コード例 #1
0
def result_str_4(task_metadata_zero_shots, additional_metadata):
    result = GateModelTaskResult(
        resultTypes=[
            ResultTypeValue(type=jaqcd.Probability(targets=[0]), value=[0.5, 0.5]),
            ResultTypeValue(
                type=jaqcd.StateVector(), value=[(0.70710678, 0), (0, 0), (0, 0), (0.70710678, 0)]
            ),
            ResultTypeValue(type=jaqcd.Expectation(observable=["y"], targets=[0]), value=0.0),
            ResultTypeValue(type=jaqcd.Variance(observable=["y"], targets=[0]), value=0.1),
            ResultTypeValue(type=jaqcd.Amplitude(states=["00"]), value={"00": (0.70710678, 0)}),
        ],
        measuredQubits=list(range(2)),
        taskMetadata=task_metadata_zero_shots,
        additionalMetadata=additional_metadata,
    )
    return result.json()
コード例 #2
0
def result_obj_4(task_metadata_zero_shots, additional_metadata):
    return GateModelTaskResult(
        resultTypes=[
            ResultTypeValue.construct(type=jaqcd.Probability(targets=[0]),
                                      value=np.array([0.5, 0.5])),
            ResultTypeValue.construct(
                type=jaqcd.StateVector(),
                value=np.array(
                    [complex(0.70710678, 0), 0, 0,
                     complex(0.70710678, 0)]),
            ),
            ResultTypeValue.construct(type=jaqcd.Expectation(observable=["y"],
                                                             targets=[0]),
                                      value=0.0),
            ResultTypeValue.construct(type=jaqcd.Variance(observable=["y"],
                                                          targets=[0]),
                                      value=0.1),
            ResultTypeValue.construct(type=jaqcd.Amplitude(states=["00"]),
                                      value={"00": complex(0.70710678, 0)}),
        ],
        measuredQubits=list(range(2)),
        taskMetadata=task_metadata_zero_shots,
        additionalMetadata=additional_metadata,
    )
コード例 #3
0
import itertools
import json
import random

import numpy as np
import pytest

import braket.ir.jaqcd as jaqcd
from braket.default_simulator.simulator import DefaultSimulator

results_data = [
    ([jaqcd.Expectation(observable=["x"])]),
    ([jaqcd.Probability(targets=[0, 1])]),
    ([jaqcd.Probability(),
      jaqcd.Variance(observable=["x"])]),
    ([jaqcd.Variance(observable=["z"], targets=[0])]),
]


@pytest.fixture
def generate_continuous_gates_circuit():
    def _generate_circuit(num_qubits, num_layers, results):
        instructions = []
        for layer in range(num_layers):
            for qubit in range(num_qubits):
                instructions.extend([
                    jaqcd.Rx(target=qubit, angle=0.15),
                    jaqcd.Ry(target=qubit, angle=0.16),
                    jaqcd.Rz(target=qubit, angle=0.17),
                ])
コード例 #4
0
def test_from_braket_result_type_tensor_product_insufficient():
    from_braket_result_type(jaqcd.Variance(targets=[0], observable=["h", "i"]))
コード例 #5
0
from braket.default_simulator.result_types import (
    Amplitude,
    Expectation,
    Probability,
    StateVector,
    Variance,
    from_braket_result_type,
)
from braket.ir import jaqcd
from braket.ir.jaqcd import shared_models

NUM_SAMPLES = 1000

observable_type_testdata = [
    (jaqcd.Expectation(targets=[1], observable=["x"]), Expectation),
    (jaqcd.Variance(targets=[1], observable=["y"]), Variance),
    (jaqcd.Variance(targets=[1], observable=["z"]), Variance),
    (jaqcd.Expectation(observable=["h"]), Expectation),
    (jaqcd.Variance(targets=[0], observable=[[[[0, 0], [1, 0]], [[1, 0], [0, 0]]]]), Variance),
    (jaqcd.Expectation(targets=[0, 1], observable=["h", "i"]), Expectation),
    (
        jaqcd.Variance(targets=[0, 1], observable=["h", [[[0, 0], [1, 0]], [[1, 0], [0, 0]]]]),
        Variance,
    ),
]


@pytest.fixture
def state_vector():
    multiplier = np.concatenate([np.ones(8), np.ones(8) * 1j])
    return ((np.arange(16) / 120) ** (1 / 2)) * multiplier
コード例 #6
0
    (
        jaqcd.Sample(observable=["z"]),
        [
            np.array([1, -1, -1, 1, -1, 1, 1, 1, 1, 1]),
            np.array([1, -1, 1, 1, -1, -1, 1, -1, 1, 1]),
            np.array([-1, -1, 1, -1, -1, -1, 1, -1, 1, 1]),
            np.array([1, -1, -1, 1, -1, -1, -1, -1, 1, -1]),
        ],
    ),
    (jaqcd.Expectation(targets=[1], observable=["z"]), 0.2),
    (jaqcd.Expectation(targets=[1],
                       observable=[[[[-1, 0], [0, 0]], [[0, 0], [1,
                                                                 0]]]]), -0.2),
    (jaqcd.Expectation(targets=[1, 2], observable=["z", "y"]), 0.6),
    (jaqcd.Expectation(observable=["z"]), [0.4, 0.2, -0.2, -0.4]),
    (jaqcd.Variance(targets=[1], observable=["z"]), 0.96),
    (jaqcd.Variance(targets=[1],
                    observable=[[[[-1, 0], [0, 0]], [[0, 0], [1, 0]]]]), 0.96),
    (jaqcd.Variance(targets=[1, 2], observable=["z", "y"]), 0.64),
    (jaqcd.Variance(observable=["z"]), [0.84, 0.96, 0.96, 0.84]),
]


def test_measurement_counts_from_measurements():
    measurements: np.ndarray = np.array([[1, 0, 1, 0], [0, 0, 0, 0],
                                         [1, 0, 1, 0], [1, 0, 0, 0],
                                         [1, 0, 0, 0], [1, 0, 1, 0]])
    measurement_counts = GateModelQuantumTaskResult.measurement_counts_from_measurements(
        measurements)
    expected_counts: Counter = {"1010": 3, "0000": 1, "1000": 2}
    assert expected_counts == measurement_counts