コード例 #1
0
def get_sample():
    """
    Returns a sample with uncorrelated cylinders and prisms on a substrate.
    """
    # defining materials
    m_vacuum = ba.HomogeneousMaterial("Vacuum", 0.0, 0.0)
    m_substrate = ba.HomogeneousMaterial("Substrate", 6e-6, 2e-8)
    m_particle = ba.HomogeneousMaterial("Particle", 6e-4, 2e-8)

    # collection of particles
    cylinder_ff = ba.FormFactorCylinder(5 * nm, 5 * nm)
    cylinder = ba.Particle(m_particle, cylinder_ff)
    prism_ff = ba.FormFactorPrism3(10 * nm, 5 * nm)
    prism = ba.Particle(m_particle, prism_ff)
    particle_layout = ba.ParticleLayout()
    particle_layout.addParticle(cylinder, 0.5)
    particle_layout.addParticle(prism, 0.5)
    interference = ba.InterferenceFunctionNone()
    particle_layout.setInterferenceFunction(interference)

    # vacuum layer with particles and substrate form multi layer
    vacuum_layer = ba.Layer(m_vacuum)
    vacuum_layer.addLayout(particle_layout)
    substrate_layer = ba.Layer(m_substrate)
    multi_layer = ba.MultiLayer()
    multi_layer.addLayer(vacuum_layer)
    multi_layer.addLayer(substrate_layer)
    print(multi_layer.treeToString())
    return multi_layer
コード例 #2
0
def get_sample():
    """
    Returns a sample with uncorrelated cylinders and prisms on a substrate.
    Parameter set is fixed.
    """
    # defining materials
    m_air = ba.HomogeneousMaterial("Air", 0.0, 0.0)
    m_substrate = ba.HomogeneousMaterial("Substrate", 6e-6, 2e-8)
    m_particle = ba.HomogeneousMaterial("Particle", 6e-4, 2e-8)

    # collection of particles
    cylinder_ff = ba.FormFactorCylinder(5 * nm, 5 * nm)
    cylinder = ba.Particle(m_particle, cylinder_ff)
    prism_ff = ba.FormFactorPrism3(5 * nm, 5 * nm)
    prism = ba.Particle(m_particle, prism_ff)

    layout = ba.ParticleLayout()
    layout.addParticle(cylinder, 0.5)
    layout.addParticle(prism, 0.5)
    interference = ba.InterferenceFunctionNone()
    layout.setInterferenceFunction(interference)

    # air layer with particles and substrate form multi layer
    air_layer = ba.Layer(m_air)
    air_layer.addLayout(layout)
    substrate_layer = ba.Layer(m_substrate, 0)
    multi_layer = ba.MultiLayer()
    multi_layer.addLayer(air_layer)
    multi_layer.addLayer(substrate_layer)
    return multi_layer
コード例 #3
0
def get_sample(params):
    """
    Returns a sample with uncorrelated cylinders and prisms on a substrate.
    """
    cylinder_height = params["cylinder_height"]
    cylinder_radius = params["cylinder_radius"]
    prism_height = params["prism_height"]
    prism_base_edge = params["prism_base_edge"]

    # defining materials
    m_vacuum = ba.HomogeneousMaterial("Vacuum", 0.0, 0.0)
    m_substrate = ba.HomogeneousMaterial("Substrate", 6e-6, 2e-8)
    m_particle = ba.HomogeneousMaterial("Particle", 6e-4, 2e-8)

    # collection of particles
    cylinder_ff = ba.FormFactorCylinder(cylinder_radius, cylinder_height)
    cylinder = ba.Particle(m_particle, cylinder_ff)
    prism_ff = ba.FormFactorPrism3(prism_base_edge, prism_height)
    prism = ba.Particle(m_particle, prism_ff)
    layout = ba.ParticleLayout()
    layout.addParticle(cylinder, 0.5)
    layout.addParticle(prism, 0.5)
    interference = ba.InterferenceFunctionNone()
    layout.setInterferenceFunction(interference)

    # vacuum layer with particles and substrate form multi layer
    vacuum_layer = ba.Layer(m_vacuum)
    vacuum_layer.addLayout(layout)
    substrate_layer = ba.Layer(m_substrate, 0)
    multi_layer = ba.MultiLayer()
    multi_layer.addLayer(vacuum_layer)
    multi_layer.addLayer(substrate_layer)
    return multi_layer
コード例 #4
0
def get_sample():
    """
    Returns a sample with box-shaped core-shell particles on a substrate.
    """
    # defining materials
    m_vacuum = ba.HomogeneousMaterial("Vacuum", 0.0, 0.0)
    m_shell = ba.HomogeneousMaterial("Shell", 1e-4, 2e-8)
    m_core = ba.HomogeneousMaterial("Core", 6e-5, 2e-8)

    # collection of particles
    parallelepiped1_ff = ba.FormFactorBox(16 * nm, 16 * nm, 8 * nm)
    parallelepiped2_ff = ba.FormFactorBox(12 * nm, 12 * nm, 7 * nm)
    shell_particle = ba.Particle(m_shell, parallelepiped1_ff)
    core_particle = ba.Particle(m_core, parallelepiped2_ff)
    core_position = ba.kvector_t(0.0, 0.0, 0.0)

    particle = ba.ParticleCoreShell(shell_particle, core_particle,
                                    core_position)
    particle_layout = ba.ParticleLayout()
    particle_layout.addParticle(particle)
    interference = ba.InterferenceFunctionNone()
    particle_layout.setInterferenceFunction(interference)

    vacuum_layer = ba.Layer(m_vacuum)
    vacuum_layer.addLayout(particle_layout)

    multi_layer = ba.MultiLayer()
    multi_layer.addLayer(vacuum_layer)

    return multi_layer
コード例 #5
0
def runSimulation():
    # defining materials
    mAmbience = ba.HomogeneousMaterial("Air", 0.0, 0.0)
    mSubstrate = ba.HomogeneousMaterial("Substrate", 6e-6, 2e-8)

    magnetic_field = ba.kvector_t(0, 0, 0)

    magParticle = ba.HomogeneousMaterial("magParticle", 6e-4, 2e-8, magnetic_field )
    # collection of particles
    cylinder_ff = ba.FormFactorCylinder(5*nanometer, 5*nanometer)
    cylinder = ba.Particle(magParticle, cylinder_ff)

    particle_layout = ba.ParticleLayout()
    particle_layout.addParticle(cylinder, 1.0)
    interference = ba.InterferenceFunctionNone()
    particle_layout.setInterferenceFunction(interference)

    # air layer with particles and substrate form multi layer
    air_layer = ba.Layer(mAmbience)
    air_layer.addLayout(particle_layout)
    substrate_layer = ba.Layer(mSubstrate, 0)
    multi_layer = ba.MultiLayer()
    multi_layer.addLayer(air_layer)
    multi_layer.addLayer(substrate_layer)

    # build and run experiment
    simulation = ba.GISASSimulation()
    simulation.setDetectorParameters(100, 0*degree, 2.0*degree, 100, 0.0*degree, 2.0*degree)
    simulation.setBeamParameters(1.0*angstrom, 0.2*degree, 0.0*degree)
    simulation.setSample(multi_layer)
    simulation.setBeamIntensity(1e2)
    simulation.runSimulation()
    ## intensity data
    return simulation.result()
コード例 #6
0
def get_sample():
    """
    Returns a sample
    """
    # defining materials
    m_si = ba.MaterialBySLD("Si", sld_Si, sld_Si_im)
    m_d2o = ba.MaterialBySLD("D2O", sld_D2O, sld_D2O_im)
    m_polymer = ba.MaterialBySLD("Polymer", sld_polymer, sld_polymer_im)

    # particle layout
    microgel_layout = ba.ParticleLayout()

    # weights for components
    w_particles = 0.005
    w_oz = 0.5
    w_db = 1.0 - w_oz - w_particles

    # fluctuation component
    ff_oz = ba.FormFactorOrnsteinZernike(1000, 10.0 * nm, 5.0 * nm)
    particle_oz = ba.Particle(m_polymer, ff_oz)
    microgel_layout.addParticle(particle_oz, w_oz)

    # Debye-Buche component
    ff_db = ba.FormFactorDebyeBueche(1000, 20.0 * nm)
    particle_db = ba.Particle(m_polymer, ff_db)
    microgel_layout.addParticle(particle_db, w_db)

    # collection of particles
    radius = 100.0 * nm
    ff = ba.FormFactorTruncatedSphere(radius=radius, height=radius)
    particle = ba.Particle(m_polymer, ff)
    particle.setPosition(ba.kvector_t(0.0, 0.0, -1.0 * radius))
    microgel_layout.addParticle(particle, w_particles)

    # no interference function
    interference = ba.InterferenceFunctionNone()
    microgel_layout.setInterferenceFunction(interference)
    microgel_layout.setTotalParticleSurfaceDensity(1e-6)

    d2o_layer = ba.Layer(m_d2o)
    d2o_layer.addLayout(microgel_layout)
    si_layer = ba.Layer(m_si)
    multi_layer = ba.MultiLayer()
    multi_layer.addLayer(si_layer)
    multi_layer.addLayer(d2o_layer)

    return multi_layer
コード例 #7
0
def get_sample():
    """
    Returns a sample
    """
    # defining materials
    m_si = ba.MaterialBySLD("Si", sld_Si, sld_Si_im)
    m_d2o = ba.MaterialBySLD("D2O", sld_D2O, sld_D2O_im)
    m_core = ba.MaterialBySLD("Me3O5:D2O2", 2.0 * 1.0e-06, 0.0)
    m_shell = ba.MaterialBySLD("Me3O5:D2O", 3.9 * 1.0e-06, 0.0)

    # layer with particles
    # calculate average SLD
    Vcore = vol(core_radius, core_height)
    Vshell = vol(radius, height) - Vcore
    f_d2o = 0.7
    f_core = (1.0 - f_d2o) / (1 + Vshell / Vcore)
    f_shell = (1.0 - f_d2o) / (1 + Vcore / Vshell)
    sld_mix = f_d2o * sld_D2O + f_shell * 3.9 * 1.0e-06 + f_core * 2.0 * 1.0e-06
    m_mix = ba.MaterialBySLD("mix", sld_mix, 0.0)

    # fluctuation component
    ff_microgel = FormFactorMicrogel(b, xi, xiz)
    microgel = ba.Particle(m_core, ff_microgel)
    microgel_layout = ba.ParticleLayout()
    microgel_layout.addParticle(microgel, 1.0)

    # collection of particles
    ff = ba.FormFactorTruncatedSphere(radius=radius, height=height)
    ff_core = ba.FormFactorTruncatedSphere(radius=core_radius,
                                           height=core_height)
    transform = ba.RotationY(180.0 * deg)
    shell_particle = ba.Particle(m_shell, ff)
    core_particle = ba.Particle(m_core, ff_core)
    core_position = ba.kvector_t(0.0, 0.0, 0.0)
    particle = ba.ParticleCoreShell(shell_particle, core_particle,
                                    core_position)
    particle.setPosition(ba.kvector_t(0.0, 0.0, 0.0))
    particle.setRotation(transform)

    nparticles = 2  # the larger is this number, the more slow will be the simulation. 10 is usually enough
    sigma = 0.2 * radius

    gauss_distr = ba.DistributionGaussian(radius, sigma)

    sigma_factor = 2.0
    par_distr = ba.ParameterDistribution(
        "/ParticleCoreShell/Particle1/TruncatedSphere/Radius",
        gauss_distr, nparticles, sigma_factor,
        ba.RealLimits.lowerLimited(core_radius + 1.0))
    par_distr.linkParameter(
        "/ParticleCoreShell/Particle1/TruncatedSphere/Height")
    par_distr.linkParameter(
        "/ParticleCoreShell/Particle0/TruncatedSphere/Height")
    par_distr.linkParameter(
        "/ParticleCoreShell/Particle0/TruncatedSphere/Radius")
    part_coll = ba.ParticleDistribution(particle, par_distr)

    microgel_layout.addParticle(part_coll, 1.2e-05)

    # interference can be neglected
    interference = ba.InterferenceFunctionNone()
    microgel_layout.setInterferenceFunction(interference)

    # describe layer roughness
    roughness = ba.LayerRoughness()
    roughness.setSigma(1.2 * ba.nm)
    roughness.setHurstParameter(0.8)
    roughness.setLatteralCorrLength(570.0 * ba.nm)

    # create layers
    d2o_layer = ba.Layer(m_d2o)
    mix_layer = ba.Layer(m_mix, 2.0 * height)
    mix_layer.addLayout(microgel_layout)
    si_layer = ba.Layer(m_si)
    multi_layer = ba.MultiLayer()
    multi_layer.addLayer(si_layer)
    multi_layer.addLayer(mix_layer)
    multi_layer.addLayerWithTopRoughness(d2o_layer, roughness)

    return multi_layer