "@shortname"),
                   ("(RA, Dec)", "(@ra, @dec)")]
        p.add_tools(HoverTool(tooltips=tooltip))

        # When clicked, go to the Summary page
        url = "inventory/@id"
        taptool = p.select(type=TapTool)
        taptool.callback = OpenURL(url=url)

        # Axis labels
        p.yaxis.axis_label = 'Decl. (deg)'
        p.xaxis.axis_label = 'R.A. (deg)'

        script, div = components(p)

    return script, div, warning_message
コード例 #18
0
ファイル: app.py プロジェクト: ftrojan/aquarius
def index():
    cz = drought >> mask(X.country_name == 'Czech Republic')
    plotdf = utils.drought_add_facecolor(cz)
    f_drought = utils.drought_rate_plot(plotdf)
    url = "/station_detail/station_id=@station"
    # taptool = f_drought.select(type=TapTool)
    # taptool.callback = OpenURL(url=url)
    f_drought.add_tools(TapTool(callback=OpenURL(url=url)))
    bokeh_map = utils.drought_map(plotdf)
    bokeh_map.add_tools(TapTool(callback=OpenURL(url=url)))
    script_drought, div_drought = components(f_drought)
    script_map, div_map = components(bokeh_map)
    return render_template(
        'main_page.html',
        stations=cz,
        js_resources=js_resources,
        css_resources=css_resources,
        script_drought=script_drought,
        script_map=script_map,
        div_drought=div_drought,
        div_map=div_map,
    )
コード例 #19
0
def plot_errors(data, device="PTL_DEFAULT", **kwargs):
    dates = list(data.date)
    if 'x_range' in kwargs:
        x_range = kwargs['x_range']
        x_range = x_range[0] - timedelta(days=1), x_range[1] + timedelta(days=1)
    else:
        x_range = (min(dates) - timedelta(days=1), max(dates) + timedelta(days=1))

    y_range = kwargs.get('y_range', None)
    if y_range and y_range[1] >= 1000:
        bottom = 0.1
        y_range = bottom, y_range[1]
        y_axis_type = "log"
    else:
        bottom = 0
        y_axis_type = "linear"

    data_source = ColumnDataSource(data)

    vbar_width = timedelta(days=1) / 2

    fig = figure(x_axis_type="datetime", x_range=x_range,
                 y_axis_type=y_axis_type, y_range=y_range,
                 plot_height=200, plot_width=800,
                 title="Errors per day", tools="tap")
    fig.output_backend = "svg"
    fig.toolbar.logo = None

    error_hover_tool = HoverTool(names=['errors'],
                                 tooltips=[('date', '@date{%F}'),
                                           ('errors', '@error_count{%d}')],
                                 formatters={'date': 'datetime',
                                             'error_count': 'printf'},
                                 mode='vline')

    fig.add_tools(error_hover_tool)
    fig.add_tools(SaveTool())

    fig.vbar(x='date',
             width=vbar_width,
             bottom=bottom,
             top='error_count',
             color='#c61803',
             source=data_source,
             name="errors")

    url = url_for("show_logs", device=device, timestamp="TIMESTAMP", duration=24*60, log_level="ERROR")
    url = url.replace("TIMESTAMP", "@end_of_day")
    taptool = fig.select(type=TapTool)[0]
    taptool.callback = OpenURL(url=url, same_tab=False)
    return fig
コード例 #20
0
def lifecycles(data):
    "Returns (script, div) tuple of Bokeh chart of Issue lifecycles for a repo"

    source = ColumnDataSource(data=dict(
        left=[s['span']['start'] for s in data['spans']],
        date=[s['span']['start'].strftime('%d %B %Y') for s in data['spans']],
        right=[s['span']['end'] for s in data['spans']],
        bottom=[s['index'] * (THICKNESS + 2 * MARGIN) for s in data['spans']],
        top=[
            s['index'] * (THICKNESS + 2 * MARGIN) + THICKNESS
            for s in data['spans']
        ],
        color=data['colors'],
        issue=[s['issue'].title for s in data['spans']],
        status=[', '.join(s['span']['milestones']) for s in data['spans']],
        assignee=[s['issue'].assignee_login for s in data['spans']],
        url=[s['issue'].html_url for s in data['spans']],
        final=[s['final'] for s in data['spans']],
    ))

    fig = figure(
        x_axis_type='datetime',
        title='Issue progress',
    )
    fig.yaxis.major_label_text_color = None

    fig.quad(
        left='left',
        bottom='bottom',
        right='right',
        top='top',
        source=source,
        color='color',
    )

    hover = HoverTool(tooltips=[
        ("issue", "@issue"),
        ("date", "@date"),
        ("status", "@status"),
        ("final", "@final"),
        ("assignee", "@assignee"),
        ("url", "@url"),
    ])
    fig.add_tools(hover)
    taptool = TapTool(callback=OpenURL(url="@url"))
    fig.add_tools(taptool)

    result = components(fig)
    result = {'script': result[0], 'div': result[1]}
    return result
コード例 #21
0
def render_grid(source, x_range, y_range, TOOLS="hover,tap"):
    """Function to render a bokeh figure with a rectangular grid
    representing the SOM nodes, colored by cluster id and showing
    the number of articles that they match. By hovering on the nodes
    one display the top topics.

    Parameters
    ----------

    source: ColumnDataSource
        Data to be displayed, as generated by get_grid method

    x_range, yrange: lists
        List used to scale the nodes coordinates
    """
    p = figure(title="Self-organizing map features and cluster ID",
               tools=TOOLS)
    p.plot_width = 800
    p.toolbar_location = "left"

    # Draw the rectangular color grid
    p.rect("x", "y", 1, 1, source=source, fill_alpha=0.6, color="color")

    # Write some content in the boxes
    text_props = {
        "source": source,
        "angle": 0,
        "color": "black",
        "text_align": "left",
        "text_baseline": "middle"
    }
    p.text(x="x",
           y="y",
           text="hits",
           text_font_style="bold",
           text_font_size="8pts",
           **text_props)
    p.grid.grid_line_color = None

    # Create a hover tool for representing the node data
    hover = p.select(dict(type=HoverTool))
    hover.tooltips = [("Node_id", "@node")] + [("Top Words no. %d\t" %
                                                (i + 1), "@word_%d" % (i + 1))
                                               for i in range(3)]

    # Create a link to the node data
    url = "/som/node/@node"
    taptool = p.select(type=TapTool)
    taptool.callback = OpenURL(url=url)
    return p
コード例 #22
0
def get_plot_stuff(plot):
    plot.xaxis.formatter = DatetimeTickFormatter(seconds=["%d %B %Y"],
                                                 minutes=["%d %B %Y"],
                                                 hours=["%d %b %Y"],
                                                 days=["%d %b %Y"],
                                                 months=["%d %b %Y"],
                                                 years=["%d %b %Y"])
    hover = plot.select(dict(type=HoverTool))
    hover.tooltips = [("pic", "<img src='@pic' alt='' />"),
                      ("id", "@object_id"), ("Address", "@address"),
                      ("Info", "@desctext"), ("Description", "@desc"),
                      ("Price", "@price"), ("Last scraped", "@lastdl")]
    hover.mode = 'mouse'
    taptool = plot.select(type=TapTool)
    taptool.callback = OpenURL(url="@link")
コード例 #23
0
ファイル: plotting.py プロジェクト: yonirose/Partiqals
    def price_partnum(self, dist):
        hover = HoverHandler('price_partnum')
        # formatters={'unit_price' : 'printf'})
        '''
        y_range = [
            -50, dist.dist_found['nunit_price'].max()*1.07
                if dist.dist_found['nunit_price'].max() > 1
                    or dist.dist_found['nunit_price'].max() < -1 else 0.5
        ]
        '''
        p = self.config_figure(plot_height=400,
                               hover=[hover.make_hover_tool],
                               x_range=self.x_range_range_partnum,
                               yaxis_label='Unit ptice',
                               xaxis_orient=pi / 4)

        p.add_tools(TapTool())
        url = '@dist_partlink'
        taptool = p.select(type=TapTool)
        taptool.callback = OpenURL(url=url)
        p.yaxis[0].formatter = NumeralTickFormatter(format='$0.00')

        p.segment('part_num',
                  0,
                  'part_num',
                  'nunit_price',
                  line_width=3,
                  line_color='clr',
                  source=self.source)

        p.circle('part_num',
                 'nunit_price',
                 size=10,
                 fill_color='dist_clr',
                 line_color='dist_clr',
                 line_width=3,
                 hover_fill_color="white",
                 hover_line_color='dist_clr',
                 fill_alpha=1,
                 muted_color='dist_clr',
                 muted_alpha=0.2,
                 legend='dist',
                 source=self.source)
        p.legend.location = "top_left"
        p.legend.click_policy = "mute"
        return p
コード例 #24
0
    def dashboard_instrument_pie_chart(self):
        """Create piechart showing number of files per instrument

        Returns
        -------
        plot : bokeh.plotting.figure
            Pie chart figure
        """

        # Replace with jwql.website.apps.jwql.data_containers.build_table
        data = build_table('filesystem_instrument')
        if not pd.isnull(self.delta_t):
            data = data[(data['date'] >= self.date - self.delta_t) & (data['date'] <= self.date)]

        try:
            file_counts = {'nircam': data.instrument.str.count('nircam').sum(),
                           'nirspec': data.instrument.str.count('nirspec').sum(),
                           'niriss': data.instrument.str.count('niriss').sum(),
                           'miri': data.instrument.str.count('miri').sum(),
                           'fgs': data.instrument.str.count('fgs').sum()}
        except AttributeError:
            file_counts = {'nircam': 0,
                           'nirspec': 0,
                           'niriss': 0,
                           'miri': 0,
                           'fgs': 0}

        data = pd.Series(file_counts).reset_index(name='value').rename(columns={'index': 'instrument'})
        data['angle'] = data['value'] / data['value'].sum() * 2 * pi
        data['color'] = ['#F8B195', '#F67280', '#C06C84', '#6C5B7B', '#355C7D']
        plot = figure(title="Number of Files Per Instruments", toolbar_location=None,
                      tools="hover,tap", tooltips="@instrument: @value", x_range=(-0.5, 1.0))

        plot.wedge(x=0, y=1, radius=0.4,
                   start_angle=cumsum('angle', include_zero=True), end_angle=cumsum('angle'),
                   line_color="white", color='color', legend='instrument', source=data)

        url = "{}/@instrument".format(get_base_url())
        taptool = plot.select(type=TapTool)
        taptool.callback = OpenURL(url=url)

        plot.axis.axis_label = None
        plot.axis.visible = False
        plot.grid.grid_line_color = None

        return plot
コード例 #25
0
ファイル: plots.py プロジェクト: mcaudy/TopicInsight
def histogram_plot(data, width=600, height=300):
    '''
    '''
    if len(data) > 5:
        data = data[:5]
    ids = [d['id'] for d in data]
    topics = ['Topic {}'.format(d['id']) for d in data]
    dist = [d['dist'] for d in data]
    labels = [', '.join(d['words']) for d in data]
    source = ColumnDataSource(
        data=dict(topics=topics, distribution=dist, ids=ids, labels=labels))
    hover = HoverTool(tooltips="""
        <div>
            <div>
                <span style="font-size: 20px;">Topics: <strong>@ids</strong></span><br>
                <span style="font-size: 12px;">(Click to see more about the topic)</span><br>
                <span style="font-size: 20px;">Words: @labels</span>
            </div>
        </div>
    """)
    hover.attachment = 'right'

    plot = figure(x_range=topics,
                  width=width,
                  height=height,
                  tools=[hover, 'tap', 'save'],
                  title='Relevant topics')
    plot.vbar(x='topics',
              top='distribution',
              width=0.8,
              source=source,
              line_color='white',
              fill_color=factor_cmap('topics', palette=COLORS, factors=topics))
    plot.y_range.start = 0
    plot.xgrid.grid_line_color = None
    plot.xaxis.axis_label = 'Topics'
    plot.yaxis.axis_label = 'Proportion'
    plot.title.text_font_size = '1.5em'
    plot.xaxis.axis_label_text_font_size = "1.5em"
    plot.yaxis.axis_label_text_font_size = "1.5em"
    plot.xaxis.major_label_text_font_size = "1em"
    taptool = plot.select(type=TapTool)
    taptool.callback = OpenURL(url="/topic/@ids")
    plot.toolbar.active_inspect = [hover]

    return components(plot)
コード例 #26
0
def plot_error_heatmap(data, device="PTL_DEFAULT", **kwargs):
    if 'x_range' in kwargs:
        x_range = kwargs['x_range']
        x_range = x_range[0] - timedelta(days=1), x_range[1] + timedelta(days=1)
    else:
        dates = list(data.date)
        x_range = (min(dates) - timedelta(days=1), max(dates) + timedelta(days=1))

    fig = figure(plot_height=200, plot_width=800,
                 title=f"Error heatmap",
                 x_axis_type='datetime',
                 x_range=x_range,
                 y_range=(0, 1),
                 tools="tap")
    fig.output_backend = "svg"
    fig.toolbar.logo = None
    fig.yaxis.formatter = NumeralTickFormatter(format='0 %')

    error_hover_tool = HoverTool(tooltips=[('date', '@date_label{%F}'),
                                           ('location', '@location'),
                                           ('errors', '@error_count{%d}')],
                                 formatters={'date_label': 'datetime',
                                             'location': 'printf',
                                             'error_count': 'printf'})

    fig.add_tools(error_hover_tool)
    fig.add_tools(SaveTool())

    for date in data.index.get_level_values(0).unique():
        data_source = ColumnDataSource(data.loc[date])
        fig.vbar(bottom=cumsum('error_count_normalized', include_zero=True),
                 top=cumsum('error_count_normalized'),
                 x=date, width=timedelta(days=1)/2, source=data_source, fill_color='colors')

    url = url_for("show_logs", device=device, timestamp="TIMESTAMP", duration=24*60, log_level="ERROR",
                  filename='FILENAME',
                  line_number='LINENUMBER')
    url = url.replace("TIMESTAMP", "@end_of_day") \
             .replace("FILENAME", "@filename") \
             .replace("LINENUMBER", "@line_number")
    taptool = fig.select(type=TapTool)[0]
    taptool.callback = OpenURL(url=url, same_tab=False)

    #tooltips="@location: @error_count Errors",
    return fig
コード例 #27
0
def get_plot(data):
    countries = data.country_name.unique().tolist()
    countries = [country for country in countries if str(country) != 'nan']
    countries.append(' All')
    countries.sort()

    p = figure(tools='pan, wheel_zoom, tap, reset',
               x_range=x_range,
               y_range=y_range,
               plot_width=950,
               toolbar_location="right",
               active_scroll='wheel_zoom')
    p.axis.visible = False

    url = 'https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{Z}/{Y}/{X}.jpg'
    attribution = "Tiles by Carto, under CC BY 3.0. Data by OSM, under ODbL"
    p.add_tile(WMTSTileSource(url=url, attribution=attribution))
    source = ColumnDataSource(
        dict(latitude=latlon.latitude,
             longitude=latlon.longitude,
             country_name=latlon.country_name,
             latitude_t=latlon.latitude,
             longitude_t=latlon.longitude,
             country_name_t=latlon.country_name,
             landslide_size=latlon.landslide_size,
             source_link=latlon.source_link,
             location_description=latlon.location_description))
    cmap = factor_cmap('landslide_size',
                       palette=[
                           '#ffffff', '#f7a8e2', '#fcdc12', '#fa774c',
                           '#FC3232', '#040100'
                       ],
                       factors=latlon.landslide_size.unique().tolist())
    p.add_tools(HoverTool(tooltips='@location_description', mode='mouse'))
    url = "@source_link"
    taptool = p.select(type=TapTool)
    taptool.callback = OpenURL(url=url)
    p.circle(x='latitude',
             y='longitude',
             fill_color=cmap,
             size=8,
             source=source,
             legend='landslide_size')

    return (p)
コード例 #28
0
ファイル: views.py プロジェクト: xxqhh/pandas-drf-tools-test
def get_states_plot():
    source = AjaxDataSource(data={
        'STATE': [],
        'STNAME': [],
        'STUSAB': [],
        'TOT_POP': [],
        'TOT_MALE': [],
        'TOT_FEMALE': []
    },
                            data_url='/api/states/',
                            mode='replace',
                            method='GET')

    hover = HoverTool(tooltips=[
        ("State", "@STNAME"),
        ("Population", "@TOT_POP"),
        ("Female Population", "@TOT_FEMALE"),
        ("Male Population", "@TOT_MALE"),
    ])

    plot = figure(
        title='Population by State',
        plot_width=1200,
        plot_height=500,
        x_range=FactorRange(factors=get_state_abbreviations()),
        y_range=(0, 40000000),
        tools=[hover, 'tap', 'box_zoom', 'wheel_zoom', 'save', 'reset'])
    plot.toolbar.active_tap = 'auto'
    plot.xaxis.axis_label = 'State'
    plot.yaxis.axis_label = 'Population'
    plot.yaxis.formatter = NumeralTickFormatter(format="0a")
    plot.sizing_mode = 'scale_width'
    plot.vbar(bottom=0,
              top='TOT_POP',
              x='STUSAB',
              legend=None,
              width=0.5,
              source=source)

    url = "/counties/@STATE/"
    taptool = plot.select(type=TapTool)
    taptool.callback = OpenURL(url=url)

    return plot
コード例 #29
0
ファイル: common.py プロジェクト: vfedotovs/ss-scraper
def scatter_any(df,
                x,
                y,
                xlabel=None,
                ylabel=None,
                color_field=None,
                xformatter=NumeralTickFormatter(),
                yformatter=NumeralTickFormatter(),
                **kwargs):
    f = figure(tools="wheel_zoom,pan,tap,save",
               webgl=True,
               width=defaults.plot_width,
               height=defaults.plot_height,
               **kwargs)

    f.xaxis[0].formatter = xformatter
    f.yaxis[0].formatter = yformatter

    f.xaxis.axis_label = xlabel
    f.yaxis.axis_label = ylabel

    taptool = f.select(type=TapTool)
    taptool.callback = OpenURL(url='@url')

    if color_field:
        uniques = sorted(df[color_field].unique())
        # colors = brewer["PiYG"][len(uniques)]
        dark2 = [
            "#1B9E77", "#D95F02", "#7570B3", "#E7298A", "#66A61E", "#E6AB02",
            "#A6761D", "#666666"
        ]

        for i, u in enumerate(uniques):
            sdf = df[df[color_field] == u]
            f.scatter(x,
                      y,
                      source=ColumnDataSource(sdf),
                      color=dark2[i],
                      legend=str(u))
    else:
        f.scatter(x, y, source=ColumnDataSource(df))

    return f
コード例 #30
0
def do_plot_graph(nodes, edges, colors, sizes, description, output_plot):
    G = nx.Graph()
    G.add_nodes_from(nodes)
    G.add_edges_from(edges)

    hover = HoverTool(tooltips=[
        ("name", "@index")])

    plot = figure(plot_width=900, plot_height=900, x_range=Range1d(-1.1, 1.1), y_range=Range1d(-1.1, 1.1),
                  tools=[hover, BoxZoomTool(), ResetTool(), PanTool(),
                         WheelZoomTool(), "tap"],
                  title=output_plot)
    plot.toolbar.logo = None

    plot.title.text = description

    url_protein = "https://www.ncbi.nlm.nih.gov/gene/?term=@index"
    taptool = plot.select(type=TapTool)
    taptool.callback = OpenURL(url=url_protein)

    graph_renderer = from_networkx(G, nx.fruchterman_reingold_layout, scale=1)

    source = ColumnDataSource({'index': nodes, 'fill_color': colors, 'size': sizes})
    graph_renderer.node_renderer.data_source = source
    graph_renderer.node_renderer.glyph = Circle(size="size", fill_color="fill_color", line_width=0,
                                                line_color="fill_color")

    graph_renderer.node_renderer.selection_glyph = Circle(size="size", fill_color=Spectral4[2], line_width=0,
                                                          line_color=Spectral4[1])
    graph_renderer.node_renderer.hover_glyph = Circle(size="size", fill_color=Spectral4[1], line_width=0,
                                                      line_color=Spectral4[1])

    graph_renderer.edge_renderer.glyph = MultiLine(line_color="#CCCCCC", line_alpha=1, line_width=0.2)
    graph_renderer.edge_renderer.selection_glyph = MultiLine(line_color=Spectral4[2], line_width=1)
    graph_renderer.edge_renderer.hover_glyph = MultiLine(line_color=Spectral4[1], line_width=1)

    graph_renderer.selection_policy = NodesAndLinkedEdges()
    graph_renderer.inspection_policy = NodesAndLinkedEdges()

    plot.renderers.append(graph_renderer)

    output_file(output_plot)