def test_trialwise_predict_and_predict_proba(): preds = np.array([ [0.125, 0.875], [1., 0.], [0.8, 0.2], [0.9, 0.1], ]) clf = EEGRegressor(MockModule(preds), optimizer=optim.Adam, batch_size=32) clf.initialize() np.testing.assert_array_equal(preds, clf.predict(MockDataset())) np.testing.assert_array_equal(preds, clf.predict_proba(MockDataset()))
def test_cropped_predict_and_predict_proba_not_aggregate_predictions(): preds = np.array([ [[0.2, 0.1, 0.1, 0.1], [0.8, 0.9, 0.9, 0.9]], [[1.0, 1.0, 1.0, 1.0], [0.0, 0.0, 0.0, 0.0]], [[1.0, 1.0, 1.0, 0.2], [0.0, 0.0, 0.0, 0.8]], [[0.9, 0.8, 0.9, 1.0], [0.1, 0.2, 0.1, 0.0]], ]) clf = EEGRegressor(MockModule(preds), cropped=True, criterion=CroppedLoss, criterion__loss_function=nll_loss, optimizer=optim.Adam, batch_size=32, aggregate_predictions=False) clf.initialize() # for cropped decoding regressor returns value for each trial (average over all crops) np.testing.assert_array_equal(preds, clf.predict(MockDataset())) np.testing.assert_array_equal(preds, clf.predict_proba(MockDataset()))