def make_plot(): run1, run2, t = util.bload( 'Bb-run.bin' ) # take every 10th point step = 20 run1 = skip(run1, step=step) run2 = skip(run2, step=step) t = skip(t, step=step) nodes = "EC PIC C PH IL12I IL12II".split() subplot(121) # drawing these first so that the symbols are under the other ones p1 = plot(t, run2['EC'], 'r^-', ms=7 ) p2 = plot(t, run2['PIC'], 'r^-', ms=7 ) p7 = plot(t, run1['EC'], 'b.-', ms=5 ) p8 = plot(t, run1['PIC'], 'b--', ms=5 ) xlabel( 'Time' ) ylabel( 'Concentration' ) title ( 'Innate Immune Response' ) legend( [p1, p2, p7, p8], 'DEL-EC DEL-PIC WT-EC WT-PIC'.split(), loc='best') subplot(122) p3 = plot(t, run2['C'], 'r^-', ms=7 ) p4 = plot(t, run2['PH'], 'ro-', ms=7 ) p5 = plot(t, run2['IL12I'], 'r.-', ms=7 ) p6 = plot(t, run2['IL12II'], 'rs-', ms=7 ) p9 = plot(t, run1['C'], 'bo-', ms=5 ) p10 = plot(t, run1['PH'] , 'bD-', ms=5 ) p11 = plot(t, run1['IL12I'], 'b.-', ms=5 ) p12 = plot(t, run1['IL12II'], 'b^-', ms=5 ) xlabel( 'Time' ) ylabel( 'Concentration' ) title ( 'Adaptive Immune Response' ) legend( [p3, p4, p5, p6, p9, p10, p11, p12], 'DEL-C DEL-PH DEL-IL12I DEL-IL12II WT-C WT-PH WT-IL12I WT-IL12II'.split(), loc='best')
def make_plot(): # contains averaged node information based on 1000 runs data = util.bload( 'LGL-run.bin' ) # each of these is a dictionary keyed by nodes run1, run2, run3, run4 = data # applies smoothing to all values for run in (run1, run2, run3, run4): for key, values in run.items(): run[key] = smooth( values, w=10 ) # # Plotting Apoptosis # subplot(121) apop1, apop2, apop3, apop4 = run1['Apoptosis'], run2['Apoptosis'],run3['Apoptosis'],run4['Apoptosis'] ps = [ plot( apop1, 'bo-' ), plot( apop2, 'ro-' ),plot(apop3,'b^-'),plot(apop4,'r^-') ] legend( ps, ['Normal-Apop', 'MCL1-over-Apop','sFas-over-Apop','LGL-like-Apop' ], loc='best' ) title( ' Changes in Apoptosis' ) xlabel( 'Time Steps' ) ylabel( 'Percent (%)' ) ylim( (-0.1, 1.1) ) # # Plotting FasL and Ras # subplot(122) fasL1, fasL2 = run1['FasL'], run4['FasL'] ras1, ras2 = run1['Ras'], run4['Ras'] ps = [ plot( fasL1, 'bo-' ), plot( fasL2, 'ro-' ), plot( ras1, 'b^-' ), plot( ras2, 'r^-' ) ] legend( ps, 'Normal-FasL LGL-like-FasL Normal-Ras LGL-like-Ras'.split() , loc='lower left' ) title( ' Changes in FasL and Ras' ) xlabel( 'Time Steps' )
def make_plot(): # contains averaged node information based on 1000 runs data = util.bload('gene.bin') # each of these is a dictionary keyed by nodes run1, run2, run3, run4 = data # applies smoothing to all values for run in (run1, run2, run3, run4): for key, values in run.items(): run[key] = smooth(values, w=10) # # Plotting Migration (ON) # fig = plt.figure(figsize=(4.5, 2.5), facecolor='w', edgecolor='k') plott = fig.add_subplot(111) mig1, mig2 = run1['Migration'], run2['Migration'] mig3, mig4 = run3['Migration'], run4['Migration'] ps = [ plot(mig1, 'go-', markersize=3, linewidth=0.2), plot(mig2, 'ro-', markersize=3, linewidth=0.2), plot(mig3, 'g^-', markersize=3, linewidth=0.2), plot(mig4, 'r^-', markersize=3, linewidth=0.2) ] legend(['OE RHEB', 'OE DISC1', 'KO RHEB', 'KO DISC1'], loc='upper center', bbox_to_anchor=(0.5, -0.15), ncol=4, fontsize=7) ylim((-0.1, 1.1)) xlim((-0.1, 140)) title( ' Effect of perturbation of genes on migration \n Functional module 8, Simulation 2', fontsize=10) xlabel('Time Steps', fontsize=9) ylabel('Percent (%)', fontsize=9) plott.tick_params(axis='both', which='major', labelsize=8) plott.yaxis.set_ticks_position('left') plott.xaxis.set_ticks_position('bottom') savefig('RHEB_gene_Sim2_1-140.svg', transparent=True, bbox_inches='tight') savefig('RHEB_gene_Sim2_1-140.png', transparent=True, bbox_inches='tight') savefig('RHEB_gene_Sim2_1-140.pdf', transparent=True, bbox_inches='tight') # Plotting t=0 to t=20 fig = figure(figsize=(2.25, 1.25), facecolor='w', edgecolor='k') plott = fig.add_subplot(111) mig1, mig2 = run1['Migration'], run2['Migration'] mig3, mig4 = run3['Migration'], run4['Migration'] ps = [ plot(mig1, 'go-', markersize=2, linewidth=0.1), plot(mig2, 'ro-', markersize=2, linewidth=0.1), plot(mig3, 'g^-', markersize=2, linewidth=0.1), plot(mig4, 'r^-', markersize=2, linewidth=0.1) ] ylim((-0.1, 1.1)) xlim((-0.1, 20)) plott.tick_params(axis='both', which='major', labelsize=6) plott.yaxis.set_ticks_position('left') plott.xaxis.set_ticks_position('bottom') plott.spines['right'].set_visible(False) plott.spines['top'].set_visible(False) savefig('RHEB_gene_Sim2_1-20.svg', transparent=True, bbox_inches='tight') savefig('RHEB_gene_Sim2_1-20.png', transparent=True, bbox_inches='tight') savefig('RHEB_gene_Sim2_1-20.pdf', transparent=True, bbox_inches='tight')
def make_plot(): # contains averaged node information based on 1000 runs data = util.bload('TF1.bin') # each of these is a dictionary keyed by nodes run1, run2, run3, run4, run5, run6, run7, run8, run9, run10 = data # applies smoothing to all values for run in (run1, run2, run3, run4, run5, run6, run7, run8, run9, run10): for key, values in run.items(): run[key] = smooth(values, w=10) # # Plotting Migration (ON) # fig = plt.figure(figsize=(4.5, 2.5), facecolor='w', edgecolor='k') plott = fig.add_subplot(111) mig1, mig2, mig3, mig4, mig5 = run1['Migration'], run2['Migration'], run3[ 'Migration'], run4['Migration'], run5['Migration'] mig6, mig7, mig8, mig9, mig10 = run6['Migration'], run7['Migration'], run8[ 'Migration'], run9['Migration'], run10['Migration'] ps = [ plot(mig1, 'go-', markersize=3, linewidth=0.2), plot(mig2, 'ro-', markersize=3, linewidth=0.2), plot(mig3, 'bo-', markersize=3, linewidth=0.2), plot(mig4, 'yo-', markersize=3, linewidth=0.2), plot(mig5, 'co-', markersize=3, linewidth=0.2), plot(mig6, 'g^-', markersize=3, linewidth=0.2), plot(mig7, 'r^-', markersize=3, linewidth=0.2), plot(mig8, 'b^-', markersize=3, linewidth=0.2), plot(mig9, 'y^-', markersize=3, linewidth=0.2), plot(mig10, 'c^-', markersize=3, linewidth=0.2) ] legend([ 'OE CREB1', 'OE CCND1', 'OE KLF4', 'OE SMAD2', 'OE SMAD3', 'KO CREB1', 'KO CCND1', 'KO KLF4', 'KO SMAD2', 'KO SMAD3' ], loc='upper center', bbox_to_anchor=(0.5, -0.15), ncol=4, fontsize=7) title( ' Effect of perturbation of TFs on migration \n Functional module 3, Simulation 4', fontsize=10) xlabel('Time Steps', fontsize=9) ylabel('Percent (%)', fontsize=9) ylim((-0.1, 1.1)) xlim((-0.1, 140)) plott.tick_params(axis='both', which='major', labelsize=8) plott.yaxis.set_ticks_position('left') plott.xaxis.set_ticks_position('bottom') savefig('CDK5_TF_Sim4_1-140_plot1.svg', transparent=True, bbox_inches='tight') savefig('CDK5_TF_Sim4_1-140_plot1.png', transparent=True, bbox_inches='tight') savefig('CDK5_TF_Sim4_1-140_plot1.pdf', transparent=True, bbox_inches='tight') # fig = figure(figsize=(2.25, 1.25), facecolor='w', edgecolor='k') plott = fig.add_subplot(111) mig1, mig2, mig3, mig4, mig5 = run1['Migration'], run2['Migration'], run3[ 'Migration'], run4['Migration'], run5['Migration'] mig6, mig7, mig8, mig9, mig10 = run6['Migration'], run7['Migration'], run8[ 'Migration'], run9['Migration'], run10['Migration'] ps = [ plot(mig1, 'go-', markersize=2, linewidth=0.1), plot(mig2, 'ro-', markersize=2, linewidth=0.1), plot(mig3, 'bo-', markersize=2, linewidth=0.1), plot(mig4, 'yo-', markersize=2, linewidth=0.1), plot(mig5, 'co-', markersize=2, linewidth=0.1), plot(mig6, 'g^-', markersize=2, linewidth=0.1), plot(mig7, 'r^-', markersize=2, linewidth=0.1), plot(mig8, 'b^-', markersize=2, linewidth=0.1), plot(mig9, 'y^-', markersize=2, linewidth=0.1), plot(mig10, 'c^-', markersize=2, linewidth=0.1) ] ylim((-0.1, 1.1)) xlim((-0.1, 20)) plott.tick_params(axis='both', which='major', labelsize=6) plott.yaxis.set_ticks_position('left') plott.xaxis.set_ticks_position('bottom') plott.spines['right'].set_visible(False) plott.spines['top'].set_visible(False) savefig('CDK5_TF_Sim4_1-20_plot1.svg', transparent=True, bbox_inches='tight') savefig('CDK5_TF_Sim4_1-20_plot1.png', transparent=True, bbox_inches='tight') savefig('CDK5_TF_Sim4_1-20_plot1.pdf', transparent=True, bbox_inches='tight')
def make_plot(): # contains averaged node information based on 1000 runs data = util.bload('miRNA1.bin') # each of these is a dictionary keyed by nodes run1, run2, run3, run4, run5, run6, run7, run8, run9, run10, run11, run12 = data # applies smoothing to all values for run in (run1, run2, run3, run4, run5, run6, run7, run8, run9, run10, run11, run12): for key, values in run.items(): run[key] = smooth(values, w=10) # # Plotting Migration (ON) # fig = figure(figsize=(4.5, 2.5), facecolor='w', edgecolor='k') plott = fig.add_subplot(111) mig1, mig2, mig3, mig4, mig5, mig6 = run1['Migration'], run2[ 'Migration'], run3['Migration'], run4['Migration'], run5[ 'Migration'], run6['Migration'] mig7, mig8, mig9, mig10, mig11, mig12 = run7['Migration'], run8[ 'Migration'], run9['Migration'], run10['Migration'], run11[ 'Migration'], run12['Migration'] ps = [ plot( mig1, 'go-',markersize=3, linewidth=0.2 ), plot( mig2, 'ro-', markersize=3, linewidth=0.2 ),plot( mig3,'bo-', markersize=3, linewidth=0.2),\ plot( mig4, 'yo-', markersize=3, linewidth=0.2 ), plot( mig5, 'co-', markersize=3, linewidth=0.2 ), plot( mig6, color='orange', marker='o', linestyle='-', markersize=3, linewidth=0.2), \ plot( mig7, 'g^-', markersize=3, linewidth=0.2 ), plot( mig8, 'r^-', markersize=3, linewidth=0.2 ), plot( mig9, 'b^-', markersize=3, linewidth=0.2 ), plot( mig10, 'y^-', markersize=3, linewidth=0.2 ), \ plot( mig11, 'c^-' , markersize=3, linewidth=0.2), plot( mig12, color='orange', marker='^', linestyle='-', markersize=3, linewidth=0.2)] ylim((-0.1, 1.1)) xlim((-0.1, 140)) legend([ 'OE miR320a', 'OE miR223', 'OE miR155', 'OE miR106a', 'OE miR17', 'OE miR130a', 'KO miR320a', 'KO miR223', 'KO miR155', 'KO miR106a', 'KO miR17', 'KO miR130a' ], loc='upper center', bbox_to_anchor=(0.5, -0.18), ncol=4, fontsize=7) title( ' Effect of perturbation of miRNAs on migration \n Functional module 7, Simulation 2', fontsize=10) xlabel('Time Steps', fontsize=9) ylabel('Percent (%)', fontsize=9) plott.tick_params(axis='both', which='major', labelsize=8) plott.yaxis.set_ticks_position('left') plott.xaxis.set_ticks_position('bottom') savefig('SOX10_miRNA_Sim2_1-140-plot1.svg', transparent=True, bbox_inches='tight') savefig('SOX10_miRNA_Sim2_1-140-plot1.png', transparent=True, bbox_inches='tight') savefig('SOX10_miRNA_Sim2_1-140-plot1.pdf', transparent=True, bbox_inches='tight') # Plotting Migration (OFF) # fig = figure(figsize=(2.25, 1.25), facecolor='w', edgecolor='k') plott = fig.add_subplot(111) mig1, mig2, mig3, mig4, mig5, mig6 = run1['Migration'], run2[ 'Migration'], run3['Migration'], run4['Migration'], run5[ 'Migration'], run6['Migration'] mig7, mig8, mig9, mig10, mig11, mig12 = run7['Migration'], run8[ 'Migration'], run9['Migration'], run10['Migration'], run11[ 'Migration'], run12['Migration'] ps = [ plot( mig1, 'go-', markersize=2, linewidth=0.1 ), plot( mig2, 'ro-', markersize=2, linewidth=0.1 ),plot( mig3,'bo-', markersize=2, linewidth=0.1),plot( mig4, 'yo-', markersize=2, linewidth=0.1 ),\ plot( mig5, 'co-', markersize=2, linewidth=0.1 ), plot( mig6, color='orange', marker='o', linestyle='-', markersize=2, linewidth=0.1 ), plot( mig7, 'g^-', markersize=2, linewidth=0.1 ), \ plot( mig8, 'r^-', markersize=2, linewidth=0.1 ), plot( mig9, 'b^-', markersize=2, linewidth=0.1 ), plot( mig10, 'y^-', markersize=2, linewidth=0.1 ), plot( mig11, 'c^-', markersize=2, linewidth=0.1 ), \ plot( mig12, color='orange', marker='^', linestyle='-', markersize=2, linewidth=0.1 )] ylim((-0.1, 1.1)) xlim((-0.1, 20)) plott.tick_params(axis='both', which='major', labelsize=6) plott.yaxis.set_ticks_position('left') plott.xaxis.set_ticks_position('bottom') plott.spines['right'].set_visible(False) plott.spines['top'].set_visible(False) savefig('SOX10_miRNA_Sim2_1-20-plot1.svg', transparent=True, bbox_inches='tight') savefig('SOX10_miRNA_Sim2_1-20-plot1.png', transparent=True, bbox_inches='tight') savefig('SOX10_miRNA_Sim2_1-20-plot1.pdf', transparent=True, bbox_inches='tight')