class SagemakerClient: def __init__(self): self.client = Session(profile_name="default").client("sagemaker", region_name="us-west-2") def submit_training_job(self): training_params = { "TrainingJobName": "sample-training19", "HyperParameters": { 'objective': 'multiclass', 'num_class': '3' }, "AlgorithmSpecification": { 'TrainingImage': "562998738767.dkr.ecr.us-west-2.amazonaws.com/test-sagemaker:latest", 'TrainingInputMode': 'File' }, "RoleArn": "arn:aws:iam::562998738767:role/dev-sagemaker", "InputDataConfig": [ { 'ChannelName': 'training', 'DataSource': { 'S3DataSource': { 'S3DataType': 'S3Prefix', 'S3Uri': "s3://test-ubuntu-sagemaker/input-data/iris5.csv" } } } ], "OutputDataConfig": { 'S3OutputPath': "s3://test-ubuntu-sagemaker/output-data/" }, "ResourceConfig": { 'InstanceType': 'ml.m4.xlarge', 'InstanceCount': 1, 'VolumeSizeInGB': 10 }, "StoppingCondition": { 'MaxRuntimeInSeconds': 60 * 60 } } response = self.client.create_training_job(**training_params) print(response)