def objective(trial): config = toml.load(args.config) lr = 1e-3 #lr = trial.suggest_loguniform('learning_rate', 1e-5, 1e-2) config['encoder']['activation'] = 'gelu' #config['block'][0]['stride'] = [trial.suggest_int('stride', 4, 6)] # C1 config['block'][0]['kernel'] = [ int(trial.suggest_discrete_uniform('c1_kernel', 1, 129, 2)) ] config['block'][0]['filters'] = trial.suggest_int( 'c1_filters', 1, 1024) # B1 - B5 for i in range(1, 6): config['block'][i]['repeat'] = trial.suggest_int( 'b%s_repeat' % i, 1, 9) config['block'][i]['filters'] = trial.suggest_int( 'b%s_filters' % i, 1, 512) config['block'][i]['kernel'] = [ int(trial.suggest_discrete_uniform('b%s_kernel' % i, 1, 129, 2)) ] # C2 config['block'][-2]['kernel'] = [ int(trial.suggest_discrete_uniform('c2_kernel', 1, 129, 2)) ] config['block'][-2]['filters'] = trial.suggest_int( 'c2_filters', 1, 1024) # C3 config['block'][-1]['kernel'] = [ int(trial.suggest_discrete_uniform('c3_kernel', 1, 129, 2)) ] config['block'][-1]['filters'] = trial.suggest_int( 'c3_filters', 1, 1024) model = Model(config) num_params = sum(p.numel() for p in model.parameters()) print("[trial %s]" % trial.number) if num_params > args.max_params: print("[pruned] network too large") raise optuna.exceptions.TrialPruned() model.to(args.device) model.train() os.makedirs(workdir, exist_ok=True) optimizer = AdamW(model.parameters(), amsgrad=True, lr=lr) model, optimizer = amp.initialize(model, optimizer, opt_level="O1", verbosity=0) schedular = CosineAnnealingLR(optimizer, args.epochs * len(train_loader)) for epoch in range(1, args.epochs + 1): try: train_loss, duration = train(model, device, train_loader, optimizer, use_amp=True) val_loss, val_mean, val_median = test(model, device, test_loader) print( "[epoch {}] directory={} loss={:.4f} mean_acc={:.3f}% median_acc={:.3f}%" .format(epoch, workdir, val_loss, val_mean, val_median)) except KeyboardInterrupt: exit() except: print("[pruned] exception") raise optuna.exceptions.TrialPruned() if np.isnan(val_loss): val_loss = 9.9 trial.report(val_loss, epoch) if trial.should_prune(): print("[pruned] unpromising") raise optuna.exceptions.TrialPruned() trial.set_user_attr('seed', args.seed) trial.set_user_attr('val_loss', val_loss) trial.set_user_attr('val_mean', val_mean) trial.set_user_attr('val_median', val_median) trial.set_user_attr('train_loss', train_loss) trial.set_user_attr('batchsize', args.batch) trial.set_user_attr('model_params', num_params) torch.save(model.state_dict(), os.path.join(workdir, "weights_%s.tar" % trial.number)) toml.dump( config, open(os.path.join(workdir, 'config_%s.toml' % trial.number), 'w')) print("[loss] %.4f" % val_loss) return val_loss
def main(args): workdir = os.path.expanduser(args.training_directory) if os.path.exists(workdir) and not args.force: print("[error] %s exists, use -f to force continue training." % workdir) exit(1) init(args.seed, args.device) device = torch.device(args.device) print("[loading data]") chunks, chunk_lengths, targets, target_lengths = load_data( limit=args.chunks, shuffle=True, directory=args.directory) split = np.floor(chunks.shape[0] * args.validation_split).astype(np.int32) train_dataset = ChunkDataSet(chunks[:split], chunk_lengths[:split], targets[:split], target_lengths[:split]) test_dataset = ChunkDataSet(chunks[split:], chunk_lengths[split:], targets[split:], target_lengths[split:]) train_loader = DataLoader(train_dataset, batch_size=args.batch, shuffle=True, num_workers=4, pin_memory=True) test_loader = DataLoader(test_dataset, batch_size=args.batch, num_workers=4, pin_memory=True) config = toml.load(args.config) argsdict = dict(training=vars(args)) chunk_config = {} chunk_config_file = os.path.join(args.directory, 'config.toml') if os.path.isfile(chunk_config_file): chunk_config = toml.load(os.path.join(chunk_config_file)) os.makedirs(workdir, exist_ok=True) toml.dump({ **config, **argsdict, **chunk_config }, open(os.path.join(workdir, 'config.toml'), 'w')) print("[loading model]") model = Model(config) optimizer = AdamW(model.parameters(), amsgrad=False, lr=args.lr) last_epoch = load_state(workdir, args.device, model, optimizer, use_amp=args.amp) lr_scheduler = func_scheduler(optimizer, cosine_decay_schedule(1.0, 0.1), args.epochs * len(train_loader), warmup_steps=500, start_step=last_epoch * len(train_loader)) if args.multi_gpu: from torch.nn import DataParallel model = DataParallel(model) model.decode = model.module.decode model.stride = model.module.stride model.alphabet = model.module.alphabet for epoch in range(1 + last_epoch, args.epochs + 1 + last_epoch): try: train_loss, duration = train(model, device, train_loader, optimizer, use_amp=args.amp, lr_scheduler=lr_scheduler) val_loss, val_mean, val_median = test(model, device, test_loader) except KeyboardInterrupt: break print( "[epoch {}] directory={} loss={:.4f} mean_acc={:.3f}% median_acc={:.3f}%" .format(epoch, workdir, val_loss, val_mean, val_median)) model_state = model.state_dict( ) if not args.multi_gpu else model.module.state_dict() torch.save(model_state, os.path.join(workdir, "weights_%s.tar" % epoch)) torch.save(optimizer.state_dict(), os.path.join(workdir, "optim_%s.tar" % epoch)) with open(os.path.join(workdir, 'training.csv'), 'a', newline='') as csvfile: csvw = csv.writer(csvfile, delimiter=',') if epoch == 1: csvw.writerow([ 'time', 'duration', 'epoch', 'train_loss', 'validation_loss', 'validation_mean', 'validation_median' ]) csvw.writerow([ datetime.today(), int(duration), epoch, train_loss, val_loss, val_mean, val_median, ])
def main(args): workdir = os.path.expanduser(args.training_directory) if os.path.exists(workdir) and not args.force: print("[error] %s exists." % workdir) exit(1) init(args.seed, args.device) device = torch.device(args.device) print("[loading data]") chunks, chunk_lengths, targets, target_lengths = load_data( limit=args.chunks, shuffle=True, directory=args.directory) split = np.floor(chunks.shape[0] * args.validation_split).astype(np.int32) train_dataset = ChunkDataSet(chunks[:split], chunk_lengths[:split], targets[:split], target_lengths[:split]) test_dataset = ChunkDataSet(chunks[split:], chunk_lengths[split:], targets[split:], target_lengths[split:]) train_loader = DataLoader(train_dataset, batch_size=args.batch, shuffle=True, num_workers=4, pin_memory=True) test_loader = DataLoader(test_dataset, batch_size=args.batch, num_workers=4, pin_memory=True) config = toml.load(args.config) argsdict = dict(training=vars(args)) chunk_config = {} chunk_config_file = os.path.join( args.directory if args.directory else __data__, 'config.toml') if os.path.isfile(chunk_config_file): chunk_config = toml.load(os.path.join(chunk_config_file)) print("[loading model]") model = Model(config) weights = os.path.join(workdir, 'weights.tar') if os.path.exists(weights): model.load_state_dict(torch.load(weights)) model.to(device) model.train() os.makedirs(workdir, exist_ok=True) toml.dump({ **config, **argsdict, **chunk_config }, open(os.path.join(workdir, 'config.toml'), 'w')) optimizer = AdamW(model.parameters(), amsgrad=True, lr=args.lr) if args.amp: try: model, optimizer = amp.initialize(model, optimizer, opt_level="O1", verbosity=0) except NameError: print( "[error]: Cannot use AMP: Apex package needs to be installed manually, See https://github.com/NVIDIA/apex" ) exit(1) schedular = CosineAnnealingLR(optimizer, args.epochs * len(train_loader)) for epoch in range(1, args.epochs + 1): try: train_loss, duration = train(model, device, train_loader, optimizer, use_amp=args.amp) val_loss, val_mean, val_median = test(model, device, test_loader) except KeyboardInterrupt: break print( "[epoch {}] directory={} loss={:.4f} mean_acc={:.3f}% median_acc={:.3f}%" .format(epoch, workdir, val_loss, val_mean, val_median)) torch.save(model.state_dict(), os.path.join(workdir, "weights_%s.tar" % epoch)) with open(os.path.join(workdir, 'training.csv'), 'a', newline='') as csvfile: csvw = csv.writer(csvfile, delimiter=',') if epoch == 1: csvw.writerow([ 'time', 'duration', 'epoch', 'train_loss', 'validation_loss', 'validation_mean', 'validation_median' ]) csvw.writerow([ datetime.today(), int(duration), epoch, train_loss, val_loss, val_mean, val_median, ]) schedular.step()
def main(args): model = Model(toml.load(args.config)) print(model) print("Total parameters in model", sum(p.numel() for p in model.parameters()))