コード例 #1
0
 def __init__(self,
              probs=None,
              logits=None,
              name="Categorical",
              learnable=False,
              is_observed=False):
     self._type = "Categorical"
     if probs is not None and logits is None:
         ranges = {"p": geometric_ranges.Simplex()}
         super().__init__(name,
                          probs=probs,
                          learnable=learnable,
                          ranges=ranges,
                          is_observed=is_observed)
         self.distribution = distributions.CategoricalDistribution()
     elif logits is not None and probs is None:
         ranges = {"logits": geometric_ranges.UnboundedRange()}
         super().__init__(name,
                          logits=logits,
                          learnable=learnable,
                          ranges=ranges,
                          is_observed=is_observed)
         self.distribution = distributions.CategoricalDistribution()
     else:
         raise ValueError("Either probs or " +
                          "logits needs to be provided as input")
コード例 #2
0
 def __init__(self, tau, p, name, learnable=False):
     self._type = "Concrete"
     ranges = {
         "tau": geometric_ranges.RightHalfLine(0.),
         "p": geometric_ranges.Simplex()
     }
     super().__init__(name,
                      tau=tau,
                      p=p,
                      learnable=learnable,
                      ranges=ranges)
     self.distribution = distributions.ConcreteDistribution()
コード例 #3
0
 def __init__(self,
              p=None,
              softmax_p=None,
              name="Categorical",
              learnable=False):
     self._type = "Categorical"
     if p is not None and softmax_p is None:
         ranges = {"p": geometric_ranges.Simplex()}
         super().__init__(name, p=p, learnable=learnable, ranges=ranges)
         self.distribution = distributions.CategoricalDistribution()
     elif softmax_p is not None and p is None:
         ranges = {"softmax_p": geometric_ranges.UnboundedRange()}
         super().__init__(name,
                          softmax_p=softmax_p,
                          learnable=learnable,
                          ranges=ranges)
         self.distribution = distributions.CategoricalDistribution()
     else:
         raise ValueError("Either p or " +
                          "softmax_p needs to be provided as input")