def brsa_fit(ldata, ldesign, lonset, lcoords): # function to fit GBRSA and plot resulting RSA linten = ldata.mean(axis=0) brsa = BRSA() brsa.fit(X=ldata, design=ldesign, scan_onsets=lonset, coords=lcoords, inten=linten) return brsa
def test_half_log_det(): import numpy as np from brainiak.reprsimil.brsa import BRSA a = np.asarray([[1, 0.2], [0.2, 1]]) brsa = BRSA() half_log_det = np.log(np.linalg.det(a)) / 2 assert np.isclose(half_log_det, brsa._half_log_det( a)), 'half log determinant function is wrong'
def run_experiment(par, input_path, outfile_path): mat = loadmat('%s/data_for_experiment.mat' % input_path) design = mat['design'] # if we have diff design by subj: if design.ndim == 3: design = design[par['subj_num']] data = mat['fmri'][0][par['subj_num']] fname = "%s/results_%s_s%i_%inureg.mat" % (outfile_path, par['method'], par['subj_num'], par['n_nureg']) if Path(fname).exists(): return if par['method'] == "naive": print("Running Naive RSA on subject %i!" % par['subj_num']) data = stats.zscore(data, axis=1, ddof=1) m = LinearRegression(fit_intercept=False) m.fit(design, data.T) C = np.corrcoef(m.coef_.T) U = np.cov(m.coef_.T) elif par['method'] == 'brsa': print("Running BRSA on subject %i!" % par['subj_num']) data = stats.zscore(data, axis=1, ddof=1) # for brsa: 1% number of voxels (min 10) n_nureg = np.max([data.shape[0] // 100, 10]) m = BRSA(n_nureg=n_nureg) m.fit(X=data.T, design=design) U = m.U_ C = cov2corr(m.U_) elif par['method'] == 'mnrsa': print("Running MNRSA on subject %i!" % par['subj_num']) # For mnrsa, zscore the whole thing but not by voxel # so that different voxels get to have different variances # but we don't blow out numerically data = stats.zscore(data, axis=None, ddof=1) n_V, n_T = data.shape spacecov_model = CovDiagonal(size=n_V) timecov_model = CovAR1(size=n_T) # n_nureg = design.shape[1] // 3 n_nureg = par['n_nureg'] model = MatnormBRSA(time_noise_cov=timecov_model, space_noise_cov=spacecov_model, optimizer='L-BFGS-B', n_nureg=n_nureg) model.fit(data.T, design) U = model.U_ C = model.C_ savemat(fname, { 'C': C, 'U': U, 'method': par['method'], 'subject': par['subj_num'] }) return
def test_fit(): from brainiak.reprsimil.brsa import BRSA import brainiak.utils.utils as utils import scipy.stats import numpy as np import os.path np.random.seed(10) file_path = os.path.join(os.path.dirname(__file__), "example_design.1D") # Load an example design matrix design = utils.ReadDesign(fname=file_path) # concatenate it by 4 times, mimicking 4 runs of itenditcal timing design.design_task = np.tile(design.design_task[:,:-1],[4,1]) design.n_TR = design.n_TR * 4 # start simulating some data n_V = 200 n_C = np.size(design.design_task,axis=1) n_T = design.n_TR noise_bot = 0.5 noise_top = 1.5 noise_level = np.random.rand(n_V)*(noise_top-noise_bot)+noise_bot # noise level is random. # AR(1) coefficient rho1_top = 0.8 rho1_bot = -0.2 rho1 = np.random.rand(n_V)*(rho1_top-rho1_bot)+rho1_bot # generating noise noise = np.zeros([n_T,n_V]) noise[0,:] = np.random.randn(n_V) * noise_level / np.sqrt(1-rho1**2) for i_t in range(1,n_T): noise[i_t,:] = noise[i_t-1,:] * rho1 + np.random.randn(n_V) * noise_level noise = noise + np.random.rand(n_V) # Random baseline # ideal covariance matrix ideal_cov = np.zeros([n_C,n_C]) ideal_cov = np.eye(n_C)*0.6 ideal_cov[0:4,0:4] = 0.2 for cond in range(0,4): ideal_cov[cond,cond] = 2 ideal_cov[5:9,5:9] = 0.9 for cond in range(5,9): ideal_cov[cond,cond] = 1 idx = np.where(np.sum(np.abs(ideal_cov),axis=0)>0)[0] L_full = np.linalg.cholesky(ideal_cov) # generating signal snr_level = 5.0 # test with high SNR # snr = np.random.rand(n_V)*(snr_top-snr_bot)+snr_bot # Notice that accurately speaking this is not snr. the magnitude of signal depends # not only on beta but also on x. inten = np.random.randn(n_V) * 20.0 # parameters of Gaussian process to generate pseuso SNR tau = 0.8 smooth_width = 5.0 inten_kernel = 1.0 coords = np.arange(0,n_V)[:,None] dist2 = np.square(coords-coords.T) inten_tile = np.tile(inten,[n_V,1]) inten_diff2 = (inten_tile-inten_tile.T)**2 K = np.exp(-dist2/smooth_width**2/2.0 -inten_diff2/inten_kernel**2/2.0) * tau**2 + np.eye(n_V)*tau**2*0.001 L = np.linalg.cholesky(K) snr = np.exp(np.dot(L,np.random.randn(n_V))) * snr_level sqrt_v = noise_level*snr betas_simulated = np.dot(L_full,np.random.randn(n_C,n_V)) * sqrt_v signal = np.dot(design.design_task,betas_simulated) # Adding noise to signal as data Y = signal + noise scan_onsets = np.linspace(0,design.n_TR,num=5) # Test fitting with GP prior. brsa = BRSA(GP_space=True,GP_inten=True,verbose=False,n_iter = 200,auto_nuisance=False) # We also test that it can detect baseline regressor included in the design matrix for task conditions wrong_design = np.insert(design.design_task, 0, 1, axis=1) with pytest.raises(ValueError) as excinfo: brsa.fit(X=Y, design=wrong_design, scan_onsets=scan_onsets, coords=coords, inten=inten) assert 'Your design matrix appears to have included baseline time series.' in str(excinfo.value) # Now we fit with the correct design matrix. brsa.fit(X=Y, design=design.design_task, scan_onsets=scan_onsets, coords=coords, inten=inten) # Check that result is significantly correlated with the ideal covariance matrix u_b = brsa.U_ u_i = ideal_cov p = scipy.stats.spearmanr(u_b[np.tril_indices_from(u_b)], u_i[np.tril_indices_from(u_i)])[1] assert p < 0.01, "Fitted covariance matrix does not correlate with ideal covariance matrix!" # check that the recovered SNRs makes sense p = scipy.stats.pearsonr(brsa.nSNR_,snr)[1] assert p < 0.01, "Fitted SNR does not correlate with simulated SNR!" assert np.isclose(np.mean(np.log(brsa.nSNR_)),0), "nSNR_ not normalized!" p = scipy.stats.pearsonr(brsa.sigma_,noise_level)[1] assert p < 0.01, "Fitted noise level does not correlate with simulated noise level!" p = scipy.stats.pearsonr(brsa.rho_,rho1)[1] assert p < 0.01, "Fitted AR(1) coefficient does not correlate with simulated values!" # Test fitting with lower rank and without GP prior rank = n_C - 1 n_nureg = 1 brsa = BRSA(rank=rank,n_nureg=n_nureg) brsa.fit(X=Y, design=design.design_task, scan_onsets=scan_onsets) u_b = brsa.U_ u_i = ideal_cov p = scipy.stats.spearmanr(u_b[np.tril_indices_from(u_b)],u_i[np.tril_indices_from(u_i)])[1] assert p < 0.01, "Fitted covariance matrix does not correlate with ideal covariance matrix!" # check that the recovered SNRs makes sense p = scipy.stats.pearsonr(brsa.nSNR_,snr)[1] assert p < 0.01, "Fitted SNR does not correlate with simulated SNR!" assert np.isclose(np.mean(np.log(brsa.nSNR_)),0), "nSNR_ not normalized!" p = scipy.stats.pearsonr(brsa.sigma_,noise_level)[1] assert p < 0.01, "Fitted noise level does not correlate with simulated noise level!" p = scipy.stats.pearsonr(brsa.rho_,rho1)[1] assert p < 0.01, "Fitted AR(1) coefficient does not correlate with simulated values!" assert not hasattr(brsa,'bGP_') and not hasattr(brsa,'lGPspace_') and not hasattr(brsa,'lGPinten_'),\ 'the BRSA object should not have parameters of GP if GP is not requested.' # GP parameters are not set if not requested assert brsa.beta0_.shape[0] == n_nureg, 'Shape of beta0 incorrect' p = scipy.stats.pearsonr(brsa.beta0_[0,:],np.mean(noise,axis=0))[1] assert p < 0.05, 'recovered beta0 does not correlate with the baseline of voxels.' # Test fitting with GP over just spatial coordinates. brsa = BRSA(GP_space=True) brsa.fit(X=Y, design=design.design_task, scan_onsets=scan_onsets, coords=coords) # Check that result is significantly correlated with the ideal covariance matrix u_b = brsa.U_ u_i = ideal_cov p = scipy.stats.spearmanr(u_b[np.tril_indices_from(u_b)],u_i[np.tril_indices_from(u_i)])[1] assert p < 0.01, "Fitted covariance matrix does not correlate with ideal covariance matrix!" # check that the recovered SNRs makes sense p = scipy.stats.pearsonr(brsa.nSNR_,snr)[1] assert p < 0.01, "Fitted SNR does not correlate with simulated SNR!" assert np.isclose(np.mean(np.log(brsa.nSNR_)),0), "nSNR_ not normalized!" p = scipy.stats.pearsonr(brsa.sigma_,noise_level)[1] assert p < 0.01, "Fitted noise level does not correlate with simulated noise level!" p = scipy.stats.pearsonr(brsa.rho_,rho1)[1] assert p < 0.01, "Fitted AR(1) coefficient does not correlate with simulated values!" assert not hasattr(brsa,'lGPinten_'),\ 'the BRSA object should not have parameters of lGPinten_ if only smoothness in space is requested.'
def test_gradient(): from brainiak.reprsimil.brsa import BRSA import brainiak.utils.utils as utils import scipy.stats import numpy as np import os.path import numdifftools as nd np.random.seed(100) file_path = os.path.join(os.path.dirname(__file__), "example_design.1D") # Load an example design matrix design = utils.ReadDesign(fname=file_path) n_run = 4 # concatenate it by 4 times, mimicking 4 runs of itenditcal timing design.design_task = np.tile(design.design_task[:,:-1],[n_run,1]) design.n_TR = design.n_TR * n_run # start simulating some data n_V = 200 n_C = np.size(design.design_task,axis=1) n_T = design.n_TR noise_bot = 0.5 noise_top = 1.5 noise_level = np.random.rand(n_V)*(noise_top-noise_bot)+noise_bot # noise level is random. # AR(1) coefficient rho1_top = 0.8 rho1_bot = -0.2 rho1 = np.random.rand(n_V)*(rho1_top-rho1_bot)+rho1_bot # generating noise noise = np.zeros([n_T,n_V]) noise[0,:] = np.random.randn(n_V) * noise_level / np.sqrt(1-rho1**2) for i_t in range(1,n_T): noise[i_t,:] = noise[i_t-1,:] * rho1 + np.random.randn(n_V) * noise_level # ideal covariance matrix ideal_cov = np.zeros([n_C,n_C]) ideal_cov = np.eye(n_C)*0.6 ideal_cov[0,0] = 0.2 ideal_cov[5:9,5:9] = 0.6 for cond in range(5,9): ideal_cov[cond,cond] = 1 idx = np.where(np.sum(np.abs(ideal_cov),axis=0)>0)[0] L_full = np.linalg.cholesky(ideal_cov) # generating signal snr_level = 5.0 # test with high SNR inten = np.random.randn(n_V) * 20.0 # parameters of Gaussian process to generate pseuso SNR tau = 0.8 smooth_width = 5.0 inten_kernel = 1.0 coords = np.arange(0,n_V)[:,None] dist2 = np.square(coords-coords.T) inten_tile = np.tile(inten,[n_V,1]) inten_diff2 = (inten_tile-inten_tile.T)**2 K = np.exp(-dist2/smooth_width**2/2.0 -inten_diff2/inten_kernel**2/2.0) * tau**2 + np.eye(n_V)*tau**2*0.001 L = np.linalg.cholesky(K) snr = np.exp(np.dot(L,np.random.randn(n_V))) * snr_level # Notice that accurately speaking this is not snr. the magnitude of signal depends # not only on beta but also on x. sqrt_v = noise_level*snr betas_simulated = np.dot(L_full,np.random.randn(n_C,n_V)) * sqrt_v signal = np.dot(design.design_task,betas_simulated) # Adding noise to signal as data Y = signal + noise scan_onsets = np.linspace(0,design.n_TR,num=n_run+1) # Test fitting with GP prior. brsa = BRSA(GP_space=True,GP_inten=True,verbose=False,n_iter = 200,rank=n_C) # Additionally, we test the generation of re-used terms. X0 = np.ones(n_T)[:, None] D, F, run_TRs, n_run_returned = brsa._prepare_DF( n_T, scan_onsets=scan_onsets) assert n_run_returned == n_run, 'There is mistake in counting number of runs' assert np.sum(run_TRs) == n_T, 'The segmentation of the total experiment duration is wrong' XTY, XTDY, XTFY, YTY_diag, YTDY_diag, YTFY_diag, XTX, \ XTDX, XTFX = brsa._prepare_data_XY(design.design_task, Y, D, F) X0TX0, X0TDX0, X0TFX0, XTX0, XTDX0, XTFX0, \ X0TY, X0TDY, X0TFY, X0, n_base = brsa._prepare_data_XYX0( design.design_task, Y, X0, D, F, run_TRs, no_DC=False) assert np.shape(XTY) == (n_C, n_V) and np.shape(XTDY) == (n_C, n_V) \ and np.shape(XTFY) == (n_C, n_V),\ 'Dimension of XTY etc. returned from _prepare_data is wrong' assert np.ndim(YTY_diag) == 1 and np.ndim(YTDY_diag) == 1 and np.ndim(YTFY_diag) == 1,\ 'Dimension of YTY_diag etc. returned from _prepare_data is wrong' assert np.ndim(XTX) == 2 and np.ndim(XTDX) == 2 and np.ndim(XTFX) == 2,\ 'Dimension of XTX etc. returned from _prepare_data is wrong' assert np.ndim(X0TX0) == 2 and np.ndim(X0TDX0) == 2 and np.ndim(X0TFX0) == 2,\ 'Dimension of X0TX0 etc. returned from _prepare_data is wrong' assert np.ndim(XTX0) == 2 and np.ndim(XTDX0) == 2 and np.ndim(XTFX0) == 2,\ 'Dimension of XTX0 etc. returned from _prepare_data is wrong' assert np.ndim(X0TY) == 2 and np.ndim(X0TDY) == 2 and np.ndim(X0TFY) == 2,\ 'Dimension of X0TY etc. returned from _prepare_data is wrong' l_idx = np.tril_indices(n_C) n_l = np.size(l_idx[0]) # Make sure all the fields are in the indices. idx_param_sing, idx_param_fitU, idx_param_fitV = brsa._build_index_param(n_l, n_V, 2) assert 'Cholesky' in idx_param_sing and 'a1' in idx_param_sing, \ 'The dictionary for parameter indexing misses some keys' assert 'Cholesky' in idx_param_fitU and 'a1' in idx_param_fitU, \ 'The dictionary for parameter indexing misses some keys' assert 'log_SNR2' in idx_param_fitV and 'c_space' in idx_param_fitV \ and 'c_inten' in idx_param_fitV and 'c_both' in idx_param_fitV, \ 'The dictionary for parameter indexing misses some keys' # Initial parameters are correct parameters with some perturbation param0_fitU = np.random.randn(n_l+n_V) * 0.1 param0_fitV = np.random.randn(n_V+1) * 0.1 param0_sing = np.random.randn(n_l+1) * 0.1 param0_sing[idx_param_sing['a1']] += np.mean(np.tan(rho1 * np.pi / 2)) param0_fitV[idx_param_fitV['log_SNR2']] += np.log(snr[:n_V-1])*2 param0_fitV[idx_param_fitV['c_space']] += np.log(smooth_width)*2 param0_fitV[idx_param_fitV['c_inten']] += np.log(inten_kernel)*2 # test if the gradients are correct # log likelihood and derivative of the _singpara function ll0, deriv0 = brsa._loglike_AR1_singpara(param0_sing, XTX, XTDX, XTFX, YTY_diag, YTDY_diag, YTFY_diag, XTY, XTDY, XTFY, X0TX0, X0TDX0, X0TFX0, XTX0, XTDX0, XTFX0, X0TY, X0TDY, X0TFY, l_idx, n_C, n_T, n_V, n_run, n_base, idx_param_sing) # We test the gradient to the Cholesky factor vec = np.zeros(np.size(param0_sing)) vec[idx_param_sing['Cholesky'][0]] = 1 dd = nd.directionaldiff(lambda x: brsa._loglike_AR1_singpara(x, XTX, XTDX, XTFX, YTY_diag, YTDY_diag, YTFY_diag, XTY, XTDY, XTFY, X0TX0, X0TDX0, X0TFX0, XTX0, XTDX0, XTFX0, X0TY, X0TDY, X0TFY, l_idx, n_C, n_T, n_V, n_run, n_base, idx_param_sing)[0], param0_sing, vec) assert np.isclose(dd, np.dot(deriv0, vec), rtol=1e-5), 'gradient of singpara wrt Cholesky is incorrect' # We test the gradient to a1 vec = np.zeros(np.size(param0_sing)) vec[idx_param_sing['a1']] = 1 dd = nd.directionaldiff(lambda x: brsa._loglike_AR1_singpara(x, XTX, XTDX, XTFX, YTY_diag, YTDY_diag, YTFY_diag, XTY, XTDY, XTFY, X0TX0, X0TDX0, X0TFX0, XTX0, XTDX0, XTFX0, X0TY, X0TDY, X0TFY, l_idx, n_C, n_T, n_V, n_run, n_base, idx_param_sing)[0], param0_sing, vec) assert np.isclose(dd, np.dot(deriv0, vec), rtol=1e-5), 'gradient of singpara wrt a1 is incorrect' # log likelihood and derivative of the fitU function. ll0, deriv0 = brsa._loglike_AR1_diagV_fitU(param0_fitU, XTX, XTDX, XTFX, YTY_diag, YTDY_diag, YTFY_diag, XTY, XTDY, XTFY, X0TX0, X0TDX0, X0TFX0, XTX0, XTDX0, XTFX0, X0TY, X0TDY, X0TFY, np.log(snr)*2, l_idx,n_C,n_T,n_V,n_run,n_base,idx_param_fitU,n_C) # We test the gradient wrt the reparametrization of AR(1) coefficient of noise. vec = np.zeros(np.size(param0_fitU)) vec[idx_param_fitU['a1'][0]] = 1 dd = nd.directionaldiff(lambda x: brsa._loglike_AR1_diagV_fitU(x, XTX, XTDX, XTFX, YTY_diag, YTDY_diag, YTFY_diag, XTY, XTDY, XTFY, X0TX0, X0TDX0, X0TFX0, XTX0, XTDX0, XTFX0, X0TY, X0TDY, X0TFY, np.log(snr)*2, l_idx, n_C, n_T, n_V, n_run, n_base, idx_param_fitU, n_C)[0], param0_fitU, vec) assert np.isclose(dd, np.dot(deriv0,vec), rtol=1e-5), 'gradient of fitU wrt to AR(1) coefficient incorrect' # We test if the numerical and analytical gradient wrt to the first element of Cholesky factor is correct vec = np.zeros(np.size(param0_fitU)) vec[idx_param_fitU['Cholesky'][0]] = 1 dd = nd.directionaldiff(lambda x: brsa._loglike_AR1_diagV_fitU(x, XTX, XTDX, XTFX, YTY_diag, YTDY_diag, YTFY_diag, XTY, XTDY, XTFY, X0TX0, X0TDX0, X0TFX0, XTX0, XTDX0, XTFX0, X0TY, X0TDY, X0TFY, np.log(snr)*2, l_idx, n_C, n_T, n_V, n_run,n_base, idx_param_fitU, n_C)[0], param0_fitU, vec) assert np.isclose(dd, np.dot(deriv0,vec), rtol=1e-5), 'gradient of fitU wrt Cholesky factor incorrect' # We test if the numerical and analytical gradient wrt to the first element of Cholesky factor is correct vec = np.zeros(np.size(param0_fitU)) vec[idx_param_fitU['Cholesky'][0]] = 1 dd = nd.directionaldiff(lambda x: brsa._loglike_AR1_diagV_fitU(x, XTX, XTDX, XTFX, YTY_diag, YTDY_diag, YTFY_diag, XTY, XTDY, XTFY, X0TX0, X0TDX0, X0TFX0, XTX0, XTDX0, XTFX0, X0TY, X0TDY, X0TFY, np.log(snr)*2, l_idx, n_C, n_T, n_V, n_run,n_base, idx_param_fitU, n_C)[0], param0_fitU, vec) assert np.isclose(dd, np.dot(deriv0,vec), rtol=0.01), 'gradient of fitU wrt Cholesky factor incorrect' # Test on a random direction vec = np.random.randn(np.size(param0_fitU)) vec = vec / np.linalg.norm(vec) dd = nd.directionaldiff(lambda x: brsa._loglike_AR1_diagV_fitU(x, XTX, XTDX, XTFX, YTY_diag, YTDY_diag, YTFY_diag, XTY, XTDY, XTFY, X0TX0, X0TDX0, X0TFX0, XTX0, XTDX0, XTFX0, X0TY, X0TDY, X0TFY, np.log(snr)*2, l_idx, n_C, n_T, n_V, n_run, n_base, idx_param_fitU, n_C)[0], param0_fitU, vec) assert np.isclose(dd, np.dot(deriv0,vec), rtol=1e-5), 'gradient of fitU incorrect' # We test the gradient of _fitV wrt to log(SNR^2) assuming no GP prior. X0TAX0, XTAX0, X0TAY, X0TAX0_i, \ XTAcorrX, XTAcorrY, YTAcorrY, LTXTAcorrY, XTAcorrXL, LTXTAcorrXL = \ brsa._calc_sandwidge(XTY, XTDY, XTFY, YTY_diag, YTDY_diag, YTFY_diag, XTX, XTDX, XTFX, X0TX0, X0TDX0, X0TFX0, XTX0, XTDX0, XTFX0, X0TY, X0TDY, X0TFY, L_full, rho1, n_V, n_base) assert np.shape(XTAcorrX) == (n_V, n_C, n_C), 'Dimension of XTAcorrX is wrong by _calc_sandwidge()' assert XTAcorrY.shape == XTY.shape, 'Shape of XTAcorrY is wrong by _calc_sandwidge()' assert YTAcorrY.shape == YTY_diag.shape, 'Shape of YTAcorrY is wrong by _calc_sandwidge()' assert np.shape(X0TAX0) == (n_V, n_base, n_base), 'Dimension of X0TAX0 is wrong by _calc_sandwidge()' assert np.shape(XTAX0) == (n_V, n_C, n_base), 'Dimension of XTAX0 is wrong by _calc_sandwidge()' assert X0TAY.shape == X0TY.shape, 'Shape of X0TAX0 is wrong by _calc_sandwidge()' assert np.all(np.isfinite(X0TAX0_i)), 'Inverse of X0TAX0 includes NaN or Inf' ll0, deriv0 = brsa._loglike_AR1_diagV_fitV(param0_fitV[idx_param_fitV['log_SNR2']], X0TAX0, XTAX0, X0TAY, X0TAX0_i, XTAcorrX, XTAcorrY, YTAcorrY, LTXTAcorrY, XTAcorrXL, LTXTAcorrXL, L_full[l_idx], np.tan(rho1*np.pi/2), l_idx,n_C,n_T,n_V,n_run,n_base, idx_param_fitV,n_C,False,False) vec = np.zeros(np.size(param0_fitV[idx_param_fitV['log_SNR2']])) vec[idx_param_fitV['log_SNR2'][0]] = 1 dd = nd.directionaldiff(lambda x: brsa._loglike_AR1_diagV_fitV(x, X0TAX0, XTAX0, X0TAY, X0TAX0_i, XTAcorrX, XTAcorrY, YTAcorrY, LTXTAcorrY, XTAcorrXL, LTXTAcorrXL, L_full[l_idx], np.tan(rho1*np.pi/2), l_idx, n_C, n_T, n_V, n_run, n_base, idx_param_fitV, n_C, False, False)[0], param0_fitV[idx_param_fitV['log_SNR2']], vec) assert np.isclose(dd, np.dot(deriv0,vec), rtol=1e-5), 'gradient of fitV wrt log(SNR2) incorrect for model without GP' # We test the gradient of _fitV wrt to log(SNR^2) assuming GP prior. ll0, deriv0 = brsa._loglike_AR1_diagV_fitV(param0_fitV, X0TAX0, XTAX0, X0TAY, X0TAX0_i, XTAcorrX, XTAcorrY, YTAcorrY, LTXTAcorrY, XTAcorrXL, LTXTAcorrXL, L_full[l_idx], np.tan(rho1*np.pi/2), l_idx,n_C,n_T,n_V,n_run,n_base, idx_param_fitV,n_C,True,True, dist2,inten_diff2,100,100) vec = np.zeros(np.size(param0_fitV)) vec[idx_param_fitV['log_SNR2'][0]] = 1 dd = nd.directionaldiff(lambda x: brsa._loglike_AR1_diagV_fitV(x, X0TAX0, XTAX0, X0TAY, X0TAX0_i, XTAcorrX, XTAcorrY, YTAcorrY, LTXTAcorrY, XTAcorrXL, LTXTAcorrXL, L_full[l_idx], np.tan(rho1*np.pi/2), l_idx, n_C, n_T, n_V, n_run, n_base, idx_param_fitV, n_C, True, True, dist2, inten_diff2, 100, 100)[0], param0_fitV, vec) assert np.isclose(dd, np.dot(deriv0,vec), rtol=1e-5), 'gradient of fitV srt log(SNR2) incorrect for model with GP' # We test the graident wrt spatial length scale parameter of GP prior vec = np.zeros(np.size(param0_fitV)) vec[idx_param_fitV['c_space']] = 1 dd = nd.directionaldiff(lambda x: brsa._loglike_AR1_diagV_fitV(x, X0TAX0, XTAX0, X0TAY, X0TAX0_i, XTAcorrX, XTAcorrY, YTAcorrY, LTXTAcorrY, XTAcorrXL, LTXTAcorrXL, L_full[l_idx], np.tan(rho1*np.pi/2), l_idx, n_C, n_T, n_V, n_run, n_base, idx_param_fitV, n_C, True, True, dist2, inten_diff2, 100, 100)[0], param0_fitV, vec) assert np.isclose(dd, np.dot(deriv0,vec), rtol=1e-5), 'gradient of fitV wrt spatial length scale of GP incorrect' # We test the graident wrt intensity length scale parameter of GP prior vec = np.zeros(np.size(param0_fitV)) vec[idx_param_fitV['c_inten']] = 1 dd = nd.directionaldiff(lambda x: brsa._loglike_AR1_diagV_fitV(x, X0TAX0, XTAX0, X0TAY, X0TAX0_i, XTAcorrX, XTAcorrY, YTAcorrY, LTXTAcorrY, XTAcorrXL, LTXTAcorrXL, L_full[l_idx], np.tan(rho1*np.pi/2), l_idx, n_C, n_T, n_V, n_run, n_base, idx_param_fitV, n_C, True, True, dist2, inten_diff2, 100, 100)[0], param0_fitV, vec) assert np.isclose(dd, np.dot(deriv0,vec), rtol=1e-5), 'gradient of fitV wrt intensity length scale of GP incorrect' # We test the graident on a random direction vec = np.random.randn(np.size(param0_fitV)) vec = vec / np.linalg.norm(vec) dd = nd.directionaldiff(lambda x: brsa._loglike_AR1_diagV_fitV(x, X0TAX0, XTAX0, X0TAY, X0TAX0_i, XTAcorrX, XTAcorrY, YTAcorrY, LTXTAcorrY, XTAcorrXL, LTXTAcorrXL, L_full[l_idx], np.tan(rho1*np.pi/2), l_idx, n_C, n_T, n_V, n_run, n_base, idx_param_fitV, n_C, True, True, dist2, inten_diff2, 100, 100)[0], param0_fitV, vec) assert np.isclose(dd, np.dot(deriv0,vec), rtol=1e-5), 'gradient of fitV incorrect'
def test_fit(): from brainiak.reprsimil.brsa import BRSA import brainiak.utils.utils as utils import scipy.stats import numpy as np import os.path np.random.seed(10) file_path = os.path.join(os.path.dirname(__file__), "example_design.1D") # Load an example design matrix design = utils.ReadDesign(fname=file_path) # concatenate it by 2 times, mimicking 2 runs of itenditcal timing n_run = 2 design.design_task = np.tile(design.design_task[:, :-1], [n_run, 1]) design.n_TR = design.n_TR * n_run # start simulating some data n_V = 50 n_C = np.size(design.design_task, axis=1) n_T = design.n_TR noise_bot = 0.5 noise_top = 5.0 noise_level = np.random.rand(n_V) * (noise_top - noise_bot) + noise_bot # noise level is random. # AR(1) coefficient rho1_top = 0.8 rho1_bot = -0.2 rho1 = np.random.rand(n_V) * (rho1_top - rho1_bot) + rho1_bot # generating noise noise = np.zeros([n_T, n_V]) noise[0, :] = np.random.randn(n_V) * noise_level / np.sqrt(1 - rho1**2) for i_t in range(1, n_T): noise[i_t, :] = noise[i_t - 1, :] * rho1 + \ np.random.randn(n_V) * noise_level # ideal covariance matrix ideal_cov = np.zeros([n_C, n_C]) ideal_cov = np.eye(n_C) * 0.6 ideal_cov[0:4, 0:4] = 0.2 for cond in range(0, 4): ideal_cov[cond, cond] = 2 ideal_cov[5:9, 5:9] = 0.9 for cond in range(5, 9): ideal_cov[cond, cond] = 1 L_full = np.linalg.cholesky(ideal_cov) # generating signal snr_level = 5.0 # test with high SNR # snr = np.random.rand(n_V)*(snr_top-snr_bot)+snr_bot # Notice that accurately speaking this is not snr. the magnitude of signal # depends # not only on beta but also on x. inten = np.random.rand(n_V) * 20.0 # parameters of Gaussian process to generate pseuso SNR tau = 1.0 smooth_width = 5.0 inten_kernel = 1.0 coords = np.arange(0, n_V)[:, None] dist2 = np.square(coords - coords.T) inten_tile = np.tile(inten, [n_V, 1]) inten_diff2 = (inten_tile - inten_tile.T)**2 K = np.exp(-dist2 / smooth_width**2 / 2.0 - inten_diff2 / inten_kernel**2 / 2.0) * tau**2 + np.eye(n_V) * tau**2 * 0.001 L = np.linalg.cholesky(K) snr = np.exp(np.dot(L, np.random.randn(n_V))) * snr_level sqrt_v = noise_level * snr betas_simulated = np.dot(L_full, np.random.randn(n_C, n_V)) * sqrt_v signal = np.dot(design.design_task, betas_simulated) # Adding noise to signal as data Y = signal + noise + inten scan_onsets = np.linspace(0, design.n_TR, num=n_run + 1) # Test fitting with GP prior. brsa = BRSA(GP_space=True, GP_inten=True, n_iter=5, init_iter=10, auto_nuisance=False, tol=2e-3) # We also test that it can detect baseline regressor included in the # design matrix for task conditions wrong_design = np.insert(design.design_task, 0, 1, axis=1) with pytest.raises(ValueError) as excinfo: brsa.fit(X=Y, design=wrong_design, scan_onsets=scan_onsets, coords=coords, inten=inten) assert ('Your design matrix appears to have included baseline time series.' in str(excinfo.value)) # Now we fit with the correct design matrix. brsa.fit(X=Y, design=design.design_task, scan_onsets=scan_onsets, coords=coords, inten=inten) # Check that result is significantly correlated with the ideal covariance # matrix u_b = brsa.U_ u_i = ideal_cov p = scipy.stats.spearmanr(u_b[np.tril_indices_from(u_b)], u_i[np.tril_indices_from(u_i)])[1] assert p < 0.01, ( "Fitted covariance matrix does not correlate with ideal covariance " "matrix!") # check that the recovered SNRs makes sense p = scipy.stats.pearsonr(brsa.nSNR_, snr)[1] assert p < 0.01, "Fitted SNR does not correlate with simulated SNR!" assert np.isclose(np.mean(np.log(brsa.nSNR_)), 0), "nSNR_ not normalized!" p = scipy.stats.pearsonr(brsa.sigma_, noise_level)[1] assert p < 0.01, ( "Fitted noise level does not correlate with simulated noise level!") p = scipy.stats.pearsonr(brsa.rho_, rho1)[1] assert p < 0.01, ( "Fitted AR(1) coefficient does not correlate with simulated values!") noise_new = np.zeros([n_T, n_V]) noise_new[0, :] = np.random.randn(n_V) * noise_level / np.sqrt(1 - rho1**2) for i_t in range(1, n_T): noise_new[i_t, :] = noise_new[i_t - 1, :] * \ rho1 + np.random.randn(n_V) * noise_level Y_new = signal + noise_new + inten ts, ts0 = brsa.transform(Y_new, scan_onsets=scan_onsets) p = scipy.stats.pearsonr(ts[:, 0], design.design_task[:, 0])[1] assert p < 0.01, ( "Recovered time series does not correlate with true time series!") assert np.shape(ts) == (n_T, n_C) and np.shape(ts0) == (n_T, 1), ( "Wrong shape in returned time series by transform function!") [score, score_null] = brsa.score(X=Y_new, design=design.design_task, scan_onsets=scan_onsets) assert score > score_null, ( "Full model does not win over null model on data containing signal") [score, score_null] = brsa.score(X=noise_new + inten, design=design.design_task, scan_onsets=scan_onsets) assert score < score_null, ( "Null model does not win over full model on data without signal") # Test fitting with lower rank, nuisance regressors and without GP prior rank = n_C - 1 n_nureg = 1 brsa = BRSA(rank=rank, n_nureg=n_nureg, tol=2e-3, n_iter=8, init_iter=4, auto_nuisance=True) brsa.fit(X=Y, design=design.design_task, scan_onsets=scan_onsets) # u_b = brsa.U_ u_i = ideal_cov p = scipy.stats.spearmanr(u_b[np.tril_indices_from(u_b)], u_i[np.tril_indices_from(u_i)])[1] assert p < 0.01, ( "Fitted covariance matrix does not correlate with ideal covariance " "matrix!") # check that the recovered SNRs makes sense p = scipy.stats.pearsonr(brsa.nSNR_, snr)[1] assert p < 0.01, "Fitted SNR does not correlate with simulated SNR!" assert np.isclose(np.mean(np.log(brsa.nSNR_)), 0), "nSNR_ not normalized!" p = scipy.stats.pearsonr(brsa.sigma_, noise_level)[1] assert p < 0.01, ( "Fitted noise level does not correlate with simulated noise level!") p = scipy.stats.pearsonr(brsa.rho_, rho1)[1] assert p < 0.01, ( "Fitted AR(1) coefficient does not correlate with simulated values!") assert (not hasattr(brsa, 'bGP_') and not hasattr(brsa, 'lGPspace_') and not hasattr(brsa, 'lGPinten_')), ( "the BRSA object should not have parameters of GP if GP is " "not requested.") # GP parameters are not set if not requested assert brsa.beta0_.shape[0] == n_nureg + 1, 'Shape of beta0 incorrect' p = scipy.stats.pearsonr(brsa.beta0_[0, :], inten)[1] assert p < 0.01, ( 'recovered beta0 does not correlate with the baseline of voxels.') assert np.shape( brsa.L_) == (n_C, rank), 'Cholesky factor should have shape of (n_C, rank)' # Test fitting with GP over just spatial coordinates. brsa = BRSA(GP_space=True, baseline_single=False, tol=2e-3, n_iter=4, init_iter=4) brsa.fit(X=Y, design=design.design_task, scan_onsets=scan_onsets, coords=coords) # Check that result is significantly correlated with the ideal covariance # matrix u_b = brsa.U_ u_i = ideal_cov p = scipy.stats.spearmanr(u_b[np.tril_indices_from(u_b)], u_i[np.tril_indices_from(u_i)])[1] assert p < 0.01, ( "Fitted covariance matrix does not correlate with ideal covariance " "matrix!") # check that the recovered SNRs makes sense p = scipy.stats.pearsonr(brsa.nSNR_, snr)[1] assert p < 0.01, "Fitted SNR does not correlate with simulated SNR!" assert np.isclose(np.mean(np.log(brsa.nSNR_)), 0), "nSNR_ not normalized!" p = scipy.stats.pearsonr(brsa.sigma_, noise_level)[1] assert p < 0.01, ( "Fitted noise level does not correlate with simulated noise level!") p = scipy.stats.pearsonr(brsa.rho_, rho1)[1] assert p < 0.01, ( "Fitted AR(1) coefficient does not correlate with simulated values!") assert not hasattr(brsa, 'lGPinten_'), ( "the BRSA object should not have parameters of lGPinten_ if only " "smoothness in space is requested.")
def test_fit(): from brainiak.reprsimil.brsa import BRSA import brainiak.utils.utils as utils import scipy.stats import numpy as np import os.path np.random.seed(10) file_path = os.path.join(os.path.dirname(__file__), "example_design.1D") # Load an example design matrix design = utils.ReadDesign(fname=file_path) # concatenate it by 4 times, mimicking 4 runs of itenditcal timing design.design_used = np.tile(design.design_used[:, 0:17], [4, 1]) design.n_TR = design.n_TR * 4 # start simulating some data n_V = 300 n_C = np.size(design.design_used, axis=1) n_T = design.n_TR noise_bot = 0.5 noise_top = 1.5 noise_level = np.random.rand(n_V) * (noise_top - noise_bot) + noise_bot # noise level is random. # AR(1) coefficient rho1_top = 0.8 rho1_bot = -0.2 rho1 = np.random.rand(n_V) * (rho1_top - rho1_bot) + rho1_bot # generating noise noise = np.zeros([n_T, n_V]) noise[0, :] = np.random.randn(n_V) * noise_level / np.sqrt(1 - rho1**2) for i_t in range(1, n_T): noise[i_t, :] = noise[i_t - 1, :] * rho1 + np.random.randn(n_V) * noise_level # ideal covariance matrix ideal_cov = np.zeros([n_C, n_C]) ideal_cov = np.eye(n_C) * 0.6 ideal_cov[0, 0] = 0.2 ideal_cov[5:9, 5:9] = 0.6 for cond in range(5, 9): ideal_cov[cond, cond] = 1 idx = np.where(np.sum(np.abs(ideal_cov), axis=0) > 0)[0] L_full = np.linalg.cholesky(ideal_cov) # generating signal snr_level = 5.0 # test with high SNR # snr = np.random.rand(n_V)*(snr_top-snr_bot)+snr_bot # Notice that accurately speaking this is not snr. the magnitude of signal depends # not only on beta but also on x. inten = np.random.randn(n_V) * 20.0 # parameters of Gaussian process to generate pseuso SNR tau = 0.8 smooth_width = 5.0 inten_kernel = 1.0 coords = np.arange(0, n_V)[:, None] dist2 = np.square(coords - coords.T) inten_tile = np.tile(inten, [n_V, 1]) inten_diff2 = (inten_tile - inten_tile.T)**2 K = np.exp(-dist2 / smooth_width**2 / 2.0 - inten_diff2 / inten_kernel**2 / 2.0) * tau**2 + np.eye(n_V) * tau**2 * 0.001 L = np.linalg.cholesky(K) snr = np.exp(np.dot(L, np.random.randn(n_V))) * snr_level sqrt_v = noise_level * snr betas_simulated = np.dot(L_full, np.random.randn(n_C, n_V)) * sqrt_v signal = np.dot(design.design_used, betas_simulated) # Adding noise to signal as data Y = signal + noise scan_onsets = np.linspace(0, design.n_TR, num=5) # Test fitting with GP prior. brsa = BRSA(GP_space=True, GP_inten=True, verbose=False, n_iter=200) brsa.fit(X=Y, design=design.design_used, scan_onsets=scan_onsets, coords=coords, inten=inten) # Check that result is significantly correlated with the ideal covariance matrix u_b = brsa.U_[1:, 1:] u_i = ideal_cov[1:, 1:] p = scipy.stats.spearmanr(u_b[np.tril_indices_from(u_b, k=-1)], u_i[np.tril_indices_from(u_i, k=-1)])[1] assert p < 0.01, "Fitted covariance matrix does not correlate with ideal covariance matrix!" # check that the recovered SNRs makes sense p = scipy.stats.pearsonr(brsa.nSNR_, snr)[1] assert p < 0.01, "Fitted SNR does not correlate with simualted SNR!" assert np.isclose(np.mean(np.log(brsa.nSNR_)), 0), "nSNR_ not normalized!" # Test fitting without GP prior. brsa = BRSA() brsa.fit(X=Y, design=design.design_used, scan_onsets=scan_onsets) # Check that result is significantly correlated with the ideal covariance matrix u_b = brsa.U_[1:, 1:] u_i = ideal_cov[1:, 1:] p = scipy.stats.spearmanr(u_b[np.tril_indices_from(u_b, k=-1)], u_i[np.tril_indices_from(u_i, k=-1)])[1] assert p < 0.01, "Fitted covariance matrix does not correlate with ideal covariance matrix!" # check that the recovered SNRs makes sense p = scipy.stats.pearsonr(brsa.nSNR_, snr)[1] assert p < 0.01, "Fitted SNR does not correlate with simualted SNR!" assert np.isclose(np.mean(np.log(brsa.nSNR_)), 0), "nSNR_ not normalized!" assert not hasattr(brsa,'bGP_') and not hasattr(brsa,'lGPspace_') and not hasattr(brsa,'lGPinten_'),\ 'the BRSA object should not have parameters of GP if GP is not requested.' # GP parameters are not set if not requested # Test fitting with GP over just spatial coordinates. brsa = BRSA(GP_space=True) brsa.fit(X=Y, design=design.design_used, scan_onsets=scan_onsets, coords=coords) # Check that result is significantly correlated with the ideal covariance matrix u_b = brsa.U_[1:, 1:] u_i = ideal_cov[1:, 1:] p = scipy.stats.spearmanr(u_b[np.tril_indices_from(u_b, k=-1)], u_i[np.tril_indices_from(u_i, k=-1)])[1] assert p < 0.01, "Fitted covariance matrix does not correlate with ideal covariance matrix!" # check that the recovered SNRs makes sense p = scipy.stats.pearsonr(brsa.nSNR_, snr)[1] assert p < 0.01, "Fitted SNR does not correlate with simualted SNR!" assert np.isclose(np.mean(np.log(brsa.nSNR_)), 0), "nSNR_ not normalized!" assert not hasattr(brsa,'lGPinten_'),\ 'the BRSA object should not have parameters of lGPinten_ if only smoothness in space is requested.'
def test_gradient(): from brainiak.reprsimil.brsa import BRSA import brainiak.utils.utils as utils import scipy.stats import numpy as np import os.path import numdifftools as nd np.random.seed(100) file_path = os.path.join(os.path.dirname(__file__), "example_design.1D") # Load an example design matrix design = utils.ReadDesign(fname=file_path) # concatenate it by 4 times, mimicking 4 runs of itenditcal timing design.design_used = np.tile(design.design_used[:, 0:17], [4, 1]) design.n_TR = design.n_TR * 4 # start simulating some data n_V = 200 n_C = np.size(design.design_used, axis=1) n_T = design.n_TR noise_bot = 0.5 noise_top = 1.5 noise_level = np.random.rand(n_V) * (noise_top - noise_bot) + noise_bot # noise level is random. # AR(1) coefficient rho1_top = 0.8 rho1_bot = -0.2 rho1 = np.random.rand(n_V) * (rho1_top - rho1_bot) + rho1_bot # generating noise noise = np.zeros([n_T, n_V]) noise[0, :] = np.random.randn(n_V) * noise_level / np.sqrt(1 - rho1**2) for i_t in range(1, n_T): noise[i_t, :] = noise[i_t - 1, :] * rho1 + np.random.randn(n_V) * noise_level # ideal covariance matrix ideal_cov = np.zeros([n_C, n_C]) ideal_cov = np.eye(n_C) * 0.6 ideal_cov[0, 0] = 0.2 ideal_cov[5:9, 5:9] = 0.6 for cond in range(5, 9): ideal_cov[cond, cond] = 1 idx = np.where(np.sum(np.abs(ideal_cov), axis=0) > 0)[0] L_full = np.linalg.cholesky(ideal_cov) # generating signal snr_level = 5.0 # test with high SNR # snr = np.random.rand(n_V)*(snr_top-snr_bot)+snr_bot # Notice that accurately speaking this is not snr. the magnitude of signal depends # not only on beta but also on x. inten = np.random.randn(n_V) * 20.0 # parameters of Gaussian process to generate pseuso SNR tau = 0.8 smooth_width = 5.0 inten_kernel = 1.0 coords = np.arange(0, n_V)[:, None] dist2 = np.square(coords - coords.T) inten_tile = np.tile(inten, [n_V, 1]) inten_diff2 = (inten_tile - inten_tile.T)**2 K = np.exp(-dist2 / smooth_width**2 / 2.0 - inten_diff2 / inten_kernel**2 / 2.0) * tau**2 + np.eye(n_V) * tau**2 * 0.001 L = np.linalg.cholesky(K) snr = np.exp(np.dot(L, np.random.randn(n_V))) * snr_level sqrt_v = noise_level * snr betas_simulated = np.dot(L_full, np.random.randn(n_C, n_V)) * sqrt_v signal = np.dot(design.design_used, betas_simulated) # Adding noise to signal as data Y = signal + noise scan_onsets = np.linspace(0, design.n_TR, num=5) # Test fitting with GP prior. brsa = BRSA(GP_space=True, GP_inten=True, verbose=False, n_iter=200) # test if the gradients are correct XTY, XTDY, XTFY, YTY_diag, YTDY_diag, YTFY_diag, XTX, XTDX, XTFX = brsa._prepare_data( design.design_used, Y, n_T, n_V, scan_onsets) l_idx = np.tril_indices(n_C) n_l = np.size(l_idx[0]) idx_param_sing, idx_param_fitU, idx_param_fitV = brsa._build_index_param( n_l, n_V, 2) # Initial parameters are correct parameters with some perturbation param0_fitU = np.random.randn(n_l + n_V) * 0.1 param0_fitV = np.random.randn(n_V + 1) * 0.1 param0_fitV[:n_V - 1] += np.log(snr[:n_V - 1]) * 2 param0_fitV[n_V - 1] += np.log(smooth_width) * 2 param0_fitV[n_V] += np.log(inten_kernel) * 2 # log likelihood and derivative at the initial parameters ll0, deriv0 = brsa._loglike_AR1_diagV_fitU(param0_fitU, XTX, XTDX, XTFX, YTY_diag, YTDY_diag, YTFY_diag, \ XTY, XTDY, XTFY, np.log(snr)*2, l_idx,n_C,n_T,n_V,idx_param_fitU,n_C) # We test if the numerical and analytical gradient wrt to the first element of Cholesky factor is correct vec = np.zeros(np.size(param0_fitU)) vec[idx_param_fitU['Cholesky'][0]] = 1 dd = nd.directionaldiff(lambda x: brsa._loglike_AR1_diagV_fitU(x, XTX, XTDX, XTFX, YTY_diag, YTDY_diag,\ YTFY_diag, XTY, XTDY, XTFY, np.log(snr)*2,\ l_idx,n_C,n_T,n_V,idx_param_fitU,n_C)[0], param0_fitU, vec) assert np.isclose( dd, np.dot(deriv0, vec), rtol=0.01), 'gradient of fitU wrt Cholesky factor incorrect' # We test the gradient wrt the reparametrization of AR(1) coefficient of noise. vec = np.zeros(np.size(param0_fitU)) vec[idx_param_fitU['a1'][0]] = 1 dd = nd.directionaldiff(lambda x: brsa._loglike_AR1_diagV_fitU(x, XTX, XTDX, XTFX, YTY_diag, YTDY_diag,\ YTFY_diag, XTY, XTDY, XTFY, np.log(snr)*2,\ l_idx,n_C,n_T,n_V,idx_param_fitU,n_C)[0], param0_fitU, vec) assert np.isclose( dd, np.dot(deriv0, vec), rtol=0.01), 'gradient of fitU wrt to AR(1) coefficient incorrect' # Test on a random direction vec = np.random.randn(np.size(param0_fitU)) vec = vec / np.linalg.norm(vec) dd = nd.directionaldiff(lambda x: brsa._loglike_AR1_diagV_fitU(x, XTX, XTDX, XTFX, YTY_diag, YTDY_diag,\ YTFY_diag, XTY, XTDY, XTFY, np.log(snr)*2,\ l_idx,n_C,n_T,n_V,idx_param_fitU,n_C)[0], param0_fitU, vec) assert np.isclose(dd, np.dot(deriv0, vec), rtol=0.01), 'gradient of fitU incorrect' # We test the gradient of _fitV wrt to log(SNR^2) assuming no GP prior. ll0, deriv0 = brsa._loglike_AR1_diagV_fitV( param0_fitV[idx_param_fitV['log_SNR2']], XTX, XTDX, XTFX, YTY_diag, YTDY_diag, YTFY_diag, XTY, XTDY, XTFY, L_full[l_idx], np.tan(rho1 * np.pi / 2), l_idx, n_C, n_T, n_V, idx_param_fitV, n_C, False, False) vec = np.zeros(np.size(param0_fitV[idx_param_fitV['log_SNR2']])) vec[idx_param_fitV['log_SNR2'][0]] = 1 dd = nd.directionaldiff( lambda x: brsa._loglike_AR1_diagV_fitV( x, XTX, XTDX, XTFX, YTY_diag, YTDY_diag, YTFY_diag, XTY, XTDY, XTFY, L_full[l_idx], np.tan(rho1 * np.pi / 2), l_idx, n_C, n_T, n_V, idx_param_fitV, n_C, False, False)[0], param0_fitV[idx_param_fitV['log_SNR2']], vec) assert np.isclose( dd, np.dot(deriv0, vec), rtol=0.01 ), 'gradient of fitV wrt log(SNR2) incorrect for model without GP' # We test the gradient of _fitV wrt to log(SNR^2) assuming GP prior. ll0, deriv0 = brsa._loglike_AR1_diagV_fitV(param0_fitV, XTX, XTDX, XTFX, YTY_diag, YTDY_diag, YTFY_diag, XTY, XTDY, XTFY, L_full[l_idx], np.tan(rho1 * np.pi / 2), l_idx, n_C, n_T, n_V, idx_param_fitV, n_C, True, True, dist2, inten_diff2, 100, 100) vec = np.zeros(np.size(param0_fitV)) vec[idx_param_fitV['log_SNR2'][0]] = 1 dd = nd.directionaldiff( lambda x: brsa._loglike_AR1_diagV_fitV( x, XTX, XTDX, XTFX, YTY_diag, YTDY_diag, YTFY_diag, XTY, XTDY, XTFY, L_full[l_idx], np.tan(rho1 * np.pi / 2), l_idx, n_C, n_T, n_V, idx_param_fitV, n_C, True, True, dist2, inten_diff2, 100, 100)[0], param0_fitV, vec) assert np.isclose( dd, np.dot(deriv0, vec), rtol=0.01 ), 'gradient of fitV srt log(SNR2) incorrect for model with GP' # We test the graident wrt spatial length scale parameter of GP prior vec = np.zeros(np.size(param0_fitV)) vec[idx_param_fitV['c_space']] = 1 dd = nd.directionaldiff( lambda x: brsa._loglike_AR1_diagV_fitV( x, XTX, XTDX, XTFX, YTY_diag, YTDY_diag, YTFY_diag, XTY, XTDY, XTFY, L_full[l_idx], np.tan(rho1 * np.pi / 2), l_idx, n_C, n_T, n_V, idx_param_fitV, n_C, True, True, dist2, inten_diff2, 100, 100)[0], param0_fitV, vec) assert np.isclose( dd, np.dot(deriv0, vec), rtol=0.01), 'gradient of fitV wrt spatial length scale of GP incorrect' # We test the graident wrt intensity length scale parameter of GP prior vec = np.zeros(np.size(param0_fitV)) vec[idx_param_fitV['c_inten']] = 1 dd = nd.directionaldiff( lambda x: brsa._loglike_AR1_diagV_fitV( x, XTX, XTDX, XTFX, YTY_diag, YTDY_diag, YTFY_diag, XTY, XTDY, XTFY, L_full[l_idx], np.tan(rho1 * np.pi / 2), l_idx, n_C, n_T, n_V, idx_param_fitV, n_C, True, True, dist2, inten_diff2, 100, 100)[0], param0_fitV, vec) assert np.isclose( dd, np.dot(deriv0, vec), rtol=0.01 ), 'gradient of fitV wrt intensity length scale of GP incorrect' # We test the graident on a random direction vec = np.random.randn(np.size(param0_fitV)) vec = vec / np.linalg.norm(vec) dd = nd.directionaldiff( lambda x: brsa._loglike_AR1_diagV_fitV( x, XTX, XTDX, XTFX, YTY_diag, YTDY_diag, YTFY_diag, XTY, XTDY, XTFY, L_full[l_idx], np.tan(rho1 * np.pi / 2), l_idx, n_C, n_T, n_V, idx_param_fitV, n_C, True, True, dist2, inten_diff2, 100, 100)[0], param0_fitV, vec) assert np.isclose(dd, np.dot(deriv0, vec), rtol=0.01), 'gradient of fitV incorrect'