コード例 #1
0
ファイル: zoidberg.py プロジェクト: xj361685640/BOUT-dev
def fci_to_vtk(infile, outfile, scale=5):

    if not have_evtk:
        return

    with bdata.DataFile(infile, write=False, create=False) as f:
        dx = f.read('dx')
        dy = f.read('dy')

        bx = f.read('bx')
        by = np.ones(bx.shape)
        bz = f.read('bz')
        if bx is None:
            xt_prime = f.read('forward_xt_prime')
            zt_prime = f.read('forward_zt_prime')
            array_indices = indices(xt_prime.shape)
            bx = xt_prime - array_indices[0, ...]
            by = by * dy
            bz = zt_prime - array_indices[2, ...]

        nx, ny, nz = bx.shape
        dz = nx * dx / nz

    x = np.linspace(0, nx * dx, nx)
    y = np.linspace(0, ny * dy, ny, endpoint=False)
    z = np.linspace(0, nz * dz, nz, endpoint=False)

    gridToVTK(outfile,
              x * scale,
              y,
              z * scale,
              pointData={'B': (bx * scale, by, bz * scale)})
コード例 #2
0
ファイル: generate.py プロジェクト: jenuis/BOUT-dev
def slab(nx,
         ny,
         nz,
         filename="fci.grid.nc",
         Lx=0.1,
         Ly=10.,
         Lz=1.,
         Bt=1.0,
         Bp=0.1,
         Bpprime=1.0):
    """
    nx  - Number of radial points
    ny  - Number of toroidal points (NOTE: Different to BOUT++ standard)
    nz  - Number of poloidal points

    Lx  - Radial domain size  [m]
    Ly  - Toroidal domain size [m]
    Lz  - Poloidal domain size [m]

    Bt  - Toroidal magnetic field [T]
    Bp  - Poloidal magnetic field [T]
    Bpprime - Gradient of Bp [T/m]  Bp(x) = Bp + Bpprime * x
    """

    MXG = 2

    # Make sure input types are sane
    nx = int(nx)
    ny = int(ny)
    nz = int(nz)

    Lx = float(Lx)
    Ly = float(Ly)
    Lz = float(Lz)

    delta_x = old_div(Lx, (nx - 2. * MXG))
    delta_pol = old_div(Lz, (nz))
    delta_tor = old_div(Ly, (ny))

    # Coord arrays
    x = Lx * (np.arange(nx) - MXG + 0.5) / (nx - 2. * MXG
                                            )  # 0 and 1 half-way between cells
    y = np.linspace(0, Ly, ny)
    z = np.linspace(0, Lz, nz, endpoint=False)

    ############################################################

    # Effective major radius
    R = old_div(Ly, (2. * pi))

    # Set poloidal magnetic field

    Bpx = Bp + (x - old_div(Lx, 2)) * Bpprime

    Bpxy = np.transpose(np.resize(Bpx, (nz, ny, nx)), (2, 1, 0))

    Bxy = np.sqrt(Bpxy**2 + Bt**2)[:, :, 0]

    class Mappoint(object):
        def __init__(self, xt, zt):
            self.xt = xt
            self.zt = zt

            self.xt_prime = old_div(xt, delta_x) + MXG - 0.5
            self.zt_prime = old_div(zt, delta_pol)

    def unroll_map_coeff(map_list, coeff):
        coeff_array = np.transpose(
            np.resize(
                np.array([getattr(f, coeff) for f in map_list]).reshape(
                    (nx, nz)), (ny, nx, nz)), (1, 0, 2))
        return coeff_array

    def b_field(vector, y):
        x0 = old_div(Lx, 2.)  # Centre of box, where bz = 0.
        x, z = vector
        bx = 0.
        bz = Bp + (x - x0) * Bpprime

        return [bx, bz]

    def field_line_tracer(direction, map_list):

        result = np.zeros((nx, nz, 2))

        for i in np.arange(0, nx):
            for k in np.arange(0, nz):
                result[i, k, :] = odeint(b_field, [x[i], z[k]],
                                         [0, delta_tor * direction])[1, :]
                map_list.append(Mappoint(result[i, k, 0], result[i, k, 1]))

        return result

    forward_map = []
    forward_coords = field_line_tracer(+1, forward_map)
    backward_map = []
    backward_coords = field_line_tracer(-1, backward_map)

    X, Y = np.meshgrid(x, y, indexing='ij')
    x0 = 0.5
    g_22 = old_div(((Bp + (X - x0) * Lx * Bpprime)**2 + Bt**2), Bt**2)

    with bdata.DataFile(filename, write=True, create=True) as f:
        f.write('nx', nx)
        f.write('ny', ny)
        f.write('nz', nz)
        f.write("dx", delta_x)
        f.write("dy", delta_tor)
        f.write("g_22", g_22)
        f.write("Bxy", (Bxy))

        xt_prime = unroll_map_coeff(forward_map, 'xt_prime')
        f.write('forward_xt_prime', (xt_prime))
        zt_prime = unroll_map_coeff(forward_map, 'zt_prime')
        f.write('forward_zt_prime', (zt_prime))

        xt_prime = unroll_map_coeff(backward_map, 'xt_prime')
        f.write('backward_xt_prime', (xt_prime))
        zt_prime = unroll_map_coeff(backward_map, 'zt_prime')
        f.write('backward_zt_prime', (zt_prime))
コード例 #3
0
            map_list.append(Mappoint(result[i,k,0],result[i,k,1]))

    return result

if __name__ == "__main__":

    forward_map = []
    forward_coords = field_line_tracer(+1, forward_map)
    backward_map = []
    backward_coords = field_line_tracer(-1, backward_map)

    X,Y = np.meshgrid(x,y,indexing='ij')
    x0 = 0.5
    g_22 = np.sqrt(((Bp + (X-x0) * Lx * Bpprime)**2 + 1))

    with bdata.DataFile('fci.grid.nc', write=True, create=True) as f:
        f.write('nx', nx)
        f.write('ny', ny)
        f.write('nz', nz)
        f.write("dx", delta_x)
        f.write("dy", delta_tor)
        f.write("g_22", g_22)
        f.write("Bxy", transform3D(Bxy))
    
        xt_prime = unroll_map_coeff(forward_map, 'xt_prime')
        f.write('forward_xt_prime', transform3D(xt_prime))
        zt_prime = unroll_map_coeff(forward_map, 'zt_prime')
        f.write('forward_zt_prime', transform3D(zt_prime))

        xt_prime = unroll_map_coeff(backward_map, 'xt_prime')
        f.write('backward_xt_prime', transform3D(xt_prime))
コード例 #4
0
ファイル: simple_test.py プロジェクト: swun90/BOUT-dev
import boututils.datafile as bdata
from boutdata.input import transform3D

# Parameters
nx = 10
ny = 20
nz = 8

shape = [nx, ny, nz]

xt_prime = zeros(shape)
zt_prime = zeros(shape)

for x in range(nx):
    # No interpolation in x
    xt_prime[x,:,:] = x

    # Each y slice scans between neighbouring z points
    for z in range(nz):
        zt_prime[x,:,z] = z + concatenate([linspace(-1, 1, ny-1), [0]])


with bdata.DataFile('simple_test.nc', write=True, create=True) as f:
    f.write('nx',nx)
    f.write('ny',ny)
    
    for direction_name in ['forward', 'backward']:
        f.write(direction_name + '_xt_prime', transform3D(xt_prime))
        f.write(direction_name + '_zt_prime', transform3D(zt_prime))
    
コード例 #5
0
ファイル: zoidberg.py プロジェクト: xj361685640/BOUT-dev
def write_maps(grid,
               magnetic_field,
               maps,
               gridfile='fci.grid.nc',
               new_names=False,
               metric2d=True,
               format="NETCDF3_64BIT",
               quiet=False):
    """Write FCI maps to BOUT++ grid file

    Parameters
    ----------
    grid : :py:obj:`zoidberg.grid.Grid`
        Grid generated by Zoidberg
    magnetic_field : :py:obj:`zoidberg.field.MagneticField`
        Zoidberg magnetic field object
    maps : dict
        Dictionary of FCI maps
    gridfile : str, optional
        Output filename
    new_names : bool, optional
        Write "g_yy" rather than "g_22"
    metric2d : bool, optional
        Output only 2D metrics
    format : str, optional
        Specifies file format to use, passed to boutdata.DataFile
    quiet : bool, optional
        Don't warn about 2D metrics

    Returns
    -------

    Writes the following variables to the grid file


    """

    nx, ny, nz = grid.shape
    # Get metric tensor
    metric = grid.metric()

    # Check if the magnetic field is in cylindrical coordinates
    # If so, we need to change the gyy and g_yy metrics
    pol_grid, ypos = grid.getPoloidalGrid(0)
    Rmaj = magnetic_field.Rfunc(pol_grid.R, pol_grid.Z, ypos)
    if Rmaj is not None:
        # In cylindrical coordinates
        Rmaj = np.zeros(grid.shape)
        for yindex in range(grid.numberOfPoloidalGrids()):
            pol_grid, ypos = grid.getPoloidalGrid(yindex)
            Rmaj[:, yindex, :] = magnetic_field.Rfunc(pol_grid.R, pol_grid.Z,
                                                      ypos)
        metric["gyy"] = 1. / Rmaj**2
        metric["g_yy"] = Rmaj**2

    # Get magnetic field and pressure
    Bmag = np.zeros(grid.shape)
    pressure = np.zeros(grid.shape)
    for yindex in range(grid.numberOfPoloidalGrids()):
        pol_grid, ypos = grid.getPoloidalGrid(yindex)
        Bmag[:, yindex, :] = magnetic_field.Bmag(pol_grid.R, pol_grid.Z, ypos)
        pressure[:,
                 yindex, :] = magnetic_field.pressure(pol_grid.R, pol_grid.Z,
                                                      ypos)

        metric["g_yy"][:, yindex, :] = (
            metric["g_yy"][:, yindex, :] *
            (Bmag[:, yindex, :] /
             magnetic_field.Byfunc(pol_grid.R, pol_grid.Z, ypos))**2)
        metric["gyy"][:, yindex, :] = (
            metric["gyy"][:, yindex, :] *
            (magnetic_field.Byfunc(pol_grid.R, pol_grid.Z, ypos) /
             Bmag[:, yindex, :])**2)

    # Get attributes from magnetic field (e.g. psi)
    attributes = {}
    for name in magnetic_field.attributes:
        attribute = np.zeros(grid.shape)
        for yindex in range(grid.numberOfPoloidalGrids()):
            pol_grid, ypos = grid.getPoloidalGrid(yindex)
            attribute[:,
                      yindex, :] = magnetic_field.attributes[name](pol_grid.R,
                                                                   pol_grid.Z,
                                                                   ypos)
            attributes[name] = attribute

    # Metric is now 3D
    if metric2d:
        # Remove the Z dimension from metric components
        if not quiet:
            print(
                "WARNING: Outputting 2D metrics, discarding metric information."
            )
        for key in metric:
            try:
                metric[key] = metric[key][:, :, 0]
            except TypeError:
                pass
        # Make dz a constant
        metric["dz"] = metric["dz"][0, 0]
        # Add Rxy, Bxy
        metric["Rxy"] = maps["R"][:, :, 0]
        metric["Bxy"] = Bmag[:, :, 0]

    with bdata.DataFile(gridfile, write=True, create=True, format=format) as f:
        ixseps = nx + 1
        f.write('nx', nx)
        f.write('ny', ny)
        f.write('nz', nz)

        f.write("dx", metric["dx"])
        f.write("dy", metric["dy"])
        f.write("dz", metric["dz"])

        f.write("ixseps1", ixseps)
        f.write("ixseps2", ixseps)

        # Metric tensor

        if new_names:
            for key, val in metric.items():
                f.write(key, val)
        else:
            # Translate between output variable names and metric names
            # Map from new to old names. Anything not in this dict
            # is output unchanged
            name_changes = {
                "g_yy": "g_22",
                "gyy": "g22",
                "gxx": "g11",
                "gxz": "g13",
                "gzz": "g33",
                "g_xx": "g_11",
                "g_xz": "g_13",
                "g_zz": "g_33"
            }
            for key in metric:
                name = key
                if name in name_changes:
                    name = name_changes[name]
                f.write(name, metric[key])

        # Magnetic field
        f.write("B", Bmag)

        # Pressure
        f.write("pressure", pressure)

        # Attributes
        for name in attributes:
            f.write(name, attributes[name])

        # Maps - write everything to file
        for key in maps:
            f.write(key, maps[key])
コード例 #6
0
def write_maps(grid,
               magnetic_field,
               maps,
               gridfile='fci.grid.nc',
               legacy=False):
    """Write FCI maps to BOUT++ grid file

    Inputs
    ------
    grid           - Grid generated by Zoidberg
    magnetic_field - Zoidberg magnetic field object
    maps           - Dictionary of FCI maps
    gridfile       - Output filename
    legacy         - If true, write FCI maps using FFTs
    """

    nx, ny, nz = (grid.nx, grid.ny, grid.nz)
    xarray, yarray, zarray = (grid.xarray, grid.yarray, grid.zarray)

    g_22 = np.zeros((nx, ny)) + 1. / grid.Rmaj**2

    totalbx = np.zeros((nx, ny, nz))
    totalbz = np.zeros((nx, ny, nz))
    Bxy = np.zeros((nx, ny, nz))
    for i in np.arange(0, nx):
        for j in np.arange(0, ny):
            for k in np.arange(0, nz):
                Bxy[i, j, k] = np.sqrt((
                    magnetic_field.Bxfunc(xarray[i], zarray[k], yarray[j])**2 +
                    magnetic_field.Bzfunc(xarray[i], zarray[k], yarray[j])**2))
                totalbx[i, j,
                        k] = magnetic_field.Bxfunc(xarray[i], zarray[k],
                                                   yarray[j])
                totalbz[i, j,
                        k] = magnetic_field.Bzfunc(xarray[i], zarray[k],
                                                   yarray[j])

    with bdata.DataFile(gridfile, write=True, create=True) as f:
        ixseps = nx + 1
        f.write('nx', grid.nx)
        f.write('ny', grid.ny)
        if not legacy:
            # Legacy files don't need nz
            f.write('nz', grid.nz)

        f.write("dx", grid.delta_x)
        f.write("dy", grid.delta_y)

        f.write("ixseps1", ixseps)
        f.write("ixseps2", ixseps)

        f.write("g_22", g_22)

        f.write("Bxy", Bxy[:, :, 0])
        f.write("bx", totalbx)
        f.write("bz", totalbz)

        # Legacy grid files need to FFT 3D arrays
        if legacy:
            from boutdata.input import transform3D
            f.write('forward_xt_prime', transform3D(maps['forward_xt_prime']))
            f.write('forward_zt_prime', transform3D(maps['forward_zt_prime']))

            f.write('backward_xt_prime',
                    transform3D(maps['backward_xt_prime']))
            f.write('backward_zt_prime',
                    transform3D(maps['backward_zt_prime']))
        else:
            f.write('forward_xt_prime', maps['forward_xt_prime'])
            f.write('forward_zt_prime', maps['forward_zt_prime'])

            f.write('backward_xt_prime', maps['backward_xt_prime'])
            f.write('backward_zt_prime', maps['backward_zt_prime'])
コード例 #7
0
ファイル: zoidberg.py プロジェクト: firebird00/BOUT-dev
def write_maps(grid,
               magnetic_field,
               maps,
               gridfile='fci.grid.nc',
               new_names=False,
               metric2d=True):
    """Write FCI maps to BOUT++ grid file

    Inputs
    ------
    grid           - Grid generated by Zoidberg
    magnetic_field - Zoidberg magnetic field object
    maps           - Dictionary of FCI maps
    gridfile       - Output filename
    
    new_names      - Write "g_yy" rather than "g_22"
    metric2d       - Output only 2D metrics. 
    
    """

    nx, ny, nz = grid.shape
    # Get metric tensor
    metric = grid.metric()

    # Check if the magnetic field is in cylindrical coordinates
    # If so, we need to change the gyy and g_yy metrics
    pol_grid, ypos = grid.getPoloidalGrid(0)
    Rmaj = magnetic_field.Rfunc(pol_grid.R, pol_grid.Z, ypos)
    if Rmaj is not None:
        # In cylindrical coordinates
        Rmaj = np.zeros(grid.shape)
        for yindex in range(grid.numberOfPoloidalGrids()):
            pol_grid, ypos = grid.getPoloidalGrid(yindex)
            Rmaj[:, yindex, :] = magnetic_field.Rfunc(pol_grid.R, pol_grid.Z,
                                                      ypos)
        metric["gyy"] = 1. / Rmaj**2
        metric["g_yy"] = Rmaj**2

    # Get magnetic field
    Bmag = np.zeros(grid.shape)
    for yindex in range(grid.numberOfPoloidalGrids()):
        pol_grid, ypos = grid.getPoloidalGrid(yindex)
        Bmag[:, yindex, :] = magnetic_field.Bmag(pol_grid.R, pol_grid.Z, ypos)

    # Metric is now 3D
    if metric2d:
        # Remove the Z dimension from metric components
        print("WARNING: Outputting 2D metrics, discarding metric information.")
        for key in metric:
            try:
                metric[key] = metric[key][:, :, 0]
            except:
                pass
        # Make dz a constant
        metric["dz"] = metric["dz"][0, 0]
        # Add Rxy, Bxy
        metric["Rxy"] = maps["R"][:, :, 0]
        metric["Bxy"] = Bmag[:, :, 0]

    with bdata.DataFile(gridfile, write=True, create=True) as f:
        ixseps = nx + 1
        f.write('nx', nx)
        f.write('ny', ny)
        f.write('nz', nz)

        f.write("dx", metric["dx"])
        f.write("dy", metric["dy"])
        f.write("dz", metric["dz"])

        f.write("ixseps1", ixseps)
        f.write("ixseps2", ixseps)

        # Metric tensor

        if new_names:
            for key, val in metric.items():
                f.write(key, val)
        else:
            # Translate between output variable names and metric names
            # Map from new to old names. Anything not in this dict
            # is output unchanged
            name_changes = {
                "g_yy": "g_22",
                "gyy": "g22",
                "gxx": "g11",
                "gxz": "g13",
                "gzz": "g33",
                "g_xx": "g_11",
                "g_xz": "g_13",
                "g_zz": "g_33"
            }
            for key in metric:
                name = key
                if name in name_changes:
                    name = name_changes[name]
                f.write(name, metric[key])

        # Magnetic field
        f.write("B", Bmag)

        # Maps - write everything to file
        for key in maps:
            f.write(key, maps[key])