コード例 #1
0
if os.path.exists(options.inp_file):
    inp_file = options.inp_file
else:
    inp_file = options.inp_dir + '/' + options.inp_file

hparams = {}
if options.hparams is not None:
    with open(options.hparams) as hf:
        hparams = json.loads(hf.read())

## read data
#columns = features + ['genPt']
columns = features + ['genEnergy']
#data = io.read_data(inp_file, columns = columns,data_columns=['NtupID'],where='NtupID<3000')
#data = io.read_data(inp_file, columns = columns,data_columns=['NtupID'],stop=1500000)
data = io.read_data(inp_file, columns=columns)
data.describe()
#data = io.read_data(inp_file, columns = columns)
#data = io.read_data(inp_file, columns = columns,where=['data_column[NtupID][:].values.reshape(-1)<300'])

data['full5x5_e5x5'] = data['full5x5_e5x5'] / data['scRawEnergy']
data['full5x5_eMax'] = data['full5x5_eMax'] / data['full5x5_e5x5']
data['full5x5_e2nd'] = data['full5x5_e2nd'] / data['full5x5_e5x5']
data['full5x5_eTop'] = data['full5x5_eTop'] / data['full5x5_e5x5']
data['full5x5_eBottom'] = data['full5x5_eBottom'] / data['full5x5_e5x5']
data['full5x5_eLeft'] = data['full5x5_eLeft'] / data['full5x5_e5x5']
data['full5x5_eRight'] = data['full5x5_eRight'] / data['full5x5_e5x5']
data['full5x5_e2x5Max'] = data['full5x5_e2x5Max'] / data['full5x5_e5x5']
data['full5x5_e2x5Left'] = data['full5x5_e2x5Left'] / data['full5x5_e5x5']
data['full5x5_e2x5Right'] = data['full5x5_e2x5Right'] / data['full5x5_e5x5']
data['full5x5_e2x5Top'] = data['full5x5_e2x5Top'] / data['full5x5_e5x5']
コード例 #2
0
parser = OptionParser(option_list=[
    make_option("--inp-dir",type='string',dest="inp_dir",default=os.environ['SCRATCH']+'/bregression'),
    make_option("--out-dir",type='string',dest="out_dir",default=None),
    make_option("--inp-file",type='string',dest='inp_file',default='ttbar_unweighted_full80M_selected.hd5'),
    make_option("--seed",type='int',dest='seed',default=87532),
    make_option("--test-frac",type='float',dest='test_frac',default=0.05),
    ])

## parse options
(options, args) = parser.parse_args()

if os.path.exists(options.inp_file):
    inp_file = options.inp_file
else:
    inp_file = options.inp_dir+'/'+options.inp_file

if options.out_dir is None:
    options.out_dir = os.path.dirname(inp_file)

data = io.read_data(inp_file, columns = None) #, stop = 100000 )

# split data
train,test = train_test_split(data,test_size=options.test_frac,random_state=options.seed)

fname = options.out_dir+'/'+os.path.basename(inp_file).rsplit(".",1)[0]

print(fname)

train.to_hdf(fname+"_train.hd5",key='train',mode='w',format='t')
test.to_hdf(fname+"_test.hd5",key='test',mode='w',format='t')
コード例 #3
0
parser = OptionParser(option_list=[
    make_option("--training",type='string',dest="training",default='HybridLoss'),
    make_option("--inp-dir",type='string',dest="inp_dir",default='/users/nchernya//HHbbgg_ETH/root_files/'),
    make_option("--target-dir",type='string',dest="target_dir",default='/scratch/snx3000/nchernya/bregression/NN_output/'),
    make_option("--inp-file",type='string',dest='inp_file',default='ttbar_RegressionPerJet_heppy_energyRings3_forTesting.hd5'),
    make_option("--out-dir",type='string',dest="out_dir",default='/scratch/snx3000/nchernya/bregression/output_root/'),
])

## parse options
(options, args) = parser.parse_args()
input_trainings = options.training.split(',')

# ## Read test data and model
# load data
data = io.read_data('%s%s'%(options.inp_dir,options.inp_file),columns=None)
data['Jet_pt']=data['Jet_pt']*data['Jet_rawEnergy']/data['Jet_e']*data['Jet_corr']
data['Jet_mt']=data['Jet_mt']*data['Jet_rawEnergy']/data['Jet_e']*data['Jet_corr']

for idx,name in enumerate(input_trainings):
    # list all model files in the training folder
#    target='/users/nchernya/HHbbgg_ETH/bregression/notebooks/'+input_trainings[idx]
  #  target=options.target_dir+input_trainings[idx]
    target=options.target_dir
    models = get_ipython().getoutput('ls -t $target/*.hdf5')
    models
  
    # read training configuration
    import json
    with open('%s/config.json' % target) as fin:
        config = json.loads(fin.read())
コード例 #4
0
    features = options.features.split(',')

inp_file_valid = options.inp_dir+'/'+options.inp_file_valid
inp_files=options.inp_files.split(',')
inp_files = [options.inp_dir+'/'+c.strip() for c in inp_files] 

hparams = {}
if options.hparams is not None:
    for fname in  options.hparams.split(','):
       with open(fname) as hf:
          pars = json.loads(hf.read())
          hparams.update(pars)    # if inside several files we change the same parameter, it will overwrite for the one in the last file    
    
## read data
columns = features + ['Jet_mcPt'] + ['Jet_corr_JEC'] + ['Jet_corr_JER']
data_valid = io.read_data(inp_file_valid, columns = None)
df_list = [io.read_data(inf,columns = None) for inf in inp_files]
for data in df_list:
  #  data['Jet_pt']=data['Jet_pt']/data['Jet_corr_JER']
  #  data['Jet_mt']=data['Jet_mt']/data['Jet_corr_JER']
    data['Jet_mcPt_Jet_pt']=data['Jet_mcPt']/data['Jet_pt']
    data=data.query('Jet_mcPt_Jet_pt < 10')
#data_valid['Jet_pt']=data_valid['Jet_pt']/data_valid['Jet_corr_JER']
#data_valid['Jet_mt']=data_valid['Jet_mt']/data_valid['Jet_corr_JER']

X_shape = (data_valid[features].values).shape[1:]
y_valid = (data_valid['Jet_mcPt']/data_valid['Jet_pt']).values.reshape(-1,1)
X_valid = data_valid[features].values


mygen = ffwd.Generator(df_list,options.batch_size,features,'Jet_mcPt_Jet_pt')