コード例 #1
0
    def get_sub_neuron(self, bounding_box, spacing=None, origin=None):
        """Returns sub-neuron with node coordinates bounded by start and end

        Arguments
        ----------
        bounding_box : tuple or list or None
            Defines a bounding box around a sub-region around the neuron. Length 2
            tuple/list. First element is the coordinate of one corner (inclusive)
            and second element is the coordinate of the opposite corner (exclusive).
            Both coordinates are numpy.array([x,y,z])in voxel units.
        spacing : None, :class:`numpy.array` (default = None)
            Conversion factor (spatial units/voxel). Assumed to be np.array([x,y,z]).
            Provided if graph should convert to voxel coordinates first.  Default is None.
        origin : :class:`numpy.array`
            Origin of the spatial coordinate, if converting to voxels. Default is None.
            Assumed to be np.array([x,y,z])
        Returns
        -------
        G_sub : :class:`networkx.classes.digraph.DiGraph`
            Neuron from swc represented as directed graph. Coordinates x,y,z are
            node attributes accessed by keys 'x','y','z' respectively.

        Example
        -------
        >>> bounding_box=[[1,2,4],[1,2,3]]

        >>> #swc input, no spacing and origin
        >>> swc_trace.get_sub_neuron(bounding_box)
        >>> <networkx.classes.digraph.DiGraph at 0x7f81a95d1e50>
        """

        check_type(bounding_box, (tuple, list))

        if len(bounding_box) != 2:
            raise ValueError("Bounding box must be length 2")
        check_type(spacing, (type(None), np.ndarray))

        check_type(spacing, (type(None), np.ndarray))
        if type(spacing) == np.ndarray:
            check_size(spacing)
        check_type(origin, (type(None), np.ndarray))
        if type(origin) == np.ndarray:
            check_size(origin)

        # if origin isn't specified but spacing is, set origin to np.array([0, 0, 0])
        if type(spacing) == np.ndarray and origin is None:
            origin = np.array([0, 0, 0])

        # voxel conversion option
        if type(spacing) == np.ndarray:
            df_voxel = self._df_in_voxel(self.df, spacing, origin)
            G = self._df_to_graph(df_voxel)

        # no voxel conversion option
        else:
            G = self._df_to_graph(self.df)

        G_sub = self._get_sub_neuron(G, bounding_box)

        return G_sub
コード例 #2
0
def create_skel_segids(
        swc_dir: str,
        origin: Sequence[Union[int, float]]) -> Tuple[Skeleton, List[int]]:
    """Create skeletons to be uploaded as precomputed format

    Arguments:
        swc_dir: Path to consensus swc files.
        origin: x,y,z coordinate of coordinate frame in space in mircons.

    Returns:
        skeletons: .swc skeletons to be pushed to bucket.
        segids: List of ints for each swc's label.
    """
    check_type(swc_dir, str)
    check_size(origin)

    p = Path(swc_dir)
    files = [str(i) for i in p.glob("*.swc")]
    if len(files) == 0:
        raise FileNotFoundError(f"No .swc files found in {swc_dir}.")
    skeletons = []
    segids = []
    for i in tqdm(files, desc="converting swcs to neuroglancer format..."):
        skeletons.append(swc2skeleton(i, origin=origin))
        segids.append(skeletons[-1].id)
    return skeletons, segids
コード例 #3
0
def get_data_ranges(
    bin_path: List[List[str]],
    chunk_size: Tuple[int, int,
                      int]) -> Tuple[List[int], List[int], List[int]]:
    """Get ranges (x,y,z) for chunks to be stitched together in volume

    Arguments:
        bin_path: Binary paths to files.
        chunk_size: The size of chunk to get ranges over.
    Returns:
        x_range: x-coord int bounds.
        y_range: y-coord int bounds.
        z_range: z-coord int bounds.
    """
    for b in bin_path:
        check_binary_path(b)
    check_size(chunk_size)

    x_curr, y_curr, z_curr = 0, 0, 0
    tree_level = len(bin_path)
    print(bin_path)
    for idx, i in enumerate(bin_path):
        print(i)
        scale_factor = 2**(tree_level - idx - 1)
        x_curr += int(i[2]) * chunk_size[0] * scale_factor
        y_curr += int(i[1]) * chunk_size[1] * scale_factor
        # flip z axis so chunks go anterior to posterior
        z_curr += int(i[0]) * chunk_size[2] * scale_factor
    x_range = [x_curr, x_curr + chunk_size[0]]
    y_range = [y_curr, y_curr + chunk_size[1]]
    z_range = [z_curr, z_curr + chunk_size[2]]
    return x_range, y_range, z_range
コード例 #4
0
ファイル: upload.py プロジェクト: neurodata/brainlit
def create_skel_segids(
    swc_dir: str,
    origin: Sequence[Union[int, float]],
    benchmarking: Optional[bool] = False,
) -> Tuple[Skeleton, List[int]]:
    """Create skeletons to be uploaded as precomputed format

    Arguments:
        swc_dir: Path to consensus swc files.
        origin: x,y,z coordinate of coordinate frame in space in mircons.
        benchmarking: Optional, scales swc benchmarking data.

    Returns:
        skeletons: .swc skeletons to be pushed to bucket.
        segids: List of ints for each swc's label.
    """
    check_type(swc_dir, str)
    check_size(origin)
    check_type(benchmarking, bool)

    p = Path(swc_dir)
    files = [str(i) for i in p.glob("*.swc")]
    if len(files) == 0:
        raise FileNotFoundError(f"No .swc files found in {swc_dir}.")
    skeletons = []
    segids = []
    for i in tqdm(files, desc="converting swcs to neuroglancer format..."):
        swc_trace = NeuronTrace(path=i)
        skel = swc_trace.get_skel(benchmarking, origin=np.asarray(origin))

        skeletons.append(skel)
        segids.append(skeletons[-1].id)
    return skeletons, segids
コード例 #5
0
ファイル: tube_seg.py プロジェクト: neurodata/brainlit
def tubes_from_paths(
    size: Tuple[int, int, int],
    paths: List[List[int]],
    radius: Optional[Union[float, int]] = None,
):
    """Constructs tubes from list of paths.
    Returns densely labeled paths within the shape of the image.

    Arguments:
        size: The size of image to consider.
        paths: The list of paths. Each path is a list of points along the path (non-dense).
        radius: The radius of the line to draw. Default is None = 1 pixel wide line.
    """
    check_size(size)
    for path in paths:
        [check_iterable_type(vert, (int, np.integer)) for vert in path]
    if radius is not None:
        check_type(radius, (int, np.integer, float, np.float))
        if radius <= 0:
            raise ValueError(f"Radius {radius} must be positive.")

    def _within_img(line, size):
        arrline = np.array(line).astype(int)
        arrline = arrline[:, arrline[0, :] < size[0]]
        arrline = arrline[:, arrline[0, :] >= 0]
        arrline = arrline[:, arrline[1, :] < size[1]]
        arrline = arrline[:, arrline[1, :] >= 0]
        arrline = arrline[:, arrline[2, :] < size[2]]
        arrline = arrline[:, arrline[2, :] >= 0]
        return (arrline[0, :], arrline[1, :], arrline[2, :])

    coords = [[], [], []]
    for path in tqdm(paths):
        for i in range(len(path) - 1):
            line = draw.line_nd(path[i], path[i + 1])
            line = _within_img(line, size)
            if len(line) > 0:
                coords[0] = np.concatenate((coords[0], line[0]))
                coords[1] = np.concatenate((coords[1], line[1]))
                coords[2] = np.concatenate((coords[2], line[2]))

    try:
        coords = (coords[0].astype(int), coords[1].astype(int),
                  coords[2].astype(int))
    except AttributeError:  # if a list was passed
        coords = (coords[0], coords[1], coords[2])

    if radius is not None:
        line_array = np.ones(size, dtype=int)
        line_array[coords] = 0
        seg = distance_transform_edt(line_array)
        labels = np.where(seg <= radius, 1, 0)
    else:
        labels = np.zeros(size, dtype=int)
        labels[coords] = 1

    return labels
コード例 #6
0
    def get_paths(self, spacing=None, origin=None):
        """Converts dataframe in either spatial or voxel coordinates into a list of paths.
        Will convert to voxel coordinates if spacing is specified.

        Arguments
        ----------
        spacing : None, :class:`numpy.array` (default = None)
            Conversion factor (spatial units/voxel). Assumed to be np.array([x,y,z]).
            Provided if graph should convert to voxel coordinates first.  Default is None.
        origin : None, :class:`numpy.array`
            Origin of the spatial coordinate, if converting to voxels. Default is None.
            Assumed to be np.array([x,y,z])

        Returns
        -------
        paths : list
            List of Nx3 numpy.array. Rows of the array are 3D coordinates in voxel
            units. Each array is one path.

        Example
        -------
        >>> swc_trace.get_paths()[0][1:10]
        >>> array([[-52, -1, -1],
                    [-51, -1, 0],
                    [-51, -1, 0],
                    [-50, 0, 0],
                    [-50, 0, 0],
                    [-49, 0, 0],
                    [-48, 0, 0],
                    [-46, 0, 0],
                    [-46, 0, 0]], dtype=object)
        """
        check_type(spacing, (type(None), np.ndarray))
        if type(spacing) == np.ndarray:
            check_size(spacing)
        check_type(origin, (type(None), np.ndarray))
        if type(origin) == np.ndarray:
            check_size(origin)

        # if origin isn't specified but spacing is, set origin to np.array([0, 0, 0])
        if type(spacing) == np.ndarray and origin is None:
            origin = np.array([0, 0, 0])

        # voxel conversion option
        if type(spacing) == np.ndarray:
            df_voxel = self._df_in_voxel(self.df, spacing, origin)
            G = self._df_to_graph(df_voxel)

        # no voxel conversion option
        else:
            G = self._df_to_graph(self.df)

        paths = self._graph_to_paths(G)

        return paths
コード例 #7
0
    def get_graph(self, spacing=None, origin=None):
        """Converts dataframe in either spatial or voxel coordinates into a directed graph.
        Will convert to voxel coordinates if spacing is specified.

        Arguments
        ----------
        spacing : None, :class:`numpy.array` (default = None)
            Conversion factor (spatial units/voxel). Assumed to be np.array([x,y,z]).
            Provided if graph should convert to voxel coordinates first. Default is None.
        origin : None, :class:`numpy.array` (default = None)
            Origin of the spatial coordinate, if converting to voxels. Default is None.
            Assumed to be np.array([x,y,z])

        Returns
        -------
        G : :class:`networkx.classes.digraph.DiGraph`
            Neuron from swc represented as directed graph. Coordinates x,y,z are
            node attributes accessed by keys 'x','y','z' respectively.

        Example
        -------
        >>> swc_trace.get_graph()
        >>> <networkx.classes.digraph.DiGraph at 0x7f81a83937f0>
        """
        check_type(spacing, (type(None), np.ndarray))
        if type(spacing) == np.ndarray:
            check_size(spacing)
        check_type(origin, (type(None), np.ndarray))
        if type(origin) == np.ndarray:
            check_size(origin)

        # if origin isn't specified but spacing is, set origin to np.array([0, 0, 0])
        if type(spacing) == np.ndarray and origin is None:
            origin = np.array([0, 0, 0])

        # voxel conversion option
        if type(spacing) == np.ndarray:
            df_voxel = self._df_in_voxel(self.df, spacing, origin)
            G = self._df_to_graph(df_voxel)

        # no voxel conversion option
        else:
            G = self._df_to_graph(self.df)
        return G
コード例 #8
0
    def get_df_voxel(self, spacing, origin=np.array([0, 0, 0])):
        """Converts coordinates in pd.DataFrame from spatial units to voxel units

        Arguments
        ----------
        spacing : :class:`numpy.array`
            Conversion factor (spatial units/voxel). Assumed to be np.array([x,y,z])
        origin : :class:`numpy.array`
            Origin of the spatial coordinate. Default is (0,0,0). Assumed to be
            np.array([x,y,z])
        Returns
        -------
        df_voxel : :class:`pandas.DataFrame`
            Indicies, coordinates, and parents of each node in the swc. Coordinates
            are in voxel units.

        Example
        -------
        >>> swc_trace.get_df_voxel(spacing=np.asarray([2,2,2]))
        >>> sample    structure    x    y    z    r    parent
            0    1    0    -26    -1    -1    1.0    -1
            1    2    0    -26    -1    -1    1.0    1
            2    3    0    -26    -1    0    1.0    2
            3    4    0    -26    -1    0    1.0    3
            4    5    0    -25    0    0    1.0    4
            ...    ...    ...    ...    ...    ...    ...    ...
            148    149    0    23    7    -4    1.0    148
            149    150    0    23    7    -4    1.0    149
            150    151    0    23    7    -4    1.0    150
            151    152    0    24    8    -4    1.0    151
            152    153    6    24    8    -4    1.0    152
            153 rows × 7 columns


        """
        check_type(spacing, np.ndarray)
        check_size(spacing)
        check_type(origin, np.ndarray)
        check_size(origin)

        df_voxel = self._df_in_voxel(self.df, spacing, origin)
        return df_voxel
コード例 #9
0
def subsample(
    arr: np.ndarray, orig_shape: List[int], dest_shape: List[int]
) -> np.ndarray:
    """Subsamples a flattened neighborhood to a smaller flattened neighborhood.

    Arguments:
        arr: The flattened array
        orig_shape: The original shape of the array before flattening
        dest_shape: The desired shape of the array before flattening
    """
    check_type(arr, np.ndarray)
    if len(orig_shape) != len(dest_shape):
        raise ValueError("Mismatched in and out dimensions.")
    if np.prod(orig_shape) != len(arr):
        raise ValueError("Original shape is incorrect.")
    if len(orig_shape) == 3:
        check_size(orig_shape, dim=3)
    elif len(orig_shape) == 2:
        check_size(dest_shape, dim=2)
    else:
        raise NotImplementedError("Only 2 and 3 dimensions supported.")

    start = np.subtract(orig_shape, dest_shape) // 2
    end = start + dest_shape
    if len(orig_shape) == 2:
        idx = np.ravel_multi_index(
            (np.mgrid[start[0] : end[0], start[1] : end[1]].reshape(2, -1)), orig_shape
        )
    elif len(orig_shape) == 3:
        idx = np.ravel_multi_index(
            (
                np.mgrid[
                    start[0] : end[0], start[1] : end[1], start[2] : end[2]
                ].reshape(3, -1)
            ),
            orig_shape,
        )
    return arr[idx]
コード例 #10
0
    def get_skel(self, benchmarking=False, origin=None):
        """Gets a skeleton version of dataframe, if swc input is provided

        Arguments
        ----------
            origin : None, numpy array with shape (3,1) (default = None)
                origin of coordinate frame in microns, (default: None assumes (0,0,0) origin)
            benchmarking : bool
                For swc files, specifies whether swc file is from benchmarking dataset, to obtain skeleton ID
        Returns
        --------
            skel : cloudvolume.Skeleton
                Skeleton object of given SWC file

        Example
        -------
        >>> swc_trace.get_skel(benchmarking=True)
        >>> Skeleton(segid=, vertices=(shape=153, float32), edges=(shape=152, uint32), radius=(153, float32), vertex_types=(153, uint8), vertex_color=(153, float32), space='physical' transform=[[1.0, 0.0, 0.0, 0.0], [0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0]])
        """
        check_type(origin, (type(None), np.ndarray))
        check_type(benchmarking, bool)
        if type(origin) == np.ndarray:
            check_size(origin)

        if self.input_type == "swc":
            skel = self._swc2skeleton(self.path, benchmarking, origin)
            return skel
        elif self.input_type == "skel":
            cv = CloudVolume(
                self.path,
                mip=self.mip,
                fill_missing=self.fill_missing,
                use_https=self.use_https,
            )
            skel = cv.skeleton.get(self.seg_id)
            return skel
コード例 #11
0
    def get_sub_neuron_paths(self, bounding_box, spacing=None, origin=None):
        """Returns sub-neuron with node coordinates bounded by start and end

        Arguments
        ----------
        bounding_box : tuple or list or None
            Defines a bounding box around a sub-region around the neuron. Length 2
            tuple/list. First element is the coordinate of one corner (inclusive)
            and second element is the coordinate of the opposite corner (exclusive).
            Both coordinates are numpy.array([x,y,z])in voxel units.
        spacing : None, :class:`numpy.array` (default = None)
            Conversion factor (spatial units/voxel). Assumed to be np.array([x,y,z]).
            Provided if graph should convert to voxel coordinates first.  Default is None.
        origin : :class:`numpy.array`
            Origin of the spatial coordinate, if converting to voxels. Default is None.
            Assumed to be np.array([x,y,z])
        Returns
        -------
        paths : list
            List of Nx3 numpy.array. Rows of the array are 3D coordinates in voxel
            units. Each array is one path.

        Example
        -------
        >>> bounding_box=[[1,2,4],[1,2,3]]

        >>> #swc input, no spacing and origin
        >>> swc_trace.get_sub_neuron_paths(bounding_box)
        >>> array([], dtype=object)

        """

        check_type(bounding_box, (tuple, list))

        if len(bounding_box) != 2:
            raise ValueError("Bounding box must be length 2")
        check_type(spacing, (type(None), np.ndarray))

        check_type(spacing, (type(None), np.ndarray))
        if type(spacing) == np.ndarray:
            check_size(spacing)
        check_type(origin, (type(None), np.ndarray))
        if type(origin) == np.ndarray:
            check_size(origin)

        # if origin isn't specified but spacing is, set origin to np.array([0, 0, 0])
        if type(spacing) == np.ndarray and origin is None:
            origin = np.array([0, 0, 0])

        # voxel conversion option
        if type(spacing) == np.ndarray:
            df_voxel = self._df_in_voxel(self.df, spacing, origin)
            G = self._df_to_graph(df_voxel)

        # no voxel conversion option
        else:
            G = self._df_to_graph(self.df)

        G_sub = self._get_sub_neuron(G, bounding_box)

        paths = self._graph_to_paths(G_sub)

        return paths
コード例 #12
0
    def get_bfs_subgraph(self,
                         node_id,
                         depth,
                         df=None,
                         spacing=None,
                         origin=None):
        """
         Creates a spanning subgraph from a seed node and parent graph using BFS.

        Arguments
         ----------
         node_id : int
             The id of the node to use as a seed.
             If df is not None this become the node index.
         depth : int
             The max depth for BFS to traven in each direction.
         df : None, DataFrame (default = None)
             Dataframe storing indices.
             In some cases indexing by row number is preferred.
         spacing : None, :class:`numpy.array` (default = None)
             Conversion factor (spatial units/voxel). Assumed to be np.array([x,y,z]).
             Provided if graph should convert to voxel coordinates first.  Default is None.
         origin : :class:`numpy.array`
             Origin of the spatial coordinate, if converting to voxels. Default is None.
             Assumed to be np.array([x,y,z])

         Returns
         -------
         G_sub : :class:`networkx.classes.digraph.DiGraph`
             Subgraph

         tree : DiGraph
             The tree returned by BFS.

         paths : list
            List of Nx3 numpy.array. Rows of the array are 3D coordinates in voxel
            units. Each array is one path.

        Example
        -------
        >>> #swc input, specify node_id and depth
        >>> swc_trace.get_bfs_subgraph(node_id=11,depth=2)
        >>>(<networkx.classes.digraph.DiGraph at 0x7f7f2ce65670>,
            <networkx.classes.digraph.DiGraph at 0x7f7f2ce65370>,
            array([array([[4727, 4440, 3849],
                        [4732, 4442, 3850],
                        [4739, 4455, 3849]]),
                        array([[4732, 4442, 3850],
                        [4749, 4439, 3856]])], dtype=object))
        """

        check_type(node_id, (list, int))
        check_type(depth, int)
        check_type(df, (type(None), pd.core.frame.DataFrame))

        check_type(spacing, (type(None), np.ndarray))
        if type(spacing) == np.ndarray:
            check_size(spacing)
        check_type(origin, (type(None), np.ndarray))
        if type(origin) == np.ndarray:
            check_size(origin)

        # if origin isn't specified but spacing is, set origin to np.array([0, 0, 0])
        if type(spacing) == np.ndarray and origin is None:
            origin = np.array([0, 0, 0])

        # voxel conversion option
        if type(spacing) == np.ndarray:
            df_voxel = self._df_in_voxel(self.df, spacing, origin)
            G = self._df_to_graph(df_voxel)

        # no voxel conversion option
        else:
            G = self._df_to_graph(self.df)

        G_sub, tree = self._get_bfs_subgraph(G, node_id, depth, df)

        paths = self._graph_to_paths(G_sub)

        return G_sub, tree, paths
コード例 #13
0
def create_cloud_volume(
    precomputed_path: str,
    img_size: Sequence[int],
    voxel_size: Sequence[Union[int, float]],
    num_resolutions: int,
    chunk_size: Optional[Sequence[int]] = None,
    parallel: Optional[bool] = False,
    layer_type: Optional[str] = "image",
    dtype: Optional[str] = None,
    commit_info: Optional[bool] = True,
) -> CloudVolumePrecomputed:
    """Create CloudVolume object and info file.

    Handles both image volumes and segmentation volumes from octree structure.

    Arguments:
        precomputed_path: cloudvolume path
        img_size: x, y, z voxel dimensions of tiff images.
        voxel_size: x, y, z dimensions of highest res voxel size (nm).
        num_resolutions: The number of resolutions to upload.
        chunk_size: The size of chunks to use for upload. If None, uses img_size/2.
        parallel: Whether to upload chunks in parallel.
        layer_type: The type of cloudvolume object to create.
        dtype: The data type of the volume. If None, uses default for layer type.
        commit_info: Whether to create an info file at the path, defaults to True.
    Returns:
        vol: Volume designated for upload.
    """
    # defaults
    if chunk_size is None:
        chunk_size = [int(i / 4) for i in img_size]  # /2 took 42 hrs
    if dtype is None:
        if layer_type == "image":
            dtype = "uint16"
        elif layer_type == "segmentation" or layer_type == "annotation":
            dtype = "uint64"
        else:
            raise ValueError(
                f"layer type is {layer_type}, when it should be image or str")

    # check inputs
    check_precomputed(precomputed_path)
    check_size(img_size, allow_float=False)
    check_size(voxel_size)
    check_type(num_resolutions, (int, np.integer))
    if num_resolutions < 1:
        raise ValueError(
            f"Number of resolutions should be > 0, not {num_resolutions}")
    check_size(chunk_size)
    check_type(parallel, bool)
    check_type(layer_type, str)
    if layer_type not in ["image", "segmentation", "annotation"]:
        raise ValueError(
            f"{layer_type} should be 'image', 'segmentation', or 'annotation'")
    check_type(dtype, str)
    if dtype not in ["uint16", "uint64"]:
        raise ValueError(f"{dtype} should be 'uint16' or 'uint64'")
    check_type(commit_info, bool)

    info = CloudVolume.create_new_info(
        num_channels=1,
        layer_type=layer_type,
        data_type=dtype,  # Channel images might be 'uint8'
        encoding="raw",  # raw, jpeg, compressed_segmentation, fpzip, kempressed
        resolution=voxel_size,  # Voxel scaling, units are in nanometers
        voxel_offset=[0, 0, 0],  # x,y,z offset in voxels from the origin
        chunk_size=chunk_size,  # units are voxels
        volume_size=[i * 2**(num_resolutions - 1) for i in img_size],
    )
    vol = CloudVolume(precomputed_path, info=info, parallel=parallel)
    [
        vol.add_scale((2**i, 2**i, 2**i), chunk_size=chunk_size)
        for i in range(num_resolutions)
    ]
    if commit_info:
        vol.commit_info()
    if layer_type == "image" or layer_type == "annotation":
        vols = [
            CloudVolume(precomputed_path, mip=i, parallel=parallel)
            for i in range(num_resolutions - 1, -1, -1)
        ]
    elif layer_type == "segmentation":
        info.update(skeletons="skeletons")

        skel_info = {
            "@type":
            "neuroglancer_skeletons",
            "transform": [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0],
            "vertex_attributes": [
                {
                    "id": "radius",
                    "data_type": "float32",
                    "num_components": 1
                },
                {
                    "id": "vertex_types",
                    "data_type": "float32",
                    "num_components": 1
                },
                {
                    "id": "vertex_color",
                    "data_type": "float32",
                    "num_components": 4
                },
            ],
        }
        with storage.SimpleStorage(vol.cloudpath) as stor:
            stor.put_json(str(Path("skeletons") / "info"), skel_info)
        vols = [vol]
    return vols