コード例 #1
0
def test_hybridnet(input_sizes):
    model = HybridNet(
        input_sizes['n_channels'],
        input_sizes['n_classes'],
        input_sizes['n_in_times'],
    )
    check_forward_pass(model, input_sizes, only_check_until_dim=2)
コード例 #2
0
ファイル: test_models.py プロジェクト: jhyun90/braindecode
def test_hybridnet():
    rng = np.random.RandomState(42)
    n_channels = 18
    n_in_times = 600
    n_classes = 2
    n_samples = 7
    X = rng.randn(n_samples, n_channels, n_in_times, 1)
    X = torch.Tensor(X.astype(np.float32))
    model = HybridNet(n_channels, n_classes, n_in_times)
    y_pred = model(X)
    assert y_pred.shape[:2] == (n_samples, n_classes)