コード例 #1
0
def events_to_timed_behavioral_sequences(pj: dict,
                                         obs_id: str,
                                         subject: str,
                                         parameters: dict,
                                         precision: float,
                                         behav_seq_separator: str) -> str:
    """
    return the behavioral string for subject in obsId

    Args:
        pj (dict): project
        obs_id (str): observation id
        subj (str): subject
        parameters (dict): parameters
        precision (float): time value for scan sample
        behav_seq_separator (str): separator of behviors in behavioral sequences

    Returns:
        str: behavioral string for selected subject in selected observation
    """

    out = ""
    current_states = []
    # events_with_status = project_functions.events_start_stop(pj[ETHOGRAM], pj[OBSERVATIONS][obs_id][EVENTS])

    state_behaviors_codes = utilities.state_behavior_codes(pj[ETHOGRAM])
    delta = Decimal(str(round(precision, 3)))
    out = ""
    t = Decimal("0.000")

    current = []
    while t < pj[OBSERVATIONS][obs_id][EVENTS][-1][0]:
        '''
        if out:
            out += behav_seq_separator
        '''
        csbs = utilities.get_current_states_modifiers_by_subject(state_behaviors_codes,
                                                                 pj[OBSERVATIONS][obs_id][EVENTS],
                                                                 {"": {"name": subject}},
                                                                 t,
                                                                 include_modifiers=False)[""]
        if csbs:
            if current:
                if csbs == current[-1]:
                    current.append("+".join(csbs))
                else:
                    out.append(current)
                    current = [csbs]
            else:
                current = [csbs]

        t += delta

    return out
コード例 #2
0
def events_start_stop(ethogram, events):
    """
    returns events with status (START/STOP or POINT)
    take consideration of subject

    Args:
        events (list): list of events

    Returns:
        list: list of events with type (POINT or STATE)
    """

    state_events_list = utilities.state_behavior_codes(
        ethogram)  # from utilities

    events_flagged = []
    for event in events:
        time, subject, code, modifier = (
            event[EVENT_TIME_FIELD_IDX],
            event[EVENT_SUBJECT_FIELD_IDX],
            event[EVENT_BEHAVIOR_FIELD_IDX],
            event[EVENT_MODIFIER_FIELD_IDX],
        )
        # check if code is state
        if code in state_events_list:
            # how many code before with same subject?
            if (len([
                    x[EVENT_BEHAVIOR_FIELD_IDX]
                    for x in events if x[EVENT_BEHAVIOR_FIELD_IDX] == code
                    and x[EVENT_TIME_FIELD_IDX] < time
                    and x[EVENT_SUBJECT_FIELD_IDX] == subject
                    and x[EVENT_MODIFIER_FIELD_IDX] == modifier
            ]) % 2):  # test if odd
                flag = STOP
            else:
                flag = START
        else:
            flag = POINT

        events_flagged.append(event + [flag])

    return events_flagged
コード例 #3
0
def create_behavior_binary_table(pj: dict, selected_observations: list,
                                 parameters_obs: dict,
                                 time_interval: float) -> dict:
    """
    create behavior binary table

    Args:
        pj (dict): project dictionary
        selected_observations (list): list of selected observations
        parameters_obs (dict): dcit of parameters
        time_interval (float): time interval (in seconds)

    Returns:
        dict: dictionary of tablib dataset

    """

    results_df = {}

    state_behavior_codes = [
        x for x in utilities.state_behavior_codes(pj[ETHOGRAM])
        if x in parameters_obs[SELECTED_BEHAVIORS]
    ]
    point_behavior_codes = [
        x for x in utilities.point_behavior_codes(pj[ETHOGRAM])
        if x in parameters_obs[SELECTED_BEHAVIORS]
    ]
    if not state_behavior_codes and not point_behavior_codes:
        return {"error": True, "msg": "No state events selected"}

    for obs_id in selected_observations:

        if obs_id not in results_df:
            results_df[obs_id] = {}

        for subject in parameters_obs[SELECTED_SUBJECTS]:

            # extract tuple (behavior, modifier)
            behav_modif_list = [
                (idx[2], idx[3]) for idx in pj[OBSERVATIONS][obs_id][EVENTS]
                if idx[1] == (subject if subject != NO_FOCAL_SUBJECT else "")
                and idx[2] in parameters_obs[SELECTED_BEHAVIORS]
            ]

            # extract observed subjects NOT USED at the moment
            observed_subjects = [
                event[EVENT_SUBJECT_FIELD_IDX]
                for event in pj[OBSERVATIONS][obs_id][EVENTS]
            ]

            # add selected behavior if not found in (behavior, modifier)
            if not parameters_obs[EXCLUDE_BEHAVIORS]:
                #for behav in state_behavior_codes:
                for behav in parameters_obs[SELECTED_BEHAVIORS]:
                    if behav not in [x[0] for x in behav_modif_list]:
                        behav_modif_list.append((behav, ""))

            behav_modif_set = set(behav_modif_list)
            observed_behav = [(x[0], x[1]) for x in sorted(behav_modif_set)]
            if parameters_obs[INCLUDE_MODIFIERS]:
                results_df[obs_id][subject] = tablib.Dataset(
                    headers=["time"] + [
                        f"{x[0]}" + f" ({x[1]})" * (x[1] != "")
                        for x in sorted(behav_modif_set)
                    ])
            else:
                results_df[obs_id][subject] = tablib.Dataset(
                    headers=["time"] + [x[0] for x in sorted(behav_modif_set)])

            if subject == NO_FOCAL_SUBJECT:
                sel_subject_dict = {"": {SUBJECT_NAME: ""}}
            else:
                sel_subject_dict = dict([
                    (idx, pj[SUBJECTS][idx]) for idx in pj[SUBJECTS]
                    if pj[SUBJECTS][idx][SUBJECT_NAME] == subject
                ])

            row_idx = 0
            t = parameters_obs[START_TIME]
            while t < parameters_obs[END_TIME]:

                # state events
                current_states = utilities.get_current_states_modifiers_by_subject_2(
                    state_behavior_codes, pj[OBSERVATIONS][obs_id][EVENTS],
                    sel_subject_dict, t)

                # point events
                current_point = utilities.get_current_points_by_subject(
                    point_behavior_codes, pj[OBSERVATIONS][obs_id][EVENTS],
                    sel_subject_dict, t, time_interval)

                cols = [float(t)]  # time

                for behav in observed_behav:
                    if behav[0] in state_behavior_codes:
                        cols.append(
                            int(behav in current_states[list(
                                current_states.keys())[0]]))

                    if behav[0] in point_behavior_codes:
                        cols.append(current_point[list(
                            current_point.keys())[0]].count(behav))

                results_df[obs_id][subject].append(cols)

                t += time_interval
                row_idx += 1

    return results_df
コード例 #4
0
ファイル: test_utilities.py プロジェクト: LuweLuwerson/BORIS
 def test_empty_ethogram(self):
     r = utilities.state_behavior_codes({})
     assert r == []
コード例 #5
0
ファイル: test_utilities.py プロジェクト: LuweLuwerson/BORIS
 def test_1(self):
     pj_float = json.loads(open("files/test.boris").read())
     r = utilities.state_behavior_codes(pj_float["behaviors_conf"])
     # print(r)
     assert r == ['s', 'r', 'm']