コード例 #1
0
def test_fit_shapes():
    K = 5
    V = 3
    T = 10
    es = EventSegment(K, n_iter=2)
    sample_data = np.random.rand(V, T)
    es.fit(sample_data.T)

    assert es.segments_[0].shape == (T, K), "Segmentation from fit " \
                                            "has incorrect shape"
    assert np.isclose(np.sum(es.segments_[0], axis=1), np.ones(T)).all(), \
        "Segmentation from learn_events not correctly normalized"

    T2 = 15
    sample_data2 = np.random.rand(V, T2)
    test_segments, test_ll = es.find_events(sample_data2.T)

    assert test_segments.shape == (T2, K), "Segmentation from find_events " \
                                           "has incorrect shape"
    assert np.isclose(np.sum(test_segments, axis=1), np.ones(T2)).all(), \
        "Segmentation from find_events not correctly normalized"

    es_invalid = EventSegment(K)
    with pytest.raises(ValueError, message="T < K should cause error"):
        es_invalid.model_prior(K - 1)
    with pytest.raises(ValueError, message="#Events < K should cause error"):
        es_invalid.set_event_patterns(np.zeros((V, K - 1)))
コード例 #2
0
ファイル: test_event.py プロジェクト: CameronTEllis/brainiak
def test_fit_shapes():
    K = 5
    V = 3
    T = 10
    es = EventSegment(K, n_iter=2)
    sample_data = np.random.rand(V, T)
    es.fit(sample_data.T)

    assert es.segments_[0].shape == (T, K), "Segmentation from fit " \
                                            "has incorrect shape"
    assert np.isclose(np.sum(es.segments_[0], axis=1), np.ones(T)).all(), \
        "Segmentation from learn_events not correctly normalized"

    T2 = 15
    sample_data2 = np.random.rand(V, T2)
    test_segments, test_ll = es.find_events(sample_data2.T)

    assert test_segments.shape == (T2, K), "Segmentation from find_events " \
                                           "has incorrect shape"
    assert np.isclose(np.sum(test_segments, axis=1), np.ones(T2)).all(), \
        "Segmentation from find_events not correctly normalized"

    es_invalid = EventSegment(K)
    with pytest.raises(ValueError, message="T < K should cause error"):
        es_invalid.model_prior(K-1)
    with pytest.raises(ValueError, message="#Events < K should cause error"):
        es_invalid.set_event_patterns(np.zeros((V, K-1)))
コード例 #3
0
def test_prior():
    K = 10
    T = 100

    es = EventSegment(K)
    mp = es.model_prior(T)[0]

    p_bound = np.zeros((T, K - 1))
    norm = comb(T - 1, K - 1)
    for t in range(T - 1):
        for k in range(K - 1):
            # See supplementary material of Neuron paper
            # https://doi.org/10.1016/j.neuron.2017.06.041
            p_bound[t + 1, k] = comb(t, k) * comb(T - t - 2, K - k - 2) / norm
    p_bound = np.cumsum(p_bound, axis=0)

    mp_gt = np.zeros((T, K))
    for k in range(K):
        if k == 0:
            mp_gt[:, k] = 1 - p_bound[:, 0]
        elif k == K - 1:
            mp_gt[:, k] = p_bound[:, k - 1]
        else:
            mp_gt[:, k] = p_bound[:, k - 1] - p_bound[:, k]

    assert np.all(np.isclose(mp, mp_gt)),\
        "Prior does not match analytic solution"
コード例 #4
0
ファイル: test_event.py プロジェクト: CameronTEllis/brainiak
def test_prior():
    K = 10
    T = 100

    es = EventSegment(K)
    mp = es.model_prior(T)[0]

    p_bound = np.zeros((T, K-1))
    norm = comb(T-1, K-1)
    for t in range(T-1):
        for k in range(K-1):
            # See supplementary material of Neuron paper
            # https://doi.org/10.1016/j.neuron.2017.06.041
            p_bound[t+1, k] = comb(t, k) * comb(T-t-2, K-k-2) / norm
    p_bound = np.cumsum(p_bound, axis=0)

    mp_gt = np.zeros((T, K))
    for k in range(K):
        if k == 0:
            mp_gt[:, k] = 1 - p_bound[:, 0]
        elif k == K - 1:
            mp_gt[:, k] = p_bound[:, k-1]
        else:
            mp_gt[:, k] = p_bound[:, k-1] - p_bound[:, k]

    assert np.all(np.isclose(mp, mp_gt)),\
        "Prior does not match analytic solution"