def test_computes_exponential_decay_function(self): a = torch.tensor([1.0, 2.0]).view(2, 1) b = torch.tensor([2.0, 4.0]).view(2, 1) lengthscale = 1 power = 1 offset = 1 kernel = ExponentialDecayKernel() kernel.initialize(lengthscale=lengthscale, power=power, offset=offset) kernel.eval() diff = torch.tensor([[4.0, 6.0], [5.0, 7.0]]) actual = offset + torch.tensor([1.0]).div(diff.pow(power)) res = kernel(a, b).evaluate() self.assertLess(torch.norm(res - actual), 1e-5)
def test_subset_active_compute_exponential_decay_function(self): a = torch.tensor([1.0, 2.0]).view(2, 1) a_p = torch.tensor([3.0, 4.0]).view(2, 1) a = torch.cat((a, a_p), 1) b = torch.tensor([2.0, 4.0]).view(2, 1) lengthscale = 1 power = 1 offset = 1 kernel = ExponentialDecayKernel(active_dims=[0]) kernel.initialize(lengthscale=lengthscale, power=power, offset=offset) kernel.eval() diff = torch.tensor([[4.0, 6.0], [5.0, 7.0]]) actual = offset + diff.pow(-power) res = kernel(a, b).evaluate() self.assertLess(torch.norm(res - actual), 1e-5)
def test_computes_exponential_decay_function_batch(self): a = torch.tensor([[1.0, 2.0], [3.0, 4.0]]).view(2, 2, 1) b = torch.tensor([[5.0, 6.0], [7.0, 8.0]]).view(2, 2, 1) lengthscale = 1 power = 1 offset = 1 kernel = ExponentialDecayKernel(batch_shape=torch.Size([2])) kernel.initialize(lengthscale=lengthscale, power=power, offset=offset) kernel.eval() actual = torch.zeros(2, 2, 2) diff = torch.tensor([[7.0, 8.0], [8.0, 9.0]]) actual[0, :, :] = offset + diff.pow(-power) diff = torch.tensor([[11.0, 12.0], [12.0, 13.0]]) actual[1, :, :] = offset + diff.pow(-power) res = kernel(a, b).evaluate() self.assertLess(torch.norm(res - actual), 1e-5)
def _setup_multifidelity_covar_module( dim: int, aug_batch_shape: torch.Size, iteration_fidelity: Optional[int], data_fidelity: Optional[int], linear_truncated: bool, nu: float, ) -> Tuple[ScaleKernel, Dict]: """Helper function to get the covariance module and associated subset_batch_dict for the multifidelity setting. Args: dim: The dimensionality of the training data. aug_batch_shape: The output-augmented batch shape as defined in `BatchedMultiOutputGPyTorchModel`. iteration_fidelity: The column index for the training iteration fidelity parameter (optional). data_fidelity: The column index for the downsampling fidelity parameter (optional). linear_truncated: If True, use a `LinearTruncatedFidelityKernel` instead of the default kernel. nu: The smoothness parameter for the Matern kernel: either 1/2, 3/2, or 5/2. Only used when `linear_truncated=True`. Returns: The covariance module and subset_batch_dict. """ if iteration_fidelity is not None and iteration_fidelity < 0: iteration_fidelity = dim + iteration_fidelity if data_fidelity is not None and data_fidelity < 0: data_fidelity = dim + data_fidelity if linear_truncated: fidelity_dims = [ i for i in (iteration_fidelity, data_fidelity) if i is not None ] kernel = LinearTruncatedFidelityKernel( fidelity_dims=fidelity_dims, dimension=dim, nu=nu, batch_shape=aug_batch_shape, power_prior=GammaPrior(3.0, 3.0), ) else: active_dimsX = [ i for i in range(dim) if i not in {iteration_fidelity, data_fidelity} ] kernel = RBFKernel( ard_num_dims=len(active_dimsX), batch_shape=aug_batch_shape, lengthscale_prior=GammaPrior(3.0, 6.0), active_dims=active_dimsX, ) additional_kernels = [] if iteration_fidelity is not None: exp_kernel = ExponentialDecayKernel( batch_shape=aug_batch_shape, lengthscale_prior=GammaPrior(3.0, 6.0), offset_prior=GammaPrior(3.0, 6.0), power_prior=GammaPrior(3.0, 6.0), active_dims=[iteration_fidelity], ) additional_kernels.append(exp_kernel) if data_fidelity is not None: ds_kernel = DownsamplingKernel( batch_shape=aug_batch_shape, offset_prior=GammaPrior(3.0, 6.0), power_prior=GammaPrior(3.0, 6.0), active_dims=[data_fidelity], ) additional_kernels.append(ds_kernel) kernel = ProductKernel(kernel, *additional_kernels) covar_module = ScaleKernel(kernel, batch_shape=aug_batch_shape, outputscale_prior=GammaPrior(2.0, 0.15)) if linear_truncated: subset_batch_dict = { "covar_module.base_kernel.raw_power": -2, "covar_module.base_kernel.covar_module_unbiased.raw_lengthscale": -3, "covar_module.base_kernel.covar_module_biased.raw_lengthscale": -3, } else: subset_batch_dict = { "covar_module.base_kernel.kernels.0.raw_lengthscale": -3, "covar_module.base_kernel.kernels.1.raw_power": -2, "covar_module.base_kernel.kernels.1.raw_offset": -2, } if iteration_fidelity is not None: subset_batch_dict = { "covar_module.base_kernel.kernels.1.raw_lengthscale": -3, **subset_batch_dict, } if data_fidelity is not None: subset_batch_dict = { "covar_module.base_kernel.kernels.2.raw_power": -2, "covar_module.base_kernel.kernels.2.raw_offset": -2, **subset_batch_dict, } return covar_module, subset_batch_dict
def test_initialize_lengthscale(self): kernel = ExponentialDecayKernel() kernel.initialize(lengthscale=1) actual_value = torch.tensor(1.0).view_as(kernel.lengthscale) self.assertLess(torch.norm(kernel.lengthscale - actual_value), 1e-5)
def create_kernel_no_ard(self, **kwargs): return ExponentialDecayKernel(**kwargs)
def test_initialize_offset_prior(self): kernel = ExponentialDecayKernel() kernel.offset_prior = NormalPrior(1, 1) self.assertTrue(isinstance(kernel.offset_prior, NormalPrior)) kernel2 = ExponentialDecayKernel(offset_prior=GammaPrior(1, 1)) self.assertTrue(isinstance(kernel2.offset_prior, GammaPrior))
def test_initialize_power_batch(self): kernel = ExponentialDecayKernel(batch_shape=torch.Size([2])) power_init = torch.tensor([1.0, 2.0]) kernel.initialize(power=power_init) actual_value = power_init.view_as(kernel.power) self.assertLess(torch.norm(kernel.power - actual_value), 1e-5)
def test_initialize_power(self): kernel = ExponentialDecayKernel() kernel.initialize(power=1) actual_value = torch.tensor(1.0).view_as(kernel.power) self.assertLess(torch.norm(kernel.power - actual_value), 1e-5)
def test_initialize_offset_batch(self): kernel = ExponentialDecayKernel(batch_shape=torch.Size([2])) off_init = torch.tensor([1.0, 2.0]) kernel.initialize(offset=off_init) actual_value = off_init.view_as(kernel.offset) self.assertLess(torch.norm(kernel.offset - actual_value), 1e-5)
def test_initialize_offset(self): kernel = ExponentialDecayKernel() kernel.initialize(offset=1) actual_value = torch.tensor(1.0).view_as(kernel.offset) self.assertLess(torch.norm(kernel.offset - actual_value), 1e-5)
def test_initialize_lengthscale_batch(self): kernel = ExponentialDecayKernel(batch_shape=torch.Size([2])) ls_init = torch.tensor([1.0, 2.0]) kernel.initialize(lengthscale=ls_init) actual_value = ls_init.view_as(kernel.lengthscale) self.assertLess(torch.norm(kernel.lengthscale - actual_value), 1e-5)