コード例 #1
0
    def test_compute_linear_truncated_kernel_no_batch(self):
        x1 = torch.tensor([1, 0.1, 0.2, 2, 0.3, 0.4],
                          dtype=torch.float).view(2, 3)
        x2 = torch.tensor([3, 0.5, 0.6, 4, 0.7, 0.8],
                          dtype=torch.float).view(2, 3)
        t_1 = torch.tensor([0.3584, 0.1856, 0.2976, 0.1584],
                           dtype=torch.float).view(2, 2)
        for nu in {0.5, 1.5, 2.5}:
            for train_data_fidelity in {False, True}:
                kernel = LinearTruncatedFidelityKernel(
                    nu=nu,
                    dimension=3,
                    train_data_fidelity=train_data_fidelity)
                kernel.power = 1
                if train_data_fidelity:
                    active_dimsM = [0]
                    t_2 = torch.tensor([0.4725, 0.2889, 0.4025, 0.2541],
                                       dtype=torch.float).view(2, 2)
                    t_3 = torch.tensor([0.1685, 0.0531, 0.1168, 0.0386],
                                       dtype=torch.float).view(2, 2)
                    t = 1 + t_1 + t_2 + t_3
                else:
                    active_dimsM = [0, 1]
                    t = 1 + t_1

                matern_ker = MaternKernel(nu=nu, active_dims=active_dimsM)
                matern_term = matern_ker(x1, x2).evaluate()
                actual = t * matern_term
                res = kernel(x1, x2).evaluate()
                self.assertLess(torch.norm(res - actual), 1e-4)
コード例 #2
0
    def test_compute_linear_truncated_kernel_with_batch(self):
        x1 = torch.tensor([1, 0.1, 0.2, 3, 0.3, 0.4, 5, 0.5, 0.6, 7, 0.7, 0.8],
                          dtype=torch.float).view(2, 2, 3)
        x2 = torch.tensor([2, 0.8, 0.7, 4, 0.6, 0.5, 6, 0.4, 0.3, 8, 0.2, 0.1],
                          dtype=torch.float).view(2, 2, 3)
        t_1 = torch.tensor(
            [0.2736, 0.44, 0.2304, 0.36, 0.3304, 0.3816, 0.1736, 0.1944],
            dtype=torch.float,
        ).view(2, 2, 2)
        batch_shape = torch.Size([2])
        dimension = 3
        for nu in {0.5, 1.5, 2.5}:
            for train_data_fidelity in {False, True}:
                kernel = LinearTruncatedFidelityKernel(
                    nu=nu,
                    dimension=dimension,
                    train_data_fidelity=train_data_fidelity,
                    batch_shape=batch_shape,
                )
                kernel.power = 1
                kernel.train_data_fidelity = train_data_fidelity
                if train_data_fidelity:
                    active_dimsM = [0]
                    t_2 = torch.tensor(
                        [
                            0.0527, 0.167, 0.0383, 0.1159, 0.1159, 0.167,
                            0.0383, 0.0527
                        ],
                        dtype=torch.float,
                    ).view(2, 2, 2)
                    t_3 = torch.tensor(
                        [
                            0.1944, 0.3816, 0.1736, 0.3304, 0.36, 0.44, 0.2304,
                            0.2736
                        ],
                        dtype=torch.float,
                    ).view(2, 2, 2)
                    t = 1 + t_1 + t_2 + t_3
                else:
                    active_dimsM = [0, 1]
                    t = 1 + t_1

                matern_ker = MaternKernel(nu=nu,
                                          active_dims=active_dimsM,
                                          batch_shape=batch_shape)
                matern_term = matern_ker(x1, x2).evaluate()
                actual = t * matern_term
                res = kernel(x1, x2).evaluate()
                self.assertLess(torch.norm(res - actual), 1e-4)