コード例 #1
0
def test_poissoninput():
    """
    Test collect_PoissonInput()
    """
    # test 1
    start_scope()
    v_th = 1 * volt
    grp = NeuronGroup(10, 'dv/dt = (v_th - v)/(10*ms) :volt', method='euler',
                      threshold='v>100*mV', reset='v=0*mV')
    poi = PoissonInput(grp, 'v', 10, 1*Hz, 'v_th * rand() + 1*mV')
    poi_dict = collect_PoissonInput(poi, get_local_namespace(0))
    assert poi_dict['target'] == grp.name
    assert poi_dict['rate'] == 1*Hz
    assert poi_dict['N'] == 10
    assert poi_dict['target_var'] == 'v'
    assert poi_dict['when'] == poi.when
    assert poi_dict['order'] == poi.order
    assert poi_dict['clock'] == poi.clock.dt
    assert poi_dict['identifiers']['v_th'] == v_th
    # test 2
    grp2 = NeuronGroup(10, 'dv_1_2_3/dt = (v_th - v_1_2_3)/(10*ms) :volt',
                       method='euler', threshold='v_1_2_3>v_th',
                       reset='v_1_2_3=-v_th')
    poi2 = PoissonInput(grp2, 'v_1_2_3', 0, 0*Hz, v_th)
    poi_dict = collect_PoissonInput(poi2, get_local_namespace(0))
    assert poi_dict['target'] == grp2.name
    assert poi_dict['rate'] == 0*Hz
    assert poi_dict['N'] == 0
    assert poi_dict['target_var'] == 'v_1_2_3'
    with pytest.raises(KeyError):
        poi_dict['identifiers']
コード例 #2
0
def test_ExportDevice_unsupported():
    """
    Test whether unsupported objects for standard format export
    are raising Error
    """
    start_scope()
    set_device('exporter')
    eqn = '''
    v = 1 :1
    g :1
    '''
    G = NeuronGroup(1, eqn)
    _ = PoissonInput(G, 'g', 1, 1 * Hz, 1)
    # with pytest.raises(NotImplementedError):
    run(10 * ms)
コード例 #3
0
def sim_decision_making_network(
        N_Excit=384,
        N_Inhib=96,
        weight_scaling_factor=5.33,
        t_stimulus_start=100 * b2.ms,
        t_stimulus_duration=9999 * b2.ms,
        coherence_level=0.,
        stimulus_update_interval=30 * b2.ms,
        mu0_mean_stimulus_Hz=160.,
        stimulus_std_Hz=20.,
        N_extern=1000,
        firing_rate_extern=9.8 * b2.Hz,
        w_pos=1.90,
        f_Subpop_size=0.25,  # .15 in publication [1]
        max_sim_time=1000. * b2.ms,
        stop_condition_rate=None,
        monitored_subset_size=512):
    """

    Args:
        N_Excit (int): total number of neurons in the excitatory population
        N_Inhib (int): nr of neurons in the inhibitory populations
        weight_scaling_factor: When increasing the number of neurons by 2, the weights should be scaled down by 1/2
        t_stimulus_start (Quantity): time when the stimulation starts
        t_stimulus_duration (Quantity): duration of the stimulation
        coherence_level (int): coherence of the stimulus.
            Difference in mean between the PoissonGroups "left" stimulus and "right" stimulus
        stimulus_update_interval (Quantity): the mean of the stimulating PoissonGroups is
            re-sampled at this interval
        mu0_mean_stimulus_Hz (float): maximum mean firing rate of the stimulus if c=+1 or c=-1. Each neuron
            in the populations "Left" and "Right" receives an independent poisson input.
        stimulus_std_Hz (float): std deviation of the stimulating PoissonGroups.
        N_extern (int): nr of neurons in the stimulus independent poisson background population
        firing_rate_extern (int): firing rate of the stimulus independent poisson background population
        w_pos (float): Scaling (strengthening) of the recurrent weights within the
            subpopulations "Left" and "Right"
        f_Subpop_size (float): fraction of the neurons in the subpopulations "Left" and "Right".
            #left = #right = int(f_Subpop_size*N_Excit).
        max_sim_time (Quantity): simulated time.
        stop_condition_rate (Quantity): An optional stopping criteria: If not None, the simulation stops if the
            firing rate of either subpopulation "Left" or "Right" is above stop_condition_rate.
        monitored_subset_size (int): max nr of neurons for which a state monitor is registered.

    Returns:

        A dictionary with the following keys (strings):
        "rate_monitor_A", "spike_monitor_A", "voltage_monitor_A", "idx_monitored_neurons_A", "rate_monitor_B",
         "spike_monitor_B", "voltage_monitor_B", "idx_monitored_neurons_B", "rate_monitor_Z", "spike_monitor_Z",
         "voltage_monitor_Z", "idx_monitored_neurons_Z", "rate_monitor_inhib", "spike_monitor_inhib",
         "voltage_monitor_inhib", "idx_monitored_neurons_inhib"

    """

    print("simulating {} neurons. Start: {}".format(N_Excit + N_Inhib,
                                                    time.ctime()))
    t_stimulus_end = t_stimulus_start + t_stimulus_duration

    N_Group_A = int(
        N_Excit * f_Subpop_size
    )  # size of the excitatory subpopulation sensitive to stimulus A
    N_Group_B = N_Group_A  # size of the excitatory subpopulation sensitive to stimulus B
    N_Group_Z = N_Excit - N_Group_A - N_Group_B  # (1-2f)Ne excitatory neurons do not respond to either stimulus.

    Cm_excit = 0.5 * b2.nF  # membrane capacitance of excitatory neurons
    G_leak_excit = 25.0 * b2.nS  # leak conductance
    E_leak_excit = -70.0 * b2.mV  # reversal potential
    v_spike_thr_excit = -50.0 * b2.mV  # spike condition
    v_reset_excit = -60.0 * b2.mV  # reset voltage after spike
    t_abs_refract_excit = 2. * b2.ms  # absolute refractory period

    # specify the inhibitory interneurons:
    # N_Inhib = 200
    Cm_inhib = 0.2 * b2.nF
    G_leak_inhib = 20.0 * b2.nS
    E_leak_inhib = -70.0 * b2.mV
    v_spike_thr_inhib = -50.0 * b2.mV
    v_reset_inhib = -60.0 * b2.mV
    t_abs_refract_inhib = 1.0 * b2.ms

    # specify the AMPA synapses
    E_AMPA = 0.0 * b2.mV
    tau_AMPA = 2.5 * b2.ms

    # specify the GABA synapses
    E_GABA = -70.0 * b2.mV
    tau_GABA = 5.0 * b2.ms

    # specify the NMDA synapses
    E_NMDA = 0.0 * b2.mV
    tau_NMDA_s = 100.0 * b2.ms
    tau_NMDA_x = 2. * b2.ms
    alpha_NMDA = 0.5 * b2.kHz

    # projections from the external population
    g_AMPA_extern2inhib = 1.62 * b2.nS
    g_AMPA_extern2excit = 2.1 * b2.nS

    # projectsions from the inhibitory populations
    g_GABA_inhib2inhib = weight_scaling_factor * 1.25 * b2.nS
    g_GABA_inhib2excit = weight_scaling_factor * 1.60 * b2.nS

    # projections from the excitatory population
    g_AMPA_excit2excit = weight_scaling_factor * 0.012 * b2.nS
    g_AMPA_excit2inhib = weight_scaling_factor * 0.015 * b2.nS
    g_NMDA_excit2excit = weight_scaling_factor * 0.040 * b2.nS
    g_NMDA_excit2inhib = weight_scaling_factor * 0.045 * b2.nS  # stronger projection to inhib.

    # weights and "adjusted" weights.
    w_neg = 1. - f_Subpop_size * (w_pos - 1.) / (1. - f_Subpop_size)
    # We use the same postsyn AMPA and NMDA conductances. Adjust the weights coming from different sources:
    w_ext2inhib = g_AMPA_extern2inhib / g_AMPA_excit2inhib
    w_ext2excit = g_AMPA_extern2excit / g_AMPA_excit2excit
    # other weights are 1
    # print("w_neg={}, w_ext2inhib={}, w_ext2excit={}".format(w_neg, w_ext2inhib, w_ext2excit))

    # Define the inhibitory population
    # dynamics:
    inhib_lif_dynamics = """
        s_NMDA_total : 1  # the post synaptic sum of s. compare with s_NMDA_presyn
        dv/dt = (
        - G_leak_inhib * (v-E_leak_inhib)
        - g_AMPA_excit2inhib * s_AMPA * (v-E_AMPA)
        - g_GABA_inhib2inhib * s_GABA * (v-E_GABA)
        - g_NMDA_excit2inhib * s_NMDA_total * (v-E_NMDA)/(1.0+1.0*exp(-0.062*v/volt)/3.57)
        )/Cm_inhib : volt (unless refractory)
        ds_AMPA/dt = -s_AMPA/tau_AMPA : 1
        ds_GABA/dt = -s_GABA/tau_GABA : 1
    """

    inhib_pop = NeuronGroup(N_Inhib,
                            model=inhib_lif_dynamics,
                            threshold="v>v_spike_thr_inhib",
                            reset="v=v_reset_inhib",
                            refractory=t_abs_refract_inhib,
                            method="rk2")
    # initialize with random voltages:
    inhib_pop.v = rnd.uniform(v_spike_thr_inhib / b2.mV - 4.,
                              high=v_spike_thr_inhib / b2.mV - 1.,
                              size=N_Inhib) * b2.mV

    # Specify the excitatory population:
    # dynamics:
    excit_lif_dynamics = """
        s_NMDA_total : 1  # the post synaptic sum of s. compare with s_NMDA_presyn
        dv/dt = (
        - G_leak_excit * (v-E_leak_excit)
        - g_AMPA_excit2excit * s_AMPA * (v-E_AMPA)
        - g_GABA_inhib2excit * s_GABA * (v-E_GABA)
        - g_NMDA_excit2excit * s_NMDA_total * (v-E_NMDA)/(1.0+1.0*exp(-0.062*v/volt)/3.57)
        )/Cm_excit : volt (unless refractory)
        ds_AMPA/dt = -s_AMPA/tau_AMPA : 1
        ds_GABA/dt = -s_GABA/tau_GABA : 1
        ds_NMDA/dt = -s_NMDA/tau_NMDA_s + alpha_NMDA * x * (1-s_NMDA) : 1
        dx/dt = -x/tau_NMDA_x : 1
    """

    # define the three excitatory subpopulations.
    # A: subpop receiving stimulus A
    excit_pop_A = NeuronGroup(N_Group_A,
                              model=excit_lif_dynamics,
                              threshold="v>v_spike_thr_excit",
                              reset="v=v_reset_excit",
                              refractory=t_abs_refract_excit,
                              method="rk2")
    excit_pop_A.v = rnd.uniform(E_leak_excit / b2.mV,
                                high=E_leak_excit / b2.mV + 5.,
                                size=excit_pop_A.N) * b2.mV

    # B: subpop receiving stimulus B
    excit_pop_B = NeuronGroup(N_Group_B,
                              model=excit_lif_dynamics,
                              threshold="v>v_spike_thr_excit",
                              reset="v=v_reset_excit",
                              refractory=t_abs_refract_excit,
                              method="rk2")
    excit_pop_B.v = rnd.uniform(E_leak_excit / b2.mV,
                                high=E_leak_excit / b2.mV + 5.,
                                size=excit_pop_B.N) * b2.mV
    # Z: non-sensitive
    excit_pop_Z = NeuronGroup(N_Group_Z,
                              model=excit_lif_dynamics,
                              threshold="v>v_spike_thr_excit",
                              reset="v=v_reset_excit",
                              refractory=t_abs_refract_excit,
                              method="rk2")
    excit_pop_Z.v = rnd.uniform(v_reset_excit / b2.mV,
                                high=v_spike_thr_excit / b2.mV - 1.,
                                size=excit_pop_Z.N) * b2.mV

    # now define the connections:
    # projections FROM EXTERNAL POISSON GROUP: ####################################################
    poisson2Inhib = PoissonInput(target=inhib_pop,
                                 target_var="s_AMPA",
                                 N=N_extern,
                                 rate=firing_rate_extern,
                                 weight=w_ext2inhib)
    poisson2A = PoissonInput(target=excit_pop_A,
                             target_var="s_AMPA",
                             N=N_extern,
                             rate=firing_rate_extern,
                             weight=w_ext2excit)

    poisson2B = PoissonInput(target=excit_pop_B,
                             target_var="s_AMPA",
                             N=N_extern,
                             rate=firing_rate_extern,
                             weight=w_ext2excit)
    poisson2Z = PoissonInput(target=excit_pop_Z,
                             target_var="s_AMPA",
                             N=N_extern,
                             rate=firing_rate_extern,
                             weight=w_ext2excit)

    ###############################################################################################

    # GABA projections FROM INHIBITORY population: ################################################
    syn_inhib2inhib = Synapses(inhib_pop,
                               target=inhib_pop,
                               on_pre="s_GABA += 1.0",
                               delay=0.5 * b2.ms)
    syn_inhib2inhib.connect(p=1.)
    syn_inhib2A = Synapses(inhib_pop,
                           target=excit_pop_A,
                           on_pre="s_GABA += 1.0",
                           delay=0.5 * b2.ms)
    syn_inhib2A.connect(p=1.)
    syn_inhib2B = Synapses(inhib_pop,
                           target=excit_pop_B,
                           on_pre="s_GABA += 1.0",
                           delay=0.5 * b2.ms)
    syn_inhib2B.connect(p=1.)
    syn_inhib2Z = Synapses(inhib_pop,
                           target=excit_pop_Z,
                           on_pre="s_GABA += 1.0",
                           delay=0.5 * b2.ms)
    syn_inhib2Z.connect(p=1.)
    ###############################################################################################

    # AMPA projections FROM EXCITATORY A: #########################################################
    syn_AMPA_A2A = Synapses(excit_pop_A,
                            target=excit_pop_A,
                            on_pre="s_AMPA += w_pos",
                            delay=0.5 * b2.ms)
    syn_AMPA_A2A.connect(p=1.)
    syn_AMPA_A2B = Synapses(excit_pop_A,
                            target=excit_pop_B,
                            on_pre="s_AMPA += w_neg",
                            delay=0.5 * b2.ms)
    syn_AMPA_A2B.connect(p=1.)
    syn_AMPA_A2Z = Synapses(excit_pop_A,
                            target=excit_pop_Z,
                            on_pre="s_AMPA += 1.0",
                            delay=0.5 * b2.ms)
    syn_AMPA_A2Z.connect(p=1.)
    syn_AMPA_A2inhib = Synapses(excit_pop_A,
                                target=inhib_pop,
                                on_pre="s_AMPA += 1.0",
                                delay=0.5 * b2.ms)
    syn_AMPA_A2inhib.connect(p=1.)
    ###############################################################################################

    # AMPA projections FROM EXCITATORY B: #########################################################
    syn_AMPA_B2A = Synapses(excit_pop_B,
                            target=excit_pop_A,
                            on_pre="s_AMPA += w_neg",
                            delay=0.5 * b2.ms)
    syn_AMPA_B2A.connect(p=1.)
    syn_AMPA_B2B = Synapses(excit_pop_B,
                            target=excit_pop_B,
                            on_pre="s_AMPA += w_pos",
                            delay=0.5 * b2.ms)
    syn_AMPA_B2B.connect(p=1.)
    syn_AMPA_B2Z = Synapses(excit_pop_B,
                            target=excit_pop_Z,
                            on_pre="s_AMPA += 1.0",
                            delay=0.5 * b2.ms)
    syn_AMPA_B2Z.connect(p=1.)
    syn_AMPA_B2inhib = Synapses(excit_pop_B,
                                target=inhib_pop,
                                on_pre="s_AMPA += 1.0",
                                delay=0.5 * b2.ms)
    syn_AMPA_B2inhib.connect(p=1.)
    ###############################################################################################

    # AMPA projections FROM EXCITATORY Z: #########################################################
    syn_AMPA_Z2A = Synapses(excit_pop_Z,
                            target=excit_pop_A,
                            on_pre="s_AMPA += 1.0",
                            delay=0.5 * b2.ms)
    syn_AMPA_Z2A.connect(p=1.)
    syn_AMPA_Z2B = Synapses(excit_pop_Z,
                            target=excit_pop_B,
                            on_pre="s_AMPA += 1.0",
                            delay=0.5 * b2.ms)
    syn_AMPA_Z2B.connect(p=1.)
    syn_AMPA_Z2Z = Synapses(excit_pop_Z,
                            target=excit_pop_Z,
                            on_pre="s_AMPA += 1.0",
                            delay=0.5 * b2.ms)
    syn_AMPA_Z2Z.connect(p=1.)
    syn_AMPA_Z2inhib = Synapses(excit_pop_Z,
                                target=inhib_pop,
                                on_pre="s_AMPA += 1.0",
                                delay=0.5 * b2.ms)
    syn_AMPA_Z2inhib.connect(p=1.)
    ###############################################################################################

    # NMDA projections FROM EXCITATORY to INHIB, A,B,Z
    @network_operation()
    def update_nmda_sum():
        sum_sNMDA_A = sum(excit_pop_A.s_NMDA)
        sum_sNMDA_B = sum(excit_pop_B.s_NMDA)
        sum_sNMDA_Z = sum(excit_pop_Z.s_NMDA)
        # note the _ at the end of s_NMDA_total_ disables unit checking
        inhib_pop.s_NMDA_total_ = (1.0 * sum_sNMDA_A + 1.0 * sum_sNMDA_B +
                                   1.0 * sum_sNMDA_Z)
        excit_pop_A.s_NMDA_total_ = (w_pos * sum_sNMDA_A +
                                     w_neg * sum_sNMDA_B + w_neg * sum_sNMDA_Z)
        excit_pop_B.s_NMDA_total_ = (w_neg * sum_sNMDA_A +
                                     w_pos * sum_sNMDA_B + w_neg * sum_sNMDA_Z)
        excit_pop_Z.s_NMDA_total_ = (1.0 * sum_sNMDA_A + 1.0 * sum_sNMDA_B +
                                     1.0 * sum_sNMDA_Z)

    # set a self-recurrent synapse to introduce a delay when updating the intermediate
    # gating variable x
    syn_x_A2A = Synapses(excit_pop_A,
                         excit_pop_A,
                         on_pre="x += 1.",
                         delay=0.5 * b2.ms)
    syn_x_A2A.connect(j="i")
    syn_x_B2B = Synapses(excit_pop_B,
                         excit_pop_B,
                         on_pre="x += 1.",
                         delay=0.5 * b2.ms)
    syn_x_B2B.connect(j="i")
    syn_x_Z2Z = Synapses(excit_pop_Z,
                         excit_pop_Z,
                         on_pre="x += 1.",
                         delay=0.5 * b2.ms)
    syn_x_Z2Z.connect(j="i")
    ###############################################################################################

    # Define the stimulus: two PoissonInput with time time-dependent mean.
    poissonStimulus2A = PoissonGroup(N_Group_A, 0. * b2.Hz)
    syn_Stim2A = Synapses(poissonStimulus2A,
                          excit_pop_A,
                          on_pre="s_AMPA+=w_ext2excit")
    syn_Stim2A.connect(j="i")
    poissonStimulus2B = PoissonGroup(N_Group_B, 0. * b2.Hz)
    syn_Stim2B = Synapses(poissonStimulus2B,
                          excit_pop_B,
                          on_pre="s_AMPA+=w_ext2excit")
    syn_Stim2B.connect(j="i")

    @network_operation(dt=stimulus_update_interval)
    def update_poisson_stimulus(t):
        if t >= t_stimulus_start and t < t_stimulus_end:
            offset_A = mu0_mean_stimulus_Hz * (0.5 + 0.5 * coherence_level)
            offset_B = mu0_mean_stimulus_Hz * (0.5 - 0.5 * coherence_level)

            rate_A = numpy.random.normal(offset_A, stimulus_std_Hz)
            rate_A = (max(0, rate_A)) * b2.Hz  # avoid negative rate
            rate_B = numpy.random.normal(offset_B, stimulus_std_Hz)
            rate_B = (max(0, rate_B)) * b2.Hz

            poissonStimulus2A.rates = rate_A
            poissonStimulus2B.rates = rate_B
            # print("stim on. rate_A= {}, rate_B = {}".format(rate_A, rate_B))
        else:
            # print("stim off")
            poissonStimulus2A.rates = 0.
            poissonStimulus2B.rates = 0.

    ###############################################################################################

    def get_monitors(pop, monitored_subset_size):
        """
        Internal helper.
        Args:
            pop:
            monitored_subset_size:

        Returns:

        """
        monitored_subset_size = min(monitored_subset_size, pop.N)
        idx_monitored_neurons = sample(range(pop.N), monitored_subset_size)
        rate_monitor = PopulationRateMonitor(pop)
        # record parameter: record=idx_monitored_neurons is not supported???
        spike_monitor = SpikeMonitor(pop, record=idx_monitored_neurons)
        voltage_monitor = StateMonitor(pop, "v", record=idx_monitored_neurons)
        return rate_monitor, spike_monitor, voltage_monitor, idx_monitored_neurons

    # collect data of a subset of neurons:
    rate_monitor_inhib, spike_monitor_inhib, voltage_monitor_inhib, idx_monitored_neurons_inhib = \
        get_monitors(inhib_pop, monitored_subset_size)

    rate_monitor_A, spike_monitor_A, voltage_monitor_A, idx_monitored_neurons_A = \
        get_monitors(excit_pop_A, monitored_subset_size)

    rate_monitor_B, spike_monitor_B, voltage_monitor_B, idx_monitored_neurons_B = \
        get_monitors(excit_pop_B, monitored_subset_size)

    rate_monitor_Z, spike_monitor_Z, voltage_monitor_Z, idx_monitored_neurons_Z = \
        get_monitors(excit_pop_Z, monitored_subset_size)

    if stop_condition_rate is None:
        b2.run(max_sim_time)
    else:
        sim_sum = 0. * b2.ms
        sim_batch = 100. * b2.ms
        samples_in_batch = int(floor(sim_batch / b2.defaultclock.dt))
        avg_rate_in_batch = 0
        while (sim_sum < max_sim_time) and (avg_rate_in_batch <
                                            stop_condition_rate):
            b2.run(sim_batch)
            avg_A = numpy.mean(rate_monitor_A.rate[-samples_in_batch:])
            avg_B = numpy.mean(rate_monitor_B.rate[-samples_in_batch:])
            avg_rate_in_batch = max(avg_A, avg_B)
            sim_sum += sim_batch

    print("sim end: {}".format(time.ctime()))
    ret_vals = dict()

    ret_vals["rate_monitor_A"] = rate_monitor_A
    ret_vals["spike_monitor_A"] = spike_monitor_A
    ret_vals["voltage_monitor_A"] = voltage_monitor_A
    ret_vals["idx_monitored_neurons_A"] = idx_monitored_neurons_A

    ret_vals["rate_monitor_B"] = rate_monitor_B
    ret_vals["spike_monitor_B"] = spike_monitor_B
    ret_vals["voltage_monitor_B"] = voltage_monitor_B
    ret_vals["idx_monitored_neurons_B"] = idx_monitored_neurons_B

    ret_vals["rate_monitor_Z"] = rate_monitor_Z
    ret_vals["spike_monitor_Z"] = spike_monitor_Z
    ret_vals["voltage_monitor_Z"] = voltage_monitor_Z
    ret_vals["idx_monitored_neurons_Z"] = idx_monitored_neurons_Z

    ret_vals["rate_monitor_inhib"] = rate_monitor_inhib
    ret_vals["spike_monitor_inhib"] = spike_monitor_inhib
    ret_vals["voltage_monitor_inhib"] = voltage_monitor_inhib
    ret_vals["idx_monitored_neurons_inhib"] = idx_monitored_neurons_inhib

    return ret_vals
コード例 #4
0
def simulate_brunel_network(
        N_Excit=5000,
        N_Inhib=None,
        N_extern=N_POISSON_INPUT,
        connection_probability=CONNECTION_PROBABILITY_EPSILON,
        w0=SYNAPTIC_WEIGHT_W0,
        g=RELATIVE_INHIBITORY_STRENGTH_G,
        synaptic_delay=SYNAPTIC_DELAY,
        poisson_input_rate=POISSON_INPUT_RATE,
        w_external=None,
        v_rest=V_REST,
        v_reset=V_RESET,
        firing_threshold=FIRING_THRESHOLD,
        membrane_time_scale=MEMBRANE_TIME_SCALE,
        abs_refractory_period=ABSOLUTE_REFRACTORY_PERIOD,
        monitored_subset_size=100,
        random_vm_init=False,
        sim_time=100.*b2.ms):
    """
    Fully parametrized implementation of a sparsely connected network of LIF neurons (Brunel 2000)

    Args:
        N_Excit (int): Size of the excitatory popluation
        N_Inhib (int): optional. Size of the inhibitory population.
            If not set (=None), N_Inhib is set to N_excit/4.
        N_extern (int): optional. Number of presynaptic excitatory poisson neurons. Note: if set to a value,
            this number does NOT depend on N_Excit and NOT depend on connection_probability (this is different
            from the book and paper. Only if N_extern is set to 'None', then N_extern is computed as
            N_Excit*connection_probability.
        connection_probability (float): probability to connect to any of the (N_Excit+N_Inhib) neurons
            CE = connection_probability*N_Excit
            CI = connection_probability*N_Inhib
            Cexternal = N_extern
        w0 (float): Synaptic strength J
        g (float): relative importance of inhibition. J_exc = w0. J_inhib = -g*w0
        synaptic_delay (Quantity): Delay between presynaptic spike and postsynaptic increase of v_m
        poisson_input_rate (Quantity): Poisson rate of the external population
        w_external (float): optional. Synaptic weight of the excitatory external poisson neurons onto all
            neurons in the network. Default is None, in that case w_external is set to w0, which is the
            standard value in the book and in the paper Brunel2000.
            The purpose of this parameter is to see the effect of external input in the
            absence of network feedback(setting w0 to 0mV and w_external>0).
        v_rest (Quantity): Resting potential
        v_reset (Quantity): Reset potential
        firing_threshold (Quantity): Spike threshold
        membrane_time_scale (Quantity): tau_m
        abs_refractory_period (Quantity): absolute refractory period, tau_ref
        monitored_subset_size (int): nr of neurons for which a VoltageMonitor is recording Vm
        random_vm_init (bool): if true, the membrane voltage of each neuron is initialized with a
            random value drawn from Uniform(v_rest, firing_threshold)
        sim_time (Quantity): Simulation time

    Returns:
        (rate_monitor, spike_monitor, voltage_monitor, idx_monitored_neurons)
        PopulationRateMonitor: Rate Monitor
        SpikeMonitor: SpikeMonitor for ALL (N_Excit+N_Inhib) neurons
        StateMonitor: membrane voltage for a selected subset of neurons
        list: index of monitored neurons. length = monitored_subset_size
    """
    if N_Inhib is None:
        N_Inhib = int(N_Excit/4)
    if N_extern is None:
        N_extern = int(N_Excit*connection_probability)
    if w_external is None:
        w_external = w0

    J_excit = w0
    J_inhib = -g*w0

    lif_dynamics = """
    dv/dt = -(v-v_rest) / membrane_time_scale : volt (unless refractory)"""

    network = NeuronGroup(
        N_Excit+N_Inhib, model=lif_dynamics,
        threshold="v>firing_threshold", reset="v=v_reset", refractory=abs_refractory_period,
        method="linear")
    if random_vm_init:
        network.v = random.uniform(v_rest/b2.mV, high=firing_threshold/b2.mV, size=(N_Excit+N_Inhib))*b2.mV
    else:
        network.v = v_rest
    excitatory_population = network[:N_Excit]
    inhibitory_population = network[N_Excit:]

    exc_synapses = Synapses(excitatory_population, target=network, on_pre="v += J_excit", delay=synaptic_delay)
    exc_synapses.connect(p=connection_probability)

    inhib_synapses = Synapses(inhibitory_population, target=network, on_pre="v += J_inhib", delay=synaptic_delay)
    inhib_synapses.connect(p=connection_probability)

    external_poisson_input = PoissonInput(target=network, target_var="v", N=N_extern,
                                          rate=poisson_input_rate, weight=w_external)

    # collect data of a subset of neurons:
    monitored_subset_size = min(monitored_subset_size, (N_Excit+N_Inhib))
    idx_monitored_neurons = sample(range(N_Excit+N_Inhib), monitored_subset_size)
    rate_monitor = PopulationRateMonitor(network)
    # record= some_list is not supported? :-(
    spike_monitor = SpikeMonitor(network, record=idx_monitored_neurons)
    voltage_monitor = StateMonitor(network, "v", record=idx_monitored_neurons)

    b2.run(sim_time)
    return rate_monitor, spike_monitor, voltage_monitor, idx_monitored_neurons
コード例 #5
0
def simulate_wm(
        N_excitatory=2048, N_inhibitory=512,
        N_extern_poisson=1000, poisson_firing_rate=1.8 * Hz, 
        sigma_weight_profile=14.4, Jpos_excit2excit=1.63,
        stimulus1_center_deg=180, stimulus2_center_deg=235, 
        stimulus_width_deg=60, stimulus_strength=0.07 * namp,
        t_stimulus1_start=0 * ms, t_stimulus2_start=4000 * ms,
        t_stimulus_duration=0 * ms,
        t_delay1=3000 * ms, t_delay2=3000 * ms, 
        t_iti_duration=300 * ms, sim_time=2000. * ms,
        monitored_subset_size=1024):
    """
    Args:
        N_excitatory (int): Size of the excitatory population
        N_inhibitory (int): Size of the inhibitory population
        weight_scaling_factor (float): weight prefactor. When increasing the size of the populations,
            the synaptic weights have to be decreased. Using the default values, we have
            N_excitatory*weight_scaling_factor = 2048 and N_inhibitory*weight_scaling_factor=512
        N_extern_poisson (int): Size of the external input population (Poisson input)
        poisson_firing_rate (Quantity): Firing rate of the external population
        sigma_weight_profile (float): standard deviation of the gaussian input profile in
            the excitatory population.
        Jpos_excit2excit (float): Strength of the recurrent input within the excitatory population.
            Jneg_excit2excit is computed from sigma_weight_profile, Jpos_excit2excit and the normalization
            condition.
        stimulus_center_deg (float): Center of the stimulus in [0, 360]
        stimulus_width_deg (float): width of the stimulus. All neurons in
            stimulus_center_deg +- (stimulus_width_deg/2) receive the same input current
        stimulus_strength (Quantity): Input current to the neurons at stimulus_center_deg +- (stimulus_width_deg/2)
        t_stimulus_start (Quantity): time when the input stimulus is turned on
        t_stimulus_duration (Quantity): duration of the stimulus.
        monitored_subset_size (int): nr of neurons for which a Spike- and Voltage monitor is registered.
        sim_time (Quantity): simulation time

    Returns:

       results (tuple):
       rate_monitor_excit (Brian2 PopulationRateMonitor for the excitatory population),
        spike_monitor_excit, voltage_monitor_excit, idx_monitored_neurons_excit,\
        rate_monitor_inhib, spike_monitor_inhib, voltage_monitor_inhib, idx_monitored_neurons_inhib,\
        weight_profile_45 (The weights profile for the neuron with preferred direction = 45deg).
    """

    global par

    print par

    devices.device.seed(os.getpid())
    # specify the excitatory pyramidal cells:
    Cm_excit                    = 0.5 * nF  # membrane capacitance of excitatory neurons
    G_leak_excit                = 25.0 * nS  # leak conductance
    E_leak_excit                = -70.0 * mV  # reversal potential
    v_firing_threshold_excit    = -50.0 * mV  # spike condition
    v_reset_excit               = -60.0 * mV  # reset voltage after spike
    t_abs_refract_excit         = 2.0 * ms  # absolute refractory period

    # specify the weight profile in the recurrent population
    # std-dev of the gaussian weight profile around the prefered direction
    # sigma_weight_profile = 12.0  # std-dev of the gaussian weight profile around the prefered direction
    # Jneg_excit2excit = 0

    # specify the inhibitory interneurons:
    Cm_inhib                    = 0.2 * nF
    G_leak_inhib                = 20.0 * nS
    E_leak_inhib                = -70.0 * mV
    v_firing_threshold_inhib    = -50.0 * mV
    v_reset_inhib               = -60.0 * mV
    t_abs_refract_inhib         = 1.0 * ms

    # specify the AMPA synapses
    E_AMPA      = 0.0 * mV
    tau_AMPA    = 2.0 * ms

    # specify the GABA synapses
    E_GABA      = -70.0 * mV
    tau_GABA    = 10.0 * ms

    # specify the NMDA synapses
    E_NMDA      = 0.0 * mV
    tau_NMDA_s  = 100.0 * ms 
    tau_NMDA_x  = 2.0 * ms
    alpha_NMDA  = 0.5 * kHz

    weight_scaling_factor = 2048./N_excitatory

    # projections from the external population
    G_extern2inhib  = 2.38 * nS
    G_extern2excit  = 3.1 * nS

    # projectsions from the inhibitory populations
    G_inhib2inhib   = weight_scaling_factor * 1.024 * nS
    G_inhib2excit   = weight_scaling_factor * 1.336 * nS

    # projections from the excitatory population NMDA
    G_excit2excit   = weight_scaling_factor * 0.28 * nS #nmda+ampa
    G_excit2inhib   = par*weight_scaling_factor * 0.212 * nS  # nmda+ampa

    # recurrent AMPA
    G_excit2excitA  = weight_scaling_factor * 1.* 0.251 * nS  #ampa
    GEEA            = G_excit2excitA/G_extern2excit
    G_excit2inhibA  = weight_scaling_factor * 0.192 * nS  #ampa
    GEIA            = G_excit2inhibA/G_extern2inhib

    # STDP
    taupre      = 20 * ms
    taupost     = 20 * ms
    wmax        = 2. #1.1
    Apre        = 0.00022 #0.00025 #set to zero to deactivate STDP # 0.02 
    Apost       = Apre #-Apre *taupre/taupost*1.03 #1.4 #negative for LTD, positive for LTP
    stp_decay   = 0.04#25 #0.025
#    Apost      = Apre *taupre/taupost #negative for LTD, positive for LTP

    # compute the simulus index
    stim1_center_idx = int(round(N_excitatory / 360. * stimulus1_center_deg))
    stim1_width_idx  = int(round(N_excitatory / 360. * stimulus_width_deg / 2))
    stim1_target_idx = [idx % N_excitatory
                       for idx in
                       range(stim1_center_idx - stim1_width_idx, stim1_center_idx + stim1_width_idx + 1)]

    stim2_center_idx = int(round(N_excitatory / 360. * stimulus2_center_deg))
    stim2_width_idx  = int(round(N_excitatory / 360. * stimulus_width_deg / 2))
    stim2_target_idx = [idx % N_excitatory
                       for idx in
                       range(stim2_center_idx - stim2_width_idx, stim2_center_idx + stim2_width_idx + 1)]

    # precompute the weight profile for the recurrent population
    tmp                     = math.sqrt(2. * math.pi) * sigma_weight_profile * erf(180. / math.sqrt(2.) / sigma_weight_profile) / 360.
    Jneg_excit2excit        = (1. - Jpos_excit2excit * tmp) / (1. - tmp)
    presyn_weight_kernel    = [(Jneg_excit2excit + (Jpos_excit2excit - Jneg_excit2excit) *
                               math.exp(-.5 * (360. * min(nj, N_excitatory - nj) / N_excitatory) ** 2 / sigma_weight_profile ** 2))
                               for nj in 
                               range(N_excitatory)]
    fft_presyn_weight_kernel = rfft(presyn_weight_kernel)

    # define the inhibitory population
    a = 0.062/mV
    inhib_lif_dynamics = """
        s_NMDA_total : 1  # the post synaptic sum of s. compare with s_NMDA_presyn
        dv/dt = (
        - G_leak_inhib * (v-E_leak_inhib)
        - G_extern2inhib * s_AMPA * (v-E_AMPA)
        - G_inhib2inhib * s_GABA * (v-E_GABA)
        - G_excit2inhib * s_NMDA_total * (v-E_NMDA)/(1.0+1.0*exp(-a*v)/3.57)
        )/Cm_inhib : volt (unless refractory)
        ds_AMPA/dt = -s_AMPA/tau_AMPA : 1
        ds_GABA/dt = -s_GABA/tau_GABA : 1
    """

    inhib_pop = NeuronGroup(
        N_inhibitory, model=inhib_lif_dynamics,
        threshold="v>v_firing_threshold_inhib", reset="v=v_reset_inhib", refractory=t_abs_refract_inhib,
        method="rk2")
    # initialize with random voltages:
    inhib_pop.v     = np.random.uniform(v_reset_inhib / mV, high=v_firing_threshold_inhib / mV,
                                       size=N_inhibitory) * mV
    # set the connections: inhib2inhib
    syn_inhib2inhib = Synapses(inhib_pop, target=inhib_pop, on_pre="s_GABA += 1.0", delay=0.0 * ms)
    syn_inhib2inhib.connect(condition="i!=j", p=1.0)
#    syn_inhib2inhib.connect(p=1.0)
    # set the connections: extern2inhib
    input_ext2inhib = PoissonInput(target=inhib_pop, target_var="s_AMPA",
                                   N=N_extern_poisson, rate=poisson_firing_rate, weight=1.0)

    # specify the excitatory population:
    excit_lif_dynamics = """
        I_stim : amp
        s_NMDA_total : 1  # the post synaptic sum of s. compare with s_NMDA_presyn
        dv/dt = (
        - G_leak_excit * (v-E_leak_excit)
        - G_extern2excit * s_AMPA * (v-E_AMPA)
        - G_inhib2excit * s_GABA * (v-E_GABA)
        - G_excit2excit * s_NMDA_total * (v-E_NMDA)/(1.0+1.0*exp(-a*v)/3.57)
        + I_stim
        )/Cm_excit : volt (unless refractory)
        ds_AMPA/dt = -s_AMPA/tau_AMPA : 1
        ds_GABA/dt = -s_GABA/tau_GABA : 1
        ds_NMDA/dt = -s_NMDA/tau_NMDA_s + alpha_NMDA * x * (1-s_NMDA) : 1
        dx/dt = -x/tau_NMDA_x : 1
    """

    excit_pop = NeuronGroup(N_excitatory, model=excit_lif_dynamics,
                            threshold="v>v_firing_threshold_excit", reset="v=v_reset_excit",
                            refractory=t_abs_refract_excit, method="rk2")
    # initialize with random voltages:
    excit_pop.v = np.random.uniform(v_reset_excit / mV, high=v_firing_threshold_excit / mV,
                                       size=N_excitatory) * mV
    excit_pop.I_stim = 0. * namp
    # set the connections: extern2excit
    input_ext2excit = PoissonInput(target=excit_pop, target_var="s_AMPA",
                                   N=N_extern_poisson, rate=poisson_firing_rate, weight=1.0)

    # set the connections: inhibitory to excitatory
    syn_inhib2excit = Synapses(inhib_pop, excit_pop, on_pre="s_GABA += 1.0")
    syn_inhib2excit.connect(p=1.0)

    # set the connections: excitatory to inhibitory NMDA connections
    syn_excit2inhib = Synapses(excit_pop, inhib_pop,
                               model="s_NMDA_total_post = s_NMDA_pre : 1 (summed)", method="rk2")
    syn_excit2inhib.connect(p=1.0)

    # # set the connections: UNSTRUCTURED excitatory to excitatory
    # syn_excit2excit = Synapses(excit_pop, excit_pop,
    #        model= "s_NMDA_total_post = s_NMDA_pre : 1 (summed)", method="rk2")
    # syn_excit2excit.connect(condition="i!=j", p=1.)

    # set the STRUCTURED recurrent AMPA input
    # equations for weights, trace decay
    synapse_eqs = '''
    w : 1
    stp : 1
    dapre/dt = -apre/ taupre : 1 (event-driven)
    dapost/dt = -apost / taupost : 1 (event-driven)
    '''

    # equations for presynaptic spike
    eqs_pre = '''
    s_AMPA_post += w*stp
    x_pre += (1.0/N_excitatory)*stp
    apre += Apre
    stp = clip(stp + apost - stp_decay * (stp - 1.), 0, wmax)
    '''

    # equations for postsynaptic spike
    eqs_post = '''
    apost += Apost
    stp = clip(stp + apre, 0, wmax)
    '''

    syn_excit2excit = Synapses(excit_pop, excit_pop, synapse_eqs, on_pre=eqs_pre, on_post=eqs_post)
    syn_excit2excit.connect(condition='i!=j',p=1.0)
    syn_excit2excit.stp=1.0
    syn_excit2excit.w['abs(i-j)<N_excitatory/2'] = 'GEEA *(Jneg_excit2excit + (Jpos_excit2excit - Jneg_excit2excit) * exp(-.5 * (360. * abs(i-j) / N_excitatory) ** 2 / sigma_weight_profile ** 2))'
    syn_excit2excit.w['abs(i-j)>=N_excitatory/2'] = 'GEEA *(Jneg_excit2excit + (Jpos_excit2excit - Jneg_excit2excit) * exp(-.5 * (360. * (N_excitatory - abs(i-j)) / N_excitatory) ** 2 / sigma_weight_profile ** 2))'

    syn_excit2inhibA = Synapses(excit_pop, inhib_pop, model="w : 1", on_pre="s_AMPA_post += w")
    syn_excit2inhibA.connect(p=1.0)
    syn_excit2inhibA.w = GEIA


    # set the STRUCTURED recurrent NMDA input. use a network_operation
    @network_operation()
    def update_nmda_sum():
        fft_s_NMDA = rfft(excit_pop.s_NMDA)
        fft_s_NMDA_total = np.multiply(fft_presyn_weight_kernel, fft_s_NMDA)
        s_NMDA_tot = irfft(fft_s_NMDA_total,N_excitatory)
        excit_pop.s_NMDA_total_ = s_NMDA_tot
        # excit_pop.s_NMDA_total = s_NMDA_tot
        # inhib_pop.s_NMDA_total = fft_s_NMDA[0]

    @network_operation(dt=100 * ms)
    def time_counter(t):
        print(t)

    @network_operation(dt=1 * ms)
    def stimulate_network(t):
        if t >= t_stimulus1_start and t < t_stimulus1_start+t_stimulus_duration:
            excit_pop.I_stim[stim1_target_idx] = stimulus_strength
        elif t >= t_stimulus1_start+t_stimulus_duration and t < t_stimulus1_start+t_stimulus_duration+t_delay1:
            excit_pop.I_stim = 0. * namp
        elif t >= t_stimulus1_start+t_stimulus_duration+t_delay1 and t < t_stimulus1_start+t_stimulus_duration+t_delay1+t_stimulus_duration:
            excit_pop.I_stim = -1.*stimulus_strength
        elif t >= t_stimulus2_start-t_iti_duration and t < t_stimulus2_start:
            excit_pop.I_stim = 0. * namp
        elif t >= t_stimulus2_start and t < t_stimulus2_start+t_stimulus_duration:
            excit_pop.I_stim[stim2_target_idx] = stimulus_strength
        else:
            #syn_excit2excit.sgn=-1.0  # neuromodulation change
            excit_pop.I_stim = 0. * namp

    def get_monitors(pop, nr_monitored, N):
        nr_monitored = min(nr_monitored, (N))
        idx_monitored_neurons = [int(math.ceil(k))
             for k in np.linspace(0, N - 1, nr_monitored + 2)][1:-1]  # sample(range(N), nr_monitored)
        # rate_monitor    = PopulationRateMonitor(pop)
        spike_monitor   = SpikeMonitor(pop, record=idx_monitored_neurons)
        # voltage_monitor = StateMonitor(pop, "v", record=idx_monitored_neurons)
        synapse_monitor = StateMonitor(syn_excit2excit, "stp", record=syn_excit2excit[stim1_center_idx,stim1_center_idx-10:stim1_center_idx+10], dt=1*ms)
        # return rate_monitor, spike_monitor, voltage_monitor, idx_monitored_neurons, synapse_monitor
        return spike_monitor, synapse_monitor

    # collect data of a subset of neurons:
    spike_monitor_excit, synapse_monitor_excit = get_monitors(excit_pop, monitored_subset_size, N_excitatory)
    run(sim_time)

    return spike_monitor_excit, synapse_monitor_excit
コード例 #6
0
def mk_intcircuit(task_info):
    """
    Creates the 'winner-takes-all' network described in Wang 2002.

    returns:
        groups, synapses, update_nmda, subgroups

    groups, synapses and update_nmda have to be added to the "Network" in order to run the simulation
    subgroups is used for establishing connections between the sensory and integration circuit;
    do not add subgroups to the "Network"

    psr following the published Brian1 code in DB model from Wimmer et al. 2015
    - brian2 code
    - PoissonInput for external connections
    - no more network_operations
    - implementation runs in cpp_standalone mode, compatible with SNEP
    """
    # -------------------------------------
    # Decision circuit parameters
    # -------------------------------------
    # populations
    N_E = task_info['dec']['populations'][
        'N_E']  # number of exc neurons (1600)
    N_I = task_info['dec']['populations']['N_I']  # number of inh neurons (400)
    sub = task_info['dec']['populations'][
        'sub']  # fraction of stim-selective exc neurons
    N_D1 = int(N_E * sub)  # size of exc pop D1
    N_D2 = N_D1  # size of exc pop D2
    N_D3 = int(N_E * (1 - 2 * sub))  # size of exc pop D3, the rest

    # local recurrent connections
    w_p = task_info['dec']['connectivity'][
        'w_p']  # relative synaptic strength of synapses within pop D1 and D2
    w_m = 1 - sub * (w_p - 1) / (
        1 - sub)  # relative synaptic strength of synapses across pop D1 and D2
    gEEa = task_info['dec']['connectivity'][
        'gEEa']  # AMPA weight of EE synapses
    gEEn = task_info['dec']['connectivity'][
        'gEEn']  # NMDA weight of EE synapses
    gEIa = task_info['dec']['connectivity'][
        'gEIa']  # AMPA weight of EI synapses
    gEIn = task_info['dec']['connectivity'][
        'gEIn']  # NMDA weight of EI synapses
    gIE = task_info['dec']['connectivity'][
        'gIE']  # GABA weight of IE synapses, vs 1.3*nS from before
    gII = task_info['dec']['connectivity']['gII']  # GABA weight of II synapses
    d = task_info['dec']['connectivity'][
        'delay']  # transmission delays of E synapses

    # external connections
    gXE = task_info['dec']['connectivity'][
        'gXE']  # weight of XE (ext to exc) synapses
    gXI = task_info['dec']['connectivity'][
        'gXI']  # weight of XI (ext to inh) synapses

    # neuron models
    CmE = task_info['dec']['neuron'][
        'CmE']  # membrane capacitance of E neurons
    CmI = task_info['dec']['neuron'][
        'CmI']  # membrane capacitance of I neurons
    gleakE = task_info['dec']['neuron'][
        'gleakE']  # leak conductance of E neurons
    gleakI = task_info['dec']['neuron'][
        'gleakI']  # leak conductance of I neurons
    Vl = task_info['dec']['neuron']['Vl']  # resting potential
    Vt = task_info['dec']['neuron']['Vt']  # spiking threshold
    Vr = task_info['dec']['neuron']['Vr']  # reset potential
    tau_refE = task_info['dec']['neuron'][
        'tau_refE']  # absolute refractory period of E neurons
    tau_refI = task_info['dec']['neuron'][
        'tau_refI']  # absolute refractory period of I neurons
    nu_ext = task_info['dec']['neuron'][
        'nu_ext']  # firing rate of ext Poisson input to D1 and D2
    nu_ext1 = task_info['dec']['neuron'][
        'nu_ext1']  # firing rate of ext Poisson input to D3 and DI

    # synapse models
    VrevE = task_info['dec']['synapse'][
        'VrevE']  # reversal potential for E synapses
    VrevI = task_info['dec']['synapse'][
        'VrevI']  # reversal potential for I synapses
    tau_ampa = task_info['dec']['synapse'][
        'tau_ampa']  # decay constant of AMPA conductances
    tau_gaba = task_info['dec']['synapse'][
        'tau_gaba']  # decay constant of GABA conductances
    tau_nmda_d = task_info['dec']['synapse'][
        'tau_nmda_d']  # decay constant of NMDA conductances
    tau_nmda_r = task_info['dec']['synapse'][
        'tau_nmda_r']  # rise constant of NMDA conductances
    alpha_nmda = task_info['dec']['synapse'][
        'alpha_nmda']  # saturation constant of NMDA conductances

    # namespace with params
    paramint = {
        'w_p': w_p,
        'w_m': w_m,
        'gEEa': gEEa,
        'gEEn': gEEn,
        'gEIa': gEIa,
        'gEIn': gEIn,
        'gIE': gIE,
        'gII': gII,
        'gXE': gXE,
        'gXI': gXI,
        'gleakE': gleakE,
        'gleakI': gleakI,
        'Vl': Vl,
        'Vt': Vt,
        'Vr': Vr,
        'VrevE': VrevE,
        'VrevI': VrevI,
        'tau_ampa': tau_ampa,
        'tau_gaba': tau_gaba,
        'tau_nmda_d': tau_nmda_d,
        'tau_nmda_r': tau_nmda_r,
        'alpha_nmda': alpha_nmda,
        'sub': sub,
        'CmE': CmE,
        'CmI': CmI
    }

    # numerical integration method
    nummethod = task_info['simulation']['nummethod']

    # -------------------------------------
    # Set up the model and connections
    # -------------------------------------
    # neuron equations
    eqsE = '''
            dV/dt = (-g_ea*(V-VrevE) - g_ent*(V-VrevE)/(1+exp(-V/mV*0.062)/3.57) - g_i*(V-VrevI) - (V-Vl)) / tau : volt (unless refractory)
            dg_ea/dt = -g_ea / tau_ampa     : 1
            dg_i/dt  = -g_i / tau_gaba      : 1
            dg_en/dt = -g_en / tau_nmda_d + alpha_nmda * x_en *(1-g_en) : 1
            dx_en/dt = -x_en / tau_nmda_r   : 1
            g_ent               : 1
            tau = CmE/gleakE    : second
            label : integer (constant)
            '''

    eqsI = '''
            dV/dt = (-g_ea*(V-VrevE) - g_entI*(V-VrevE)/(1+exp(-V/mV*0.062)/3.57) - g_i*(V-VrevI) - (V-Vl)) / tau : volt (unless refractory)
            dg_ea/dt = -g_ea/tau_ampa       : 1
            dg_i/dt  = -g_i/tau_gaba        : 1
            g_entI = w_nmda * g_ent         : 1
            g_ent               : 1 (linked)
            w_nmda              : 1
            tau = CmI/gleakI    : second
            '''

    # setup of integration circuit
    decE = NeuronGroup(N_E,
                       model=eqsE,
                       method=nummethod,
                       threshold='V>=Vt',
                       reset='V=Vr',
                       refractory=tau_refE,
                       namespace=paramint,
                       name='decE')
    decE1 = decE[:N_D1]
    decE2 = decE[N_D1:N_D1 + N_D2]
    decE3 = decE[-N_D3:]
    decE1.label = 1
    decE2.label = 2
    decE3.label = 3

    decI = NeuronGroup(N_I,
                       model=eqsI,
                       method=nummethod,
                       threshold='V>=Vt',
                       reset='V=Vr',
                       refractory=tau_refI,
                       namespace=paramint,
                       name='decI')

    # weight according the different subgroups
    condsame = '(label_pre == label_post and label_pre != 3)'
    conddiff = '(label_pre != label_post and label_pre != 3) or (label_pre == 3 and label_post != 3)'
    condrest = '(label_post == 3)'

    # NMDA: exc --> exc
    eqsNMDA = '''
            g_ent_post = w_nmda * g_en_pre      : 1 (summed)
            w_nmda  : 1 (constant)
            w       : 1 (constant)
            '''

    synDEDEn = Synapses(decE,
                        decE,
                        model=eqsNMDA,
                        method=nummethod,
                        on_pre='x_en += w',
                        delay=d,
                        namespace=paramint,
                        name='synDEDEn')
    synDEDEn.connect()
    synDEDEn.w['i == j'] = 1
    synDEDEn.w['i != j'] = 0
    synDEDEn.w_nmda[condsame] = 'w_p * gEEn/gleakE'
    synDEDEn.w_nmda[conddiff] = 'w_m * gEEn/gleakE'
    synDEDEn.w_nmda[condrest] = 'gEEn/gleakE'

    # NMDA: exc --> inh
    decI.w_nmda = '(gEIn/gleakI) / (gEEn/gleakE)'
    decI.g_ent = linked_var(decE3, 'g_ent', index=range(N_I))

    # AMPA: exc --> exc
    synDEDEa = Synapses(decE,
                        decE,
                        model='w : 1',
                        method=nummethod,
                        on_pre='g_ea += w',
                        delay=d,
                        namespace=paramint,
                        name='synDEDEa')
    synDEDEa.connect()
    synDEDEa.w[condsame] = 'w_p * gEEa/gleakE'
    synDEDEa.w[conddiff] = 'w_m * gEEa/gleakE'
    synDEDEa.w[condrest] = 'gEEa/gleakE'

    # AMPA: exc --> inh
    synDEDIa = Synapses(decE,
                        decI,
                        model='w : 1',
                        method=nummethod,
                        on_pre='g_ea += w',
                        delay=d,
                        namespace=paramint,
                        name='synDEDIa')
    synDEDIa.connect()
    synDEDIa.w = 'gEIa/gleakI'

    # GABA: inh --> exc
    synDIDE = Synapses(decI,
                       decE,
                       model='w : 1',
                       method=nummethod,
                       on_pre='g_i += w',
                       delay=d,
                       namespace=paramint,
                       name='synDIDE')
    synDIDE.connect()
    synDIDE.w = 'gIE/gleakE'

    # GABA: inh --> inh
    synDIDI = Synapses(decI,
                       decI,
                       model='w : 1',
                       method=nummethod,
                       on_pre='g_i += w',
                       delay=d,
                       namespace=paramint,
                       name='synDIDI')
    synDIDI.connect()
    synDIDI.w = 'gII/gleakI'

    # external inputs and connections
    extE = PoissonInput(decE[:N_D1 + N_D2],
                        'g_ea',
                        N=1,
                        rate=nu_ext1,
                        weight='gXE/gleakE')
    extE3 = PoissonInput(decE3, 'g_ea', N=1, rate=nu_ext, weight='gXE/gleakE')
    extI = PoissonInput(decI, 'g_ea', N=1, rate=nu_ext, weight='gXI/gleakI')

    # variables to return
    groups = {'DE': decE, 'DI': decI, 'DX': extE, 'DX3': extE3, 'DXI': extI}
    subgroups = {'DE1': decE1, 'DE2': decE2, 'DE3': decE3}
    synapses = {
        'synDEDEn': synDEDEn,
        'synDEDEa': synDEDEa,
        'synDEDIa': synDEDIa,
        'synDIDE': synDIDE,
        'synDIDI': synDIDI
    }  # 'synDEDIn': synDEDIn,

    return groups, synapses, subgroups
コード例 #7
0
def simulate_wm(
        N_excitatory=1024, N_inhibitory=256,
        N_extern_poisson=1000, poisson_firing_rate=1.4 * b2.Hz, weight_scaling_factor=2.,
        sigma_weight_profile=20., Jpos_excit2excit=1.6,
        stimulus_center_deg=180, stimulus_width_deg=40, stimulus_strength=0.07 * b2.namp,
        t_stimulus_start=0 * b2.ms, t_stimulus_duration=0 * b2.ms,
        monitored_subset_size=1024, sim_time=800. * b2.ms):
    """
    Args:
        N_excitatory (int): Size of the excitatory population
        N_inhibitory (int): Size of the inhibitory population
        weight_scaling_factor (float): weight prefactor. When increasing the size of the populations,
            the synaptic weights have to be decreased. Using the default values, we have
            N_excitatory*weight_scaling_factor = 2048 and N_inhibitory*weight_scaling_factor=512
        N_extern_poisson (int): Size of the external input population (Poisson input)
        poisson_firing_rate (Quantity): Firing rate of the external population
        sigma_weight_profile (float): standard deviation of the gaussian input profile in
            the excitatory population.
        Jpos_excit2excit (float): Strength of the recurrent input within the excitatory population.
            Jneg_excit2excit is computed from sigma_weight_profile, Jpos_excit2excit and the normalization
            condition.
        stimulus_center_deg (float): Center of the stimulus in [0, 360]
        stimulus_width_deg (float): width of the stimulus. All neurons in
            stimulus_center_deg +\- (stimulus_width_deg/2) receive the same input current
        stimulus_strength (Quantity): Input current to the neurons at stimulus_center_deg +\- (stimulus_width_deg/2)
        t_stimulus_start (Quantity): time when the input stimulus is turned on
        t_stimulus_duration (Quantity): duration of the stimulus.
        monitored_subset_size (int): nr of neurons for which a Spike- and Voltage monitor is registered.
        sim_time (Quantity): simulation time

    Returns:

       results (tuple):
       rate_monitor_excit (Brian2 PopulationRateMonitor for the excitatory population),
        spike_monitor_excit, voltage_monitor_excit, idx_monitored_neurons_excit,\
        rate_monitor_inhib, spike_monitor_inhib, voltage_monitor_inhib, idx_monitored_neurons_inhib,\
        weight_profile_45 (The weights profile for the neuron with preferred direction = 45deg).
    """
    # specify the excitatory pyramidal cells:
    Cm_excit = 0.5 * b2.nF  # membrane capacitance of excitatory neurons
    G_leak_excit = 25.0 * b2.nS  # leak conductance
    E_leak_excit = -70.0 * b2.mV  # reversal potential
    v_firing_threshold_excit = -50.0 * b2.mV  # spike condition
    v_reset_excit = -60.0 * b2.mV  # reset voltage after spike
    t_abs_refract_excit = 2.0 * b2.ms  # absolute refractory period

    # specify the weight profile in the recurrent population
    # std-dev of the gaussian weight profile around the prefered direction
    # sigma_weight_profile = 12.0  # std-dev of the gaussian weight profile around the prefered direction

    #
    # Jneg_excit2excit = 0

    # specify the inhibitory interneurons:
    Cm_inhib = 0.2 * b2.nF
    G_leak_inhib = 20.0 * b2.nS
    E_leak_inhib = -70.0 * b2.mV
    v_firing_threshold_inhib = -50.0 * b2.mV
    v_reset_inhib = -60.0 * b2.mV
    t_abs_refract_inhib = 1.0 * b2.ms

    # specify the AMPA synapses
    E_AMPA = 0.0 * b2.mV
    tau_AMPA = .9 * 2.0 * b2.ms

    # specify the GABA synapses
    E_GABA = -70.0 * b2.mV
    tau_GABA = 10.0 * b2.ms

    # specify the NMDA synapses
    E_NMDA = 0.0 * b2.mV
    tau_NMDA_s = .65 * 100.0 * b2.ms  # orig: 100
    tau_NMDA_x = .94 * 2.0 * b2.ms
    alpha_NMDA = 0.5 * b2.kHz

    # projections from the external population
    G_extern2inhib = 2.38 * b2.nS
    G_extern2excit = 3.1 * b2.nS

    # projectsions from the inhibitory populations
    G_inhib2inhib = weight_scaling_factor * .35 * 1.024 * b2.nS
    G_inhib2excit = weight_scaling_factor * .35 * 1.336 * b2.nS

    # projections from the excitatory population
    G_excit2excit = weight_scaling_factor * .35 * 0.381 * b2.nS
    G_excit2inhib = weight_scaling_factor * .35 * 1.2 * 0.292 * b2.nS  # todo: verify this scaling

    t_stimulus_end = t_stimulus_start + t_stimulus_duration
    # compute the simulus index
    stim_center_idx = int(round(N_excitatory / 360. * stimulus_center_deg))
    stim_width_idx = int(round(N_excitatory / 360. * stimulus_width_deg / 2))
    stim_target_idx = [idx % N_excitatory
                       for idx in
                       range(stim_center_idx - stim_width_idx, stim_center_idx + stim_width_idx + 1)]

    # precompute the weight profile for the recurrent population
    tmp = math.sqrt(2. * math.pi) * sigma_weight_profile * erf(180. / math.sqrt(2.) / sigma_weight_profile) / 360.
    Jneg_excit2excit = (1. - Jpos_excit2excit * tmp) / (1. - tmp)
    presyn_weight_kernel = \
        [(Jneg_excit2excit +
          (Jpos_excit2excit - Jneg_excit2excit) *
          math.exp(-.5 * (360. * min(j, N_excitatory - j) / N_excitatory) ** 2 / sigma_weight_profile ** 2))
         for j in range(N_excitatory)]
    # validate the normalization condition: (360./N_excitatory)*sum(presyn_weight_kernel)/360.
    fft_presyn_weight_kernel = rfft(presyn_weight_kernel)
    weight_profile_45 = deque(presyn_weight_kernel)
    rot_dist = int(round(len(weight_profile_45) / 8))
    weight_profile_45.rotate(rot_dist)

    # define the inhibitory population
    inhib_lif_dynamics = """
        s_NMDA_total : 1  # the post synaptic sum of s. compare with s_NMDA_presyn
        dv/dt = (
        - G_leak_inhib * (v-E_leak_inhib)
        - G_extern2inhib * s_AMPA * (v-E_AMPA)
        - G_inhib2inhib * s_GABA * (v-E_GABA)
        - G_excit2inhib * s_NMDA_total * (v-E_NMDA)/(1.0+1.0*exp(-0.062*v/volt)/3.57)
        )/Cm_inhib : volt (unless refractory)
        ds_AMPA/dt = -s_AMPA/tau_AMPA : 1
        ds_GABA/dt = -s_GABA/tau_GABA : 1
    """

    inhib_pop = NeuronGroup(
        N_inhibitory, model=inhib_lif_dynamics,
        threshold="v>v_firing_threshold_inhib", reset="v=v_reset_inhib", refractory=t_abs_refract_inhib,
        method="rk2")
    # initialize with random voltages:
    inhib_pop.v = numpy.random.uniform(v_reset_inhib / b2.mV, high=v_firing_threshold_inhib / b2.mV,
                                       size=N_inhibitory) * b2.mV
    # set the connections: inhib2inhib
    syn_inhib2inhib = Synapses(inhib_pop, target=inhib_pop, on_pre="s_GABA += 1.0", delay=0.0 * b2.ms)
    syn_inhib2inhib.connect(condition="i!=j", p=1.0)
    # set the connections: extern2inhib
    input_ext2inhib = PoissonInput(target=inhib_pop, target_var="s_AMPA",
                                   N=N_extern_poisson, rate=poisson_firing_rate, weight=1.0)

    # specify the excitatory population:
    excit_lif_dynamics = """
        I_stim : amp
        s_NMDA_total : 1  # the post synaptic sum of s. compare with s_NMDA_presyn
        dv/dt = (
        - G_leak_excit * (v-E_leak_excit)
        - G_extern2excit * s_AMPA * (v-E_AMPA)
        - G_inhib2excit * s_GABA * (v-E_GABA)
        - G_excit2excit * s_NMDA_total * (v-E_NMDA)/(1.0+1.0*exp(-0.062*v/volt)/3.57)
        + I_stim
        )/Cm_excit : volt (unless refractory)
        ds_AMPA/dt = -s_AMPA/tau_AMPA : 1
        ds_GABA/dt = -s_GABA/tau_GABA : 1
        ds_NMDA/dt = -s_NMDA/tau_NMDA_s + alpha_NMDA * x * (1-s_NMDA) : 1
        dx/dt = -x/tau_NMDA_x : 1
    """

    excit_pop = NeuronGroup(N_excitatory, model=excit_lif_dynamics,
                            threshold="v>v_firing_threshold_excit", reset="v=v_reset_excit; x+=1.0",
                            refractory=t_abs_refract_excit, method="rk2")
    # initialize with random voltages:
    excit_pop.v = numpy.random.uniform(v_reset_excit / b2.mV, high=v_firing_threshold_excit / b2.mV,
                                       size=N_excitatory) * b2.mV
    excit_pop.I_stim = 0. * b2.namp
    # set the connections: extern2excit
    input_ext2excit = PoissonInput(target=excit_pop, target_var="s_AMPA",
                                   N=N_extern_poisson, rate=poisson_firing_rate, weight=1.0)

    # set the connections: inhibitory to excitatory
    syn_inhib2excit = Synapses(inhib_pop, target=excit_pop, on_pre="s_GABA += 1.0")
    syn_inhib2excit.connect(p=1.0)

    # set the connections: excitatory to inhibitory NMDA connections
    syn_excit2inhib = Synapses(excit_pop, inhib_pop,
                               model="s_NMDA_total_post = s_NMDA_pre : 1 (summed)", method="rk2")
    syn_excit2inhib.connect(p=1.0)

    # # set the connections: UNSTRUCTURED excitatory to excitatory
    # syn_excit2excit = Synapses(excit_pop, excit_pop,
    #        model= "s_NMDA_total_post = s_NMDA_pre : 1 (summed)", method="rk2")
    # syn_excit2excit.connect(condition="i!=j", p=1.)

    # set the STRUCTURED recurrent input. use a network_operation
    @network_operation()
    def update_nmda_sum():
        fft_s_NMDA = rfft(excit_pop.s_NMDA)
        fft_s_NMDA_total = numpy.multiply(fft_presyn_weight_kernel, fft_s_NMDA)
        s_NMDA_tot = irfft(fft_s_NMDA_total)
        excit_pop.s_NMDA_total_ = s_NMDA_tot

    @network_operation(dt=1 * b2.ms)
    def stimulate_network(t):
        if t >= t_stimulus_start and t < t_stimulus_end:
            # excit_pop[stim_start_i - 15:stim_start_i + 15].I_stim = 0.25 * b2.namp
            # Todo: review indexing
            # print("stim on")
            excit_pop.I_stim[stim_target_idx] = stimulus_strength
        else:
            # print("stim off")
            excit_pop.I_stim = 0. * b2.namp

    def get_monitors(pop, nr_monitored, N):
        nr_monitored = min(nr_monitored, (N))
        idx_monitored_neurons = \
            [int(math.ceil(k))
             for k in numpy.linspace(0, N - 1, nr_monitored + 2)][1:-1]  # sample(range(N), nr_monitored)
        rate_monitor = PopulationRateMonitor(pop)
        # record= some_list is not supported? :-(
        spike_monitor = SpikeMonitor(pop, record=idx_monitored_neurons)
        voltage_monitor = StateMonitor(pop, "v", record=idx_monitored_neurons)
        return rate_monitor, spike_monitor, voltage_monitor, idx_monitored_neurons

    # collect data of a subset of neurons:
    rate_monitor_inhib, spike_monitor_inhib, voltage_monitor_inhib, idx_monitored_neurons_inhib = \
        get_monitors(inhib_pop, monitored_subset_size, N_inhibitory)

    rate_monitor_excit, spike_monitor_excit, voltage_monitor_excit, idx_monitored_neurons_excit = \
        get_monitors(excit_pop, monitored_subset_size, N_excitatory)

    b2.run(sim_time)
    return \
        rate_monitor_excit, spike_monitor_excit, voltage_monitor_excit, idx_monitored_neurons_excit,\
        rate_monitor_inhib, spike_monitor_inhib, voltage_monitor_inhib, idx_monitored_neurons_inhib,\
        weight_profile_45
コード例 #8
0
def sim_decision_making_network_full(
    N_Excit=400,
    N_Inhib=100,
    weight_scaling_factor=5.33,
    t_stimulus_start=100 * b2.ms,
    t_stimulus_duration=9999 * b2.ms,
    coherence_level=0.0,
    stimulus_update_interval=30 * b2.ms,
    mu0_mean_stimulus_Hz=40.,
    stimulus_std_Hz=10.,
    N_extern=1000,
    firing_rate_extern=9.8 * b2.Hz,
    w_pos=2.4,
    f_Subpop_size=0.25,  # .15 in publication [1]
    max_sim_time=2000. * b2.ms,
    stop_condition_rate=20 * b2.Hz,
    monitored_subset_size=512,
):
    # print('Simulation starts')
    startting_time = time.time()
    t_stimulus_end = t_stimulus_start + t_stimulus_duration

    N_Group_A = int(
        N_Excit * f_Subpop_size
    )  # size of the excitatory subpopulation sensitive to stimulus A
    N_Group_B = N_Group_A  # size of the excitatory subpopulation sensitive to stimulus B
    N_Group_Z = N_Excit - N_Group_A - N_Group_B  # (1-2f)Ne excitatory neurons do not respond to either stimulus.

    Cm_excit = 0.5 * b2.nF  # membrane capacitance of excitatory neurons
    G_leak_excit = 25.0 * b2.nS  # leak conductance
    E_leak_excit = -70.0 * b2.mV  # reversal potential
    v_spike_thr_excit = -50.0 * b2.mV  # spike condition
    v_reset_excit = -55.0 * b2.mV  # reset voltage after spike
    t_abs_refract_excit = 2.0 * b2.ms  # absolute refractory period

    # specify the inhibitory interneurons:
    # N_Inhib = 200
    Cm_inhib = 0.2 * b2.nF
    G_leak_inhib = 20.0 * b2.nS
    E_leak_inhib = -70.0 * b2.mV
    v_spike_thr_inhib = -50.0 * b2.mV
    v_reset_inhib = -55.0 * b2.mV
    t_abs_refract_inhib = 1.0 * b2.ms

    # specify the AMPA synapses
    E_AMPA = 0.0 * b2.mV
    tau_AMPA = 2.0 * b2.ms

    # specify the GABA synapses
    E_GABA = -70.0 * b2.mV
    tau_GABA = 2.0 * b2.ms

    # specify the NMDA synapses

    # projections from the external population
    g_AMPA_extern2inhib = 1.62 * b2.nS
    g_AMPA_extern2excit = 2.1 * b2.nS

    # projectsions from the inhibitory populations
    g_GABA_inhib2inhib = weight_scaling_factor * 1.25 * b2.nS
    g_GABA_inhib2excit = weight_scaling_factor * 1.60 * b2.nS

    # projections from the excitatory population
    g_AMPA_excit2excit = 2.1 * weight_scaling_factor * 0.012 * b2.nS
    g_AMPA_excit2inhib = 0.14 * weight_scaling_factor * 0.015 * b2.nS

    # weights and "adjusted" weights.
    w_neg = 1. - f_Subpop_size * (w_pos - 1.) / (1. - f_Subpop_size)
    w_ext2inhib = g_AMPA_extern2inhib / g_AMPA_excit2inhib
    w_ext2excit = g_AMPA_extern2excit / g_AMPA_excit2excit
    # other weights are 1

    # Define the inhibitory population
    # dynamics:
    inhib_lif_dynamics = """
        dv/dt = (
        - G_leak_inhib * (v-E_leak_inhib)
        - g_AMPA_excit2inhib * s_AMPA * (v-E_AMPA)
        - g_GABA_inhib2inhib * s_GABA * (v-E_GABA)
        )/Cm_inhib : volt (unless refractory)
        ds_AMPA/dt = -s_AMPA/tau_AMPA : 1
        ds_GABA/dt = -s_GABA/tau_GABA : 1
    """

    inhib_pop = NeuronGroup(N_Inhib,
                            model=inhib_lif_dynamics,
                            threshold="v>v_spike_thr_inhib",
                            reset="v=v_reset_inhib",
                            refractory=t_abs_refract_inhib,
                            method="rk2")
    # initialize with random voltages:
    inhib_pop.v = rnd.uniform(v_spike_thr_inhib / b2.mV - 4.,
                              high=v_spike_thr_inhib / b2.mV - 1.,
                              size=N_Inhib) * b2.mV

    # Specify the excitatory population:
    # dynamics:
    excit_lif_dynamics = """
        dv/dt = (
        - G_leak_excit * (v-E_leak_excit)
        - g_AMPA_excit2excit * s_AMPA * (v-E_AMPA)
        - g_GABA_inhib2excit * s_GABA * (v-E_GABA)
        )/Cm_excit : volt (unless refractory)
        ds_AMPA/dt = -s_AMPA/tau_AMPA : 1
        ds_GABA/dt = -s_GABA/tau_GABA : 1
    """

    # define the three excitatory subpopulations.
    # A: subpop receiving stimulus A
    excit_pop_A = NeuronGroup(N_Group_A,
                              model=excit_lif_dynamics,
                              threshold="v > v_spike_thr_excit",
                              reset="v = v_reset_excit",
                              refractory=t_abs_refract_excit,
                              method="rk2")
    excit_pop_A.v = rnd.uniform(E_leak_excit / b2.mV,
                                high=E_leak_excit / b2.mV + 5.,
                                size=excit_pop_A.N) * b2.mV

    # B: subpop receiving stimulus B
    excit_pop_B = NeuronGroup(N_Group_B,
                              model=excit_lif_dynamics,
                              threshold="v > v_spike_thr_excit",
                              reset="v = v_reset_excit",
                              refractory=t_abs_refract_excit,
                              method="rk2")
    excit_pop_B.v = rnd.uniform(E_leak_excit / b2.mV,
                                high=E_leak_excit / b2.mV + 5.,
                                size=excit_pop_B.N) * b2.mV
    # Z: non-sensitive
    excit_pop_Z = NeuronGroup(N_Group_Z,
                              model=excit_lif_dynamics,
                              threshold="v>v_spike_thr_excit",
                              reset="v=v_reset_excit",
                              refractory=t_abs_refract_excit,
                              method="rk2")
    excit_pop_Z.v = rnd.uniform(v_reset_excit / b2.mV,
                                high=v_spike_thr_excit / b2.mV - 1.,
                                size=excit_pop_Z.N) * b2.mV

    # now define the connections:
    # projections FROM EXTERNAL POISSON GROUP: ####################################################
    poisson2Inhib = PoissonInput(target=inhib_pop,
                                 target_var="s_AMPA",
                                 N=N_extern,
                                 rate=firing_rate_extern,
                                 weight=w_ext2inhib)
    poisson2A = PoissonInput(target=excit_pop_A,
                             target_var="s_AMPA",
                             N=N_extern,
                             rate=firing_rate_extern,
                             weight=w_ext2excit)

    poisson2B = PoissonInput(target=excit_pop_B,
                             target_var="s_AMPA",
                             N=N_extern,
                             rate=firing_rate_extern,
                             weight=w_ext2excit)
    poisson2Z = PoissonInput(target=excit_pop_Z,
                             target_var="s_AMPA",
                             N=N_extern,
                             rate=firing_rate_extern,
                             weight=w_ext2excit)

    ###############################################################################################

    # GABA projections FROM INHIBITORY population: ################################################
    syn_inhib2inhib = Synapses(inhib_pop,
                               target=inhib_pop,
                               on_pre="s_GABA += 1.0",
                               delay=0.5 * b2.ms)
    syn_inhib2inhib.connect(p=1.)
    syn_inhib2A = Synapses(inhib_pop,
                           target=excit_pop_A,
                           on_pre="s_GABA += 1.0",
                           delay=0.5 * b2.ms)
    syn_inhib2A.connect(p=1.)
    syn_inhib2B = Synapses(inhib_pop,
                           target=excit_pop_B,
                           on_pre="s_GABA += 1.0",
                           delay=0.5 * b2.ms)
    syn_inhib2B.connect(p=1.)
    syn_inhib2Z = Synapses(inhib_pop,
                           target=excit_pop_Z,
                           on_pre="s_GABA += 1.0",
                           delay=0.5 * b2.ms)
    syn_inhib2Z.connect(p=1.)
    ###############################################################################################

    # AMPA projections FROM EXCITATORY A: #########################################################
    syn_AMPA_A2A = Synapses(excit_pop_A,
                            target=excit_pop_A,
                            on_pre="s_AMPA += w_pos",
                            delay=0.5 * b2.ms)
    syn_AMPA_A2A.connect(p=1.)
    syn_AMPA_A2B = Synapses(excit_pop_A,
                            target=excit_pop_B,
                            on_pre="s_AMPA += w_neg",
                            delay=0.5 * b2.ms)
    syn_AMPA_A2B.connect(p=1.)
    syn_AMPA_A2Z = Synapses(excit_pop_A,
                            target=excit_pop_Z,
                            on_pre="s_AMPA += w_neg",
                            delay=0.5 * b2.ms)
    syn_AMPA_A2Z.connect(p=1.)
    syn_AMPA_A2inhib = Synapses(excit_pop_A,
                                target=inhib_pop,
                                on_pre="s_AMPA += 1.0",
                                delay=0.5 * b2.ms)
    syn_AMPA_A2inhib.connect(p=1.)
    ###############################################################################################

    # AMPA projections FROM EXCITATORY B: #########################################################
    syn_AMPA_B2A = Synapses(excit_pop_B,
                            target=excit_pop_A,
                            on_pre="s_AMPA += w_neg",
                            delay=0.5 * b2.ms)
    syn_AMPA_B2A.connect(p=1.)
    syn_AMPA_B2B = Synapses(excit_pop_B,
                            target=excit_pop_B,
                            on_pre="s_AMPA += w_pos",
                            delay=0.5 * b2.ms)
    syn_AMPA_B2B.connect(p=1.)
    syn_AMPA_B2Z = Synapses(excit_pop_B,
                            target=excit_pop_Z,
                            on_pre="s_AMPA += w_neg",
                            delay=0.5 * b2.ms)
    syn_AMPA_B2Z.connect(p=1.)
    syn_AMPA_B2inhib = Synapses(excit_pop_B,
                                target=inhib_pop,
                                on_pre="s_AMPA += 1.0",
                                delay=0.5 * b2.ms)
    syn_AMPA_B2inhib.connect(p=1.)
    ###############################################################################################

    # AMPA projections FROM EXCITATORY Z: #########################################################
    syn_AMPA_Z2A = Synapses(excit_pop_Z,
                            target=excit_pop_A,
                            on_pre="s_AMPA += w_neg",
                            delay=0.5 * b2.ms)
    syn_AMPA_Z2A.connect(p=1.)
    syn_AMPA_Z2B = Synapses(excit_pop_Z,
                            target=excit_pop_B,
                            on_pre="s_AMPA += w_neg",
                            delay=0.5 * b2.ms)
    syn_AMPA_Z2B.connect(p=1.)
    syn_AMPA_Z2Z = Synapses(excit_pop_Z,
                            target=excit_pop_Z,
                            on_pre="s_AMPA += 1.0",
                            delay=0.5 * b2.ms)
    syn_AMPA_Z2Z.connect(p=1.)
    syn_AMPA_Z2inhib = Synapses(excit_pop_Z,
                                target=inhib_pop,
                                on_pre="s_AMPA += 1.0",
                                delay=0.5 * b2.ms)
    syn_AMPA_Z2inhib.connect(p=1.)
    ###############################################################################################

    # Define the stimulus: two PoissonInput with time time-dependent mean.
    poissonStimulus2A = PoissonGroup(N_Group_A, 0. * b2.Hz)
    syn_Stim2A = Synapses(poissonStimulus2A,
                          excit_pop_A,
                          on_pre="s_AMPA+=w_ext2excit")
    syn_Stim2A.connect(j="i")
    poissonStimulus2B = PoissonGroup(N_Group_B, 0. * b2.Hz)
    syn_Stim2B = Synapses(poissonStimulus2B,
                          excit_pop_B,
                          on_pre="s_AMPA+=w_ext2excit")
    syn_Stim2B.connect(j="i")

    @network_operation(dt=stimulus_update_interval)
    def update_poisson_stimulus(t):
        if t >= t_stimulus_start and t < t_stimulus_end:
            offset_A = mu0_mean_stimulus_Hz * (1 + 0.01 * coherence_level)
            offset_B = mu0_mean_stimulus_Hz * (1 - 0.01 * coherence_level)

            rate_A = numpy.random.normal(offset_A, stimulus_std_Hz)
            rate_A = (max(0, rate_A)) * b2.Hz  # avoid negative rate
            rate_B = numpy.random.normal(offset_B, stimulus_std_Hz)
            rate_B = (max(0, rate_B)) * b2.Hz

            poissonStimulus2A.rates = rate_A
            poissonStimulus2B.rates = rate_B
        else:
            poissonStimulus2A.rates = 0.
            poissonStimulus2B.rates = 0.

    ###############################################################################################

    def get_monitors(pop, monitored_subset_size):
        monitored_subset_size = min(monitored_subset_size, pop.N)
        idx_monitored_neurons = sample(range(pop.N), monitored_subset_size)
        rate_monitor = PopulationRateMonitor(pop)
        spike_monitor = SpikeMonitor(pop, record=idx_monitored_neurons)
        voltage_monitor = StateMonitor(pop, "v", record=idx_monitored_neurons)
        return rate_monitor, spike_monitor, voltage_monitor, idx_monitored_neurons

    # collect data of a subset of neurons:
    rate_monitor_inhib, spike_monitor_inhib, voltage_monitor_inhib, idx_monitored_neurons_inhib = \
        get_monitors(inhib_pop, monitored_subset_size)

    rate_monitor_A, spike_monitor_A, voltage_monitor_A, idx_monitored_neurons_A = \
        get_monitors(excit_pop_A, monitored_subset_size)

    rate_monitor_B, spike_monitor_B, voltage_monitor_B, idx_monitored_neurons_B = \
        get_monitors(excit_pop_B, monitored_subset_size)

    rate_monitor_Z, spike_monitor_Z, voltage_monitor_Z, idx_monitored_neurons_Z = \
        get_monitors(excit_pop_Z, monitored_subset_size)

    if stop_condition_rate is None:
        b2.run(max_sim_time)
    else:
        sim_sum = 0. * b2.ms
        sim_batch = 25. * b2.ms
        samples_in_batch = int(floor(sim_batch / b2.defaultclock.dt))
        avg_rate_in_batch = 0
        while (sim_sum < max_sim_time) and (avg_rate_in_batch <
                                            stop_condition_rate):
            b2.run(sim_batch)
            avg_A = numpy.mean(rate_monitor_A.rate[-samples_in_batch:])
            avg_B = numpy.mean(rate_monitor_B.rate[-samples_in_batch:])
            avg_rate_in_batch = max(avg_A, avg_B)
            sim_sum += sim_batch

    print("Time elapsed =", time.time() - startting_time, 'seconds')
    ret_vals = dict()

    ret_vals["rate_monitor_A"] = rate_monitor_A
    ret_vals["spike_monitor_A"] = spike_monitor_A
    ret_vals["voltage_monitor_A"] = voltage_monitor_A
    ret_vals["idx_monitored_neurons_A"] = idx_monitored_neurons_A

    ret_vals["rate_monitor_B"] = rate_monitor_B
    ret_vals["spike_monitor_B"] = spike_monitor_B
    ret_vals["voltage_monitor_B"] = voltage_monitor_B
    ret_vals["idx_monitored_neurons_B"] = idx_monitored_neurons_B

    ret_vals["rate_monitor_Z"] = rate_monitor_Z
    ret_vals["spike_monitor_Z"] = spike_monitor_Z
    ret_vals["voltage_monitor_Z"] = voltage_monitor_Z
    ret_vals["idx_monitored_neurons_Z"] = idx_monitored_neurons_Z

    ret_vals["rate_monitor_inhib"] = rate_monitor_inhib
    ret_vals["spike_monitor_inhib"] = spike_monitor_inhib
    ret_vals["voltage_monitor_inhib"] = voltage_monitor_inhib
    ret_vals["idx_monitored_neurons_inhib"] = idx_monitored_neurons_inhib

    return ret_vals
コード例 #9
0
pop_e_sel[0].rate = 30 * Hz

solver = MFSolver.rates_voltages(system, solver='simplex', maxiter=1)
#sol = solver.run()
#print(sol)

#system.graph().view(cleanup=True)

# at 1s, select population 1
C_selection = int(f * C_ext)
rate_selection = 50 * Hz
stimuli1 = TimedArray(np.r_[np.zeros(40),
                            np.ones(2),
                            np.zeros(1000)],
                      dt=25 * ms)
input1 = PoissonInput(pop_e_sel[0].brian2, 's_noise_E_sel_0', C_selection,
                      rate_selection, 'stimuli1(t)')

# at 2s, select population 2
stimuli2 = TimedArray(np.r_[np.zeros(80),
                            np.ones(2),
                            np.zeros(100)],
                      dt=25 * ms)
input2 = PoissonInput(pop_e_sel[1].brian2, 's_noise_E_sel_1', C_selection,
                      rate_selection, 'stimuli2(t)')

net = system.collect_brian2_network(*all_sp, *all_rm, input1, input2)
net.run(4 * second, report='stdout')

# plotting

plots.rates(all_rm, 25 * ms)