コード例 #1
0
def cracked_concrete_plots(c: Config):
    """Contour plots of cracked concrete scenarios."""
    response_type = ResponseType.YTranslation
    # 10 x 10 grid of points on the bridge deck where to record fem.
    points = [
        Point(x=x, y=0, z=z) for x, z in itertools.product(
            np.linspace(c.bridge.x_min, c.bridge.x_max, 10),
            np.linspace(c.bridge.z_min, c.bridge.z_max, 10),
        )
    ]

    # Create empty traffic array and collect fem.
    response_array = responses_to_traffic_array(
        c=c,
        traffic_array=load_normal_traffic_array(c)[0],
        response_type=response_type,
        bridge_scenario=cracked_scenario,
        points=points,
        sim_runner=OSRunner,
    )

    for t in range(len(response_array)):
        top_view_bridge(c.bridge, abutments=True, piers=True)
        responses = Responses.from_responses(
            response_type=response_type,
            responses=[(response_array[t][p], point)
                       for p, point in enumerate(points)],
        )
        plot_contour_deck(c=c, responses=responses, center_norm=True)
        plt.title("Cracked Concrete")
        plt.savefig(c.get_image_path("cracked-scenario", f"cracked-time-{t}"))
        plt.close()
コード例 #2
0
def pairwise_cluster(c: Config, load: bool):
    """Cluster pairwise maps from healthy and damaged scenarios."""
    features_path = c.get_data_path("features", "pairwise-cluster", bridge=False)
    if not load:
        normal_traffic_array, _ = load_normal_traffic_array(c=c, mins=24)
        normal_traffic_array = normal_traffic_array[
            int(len(normal_traffic_array) / 24) :
        ]
        response_type = ResponseType.YTranslation
        grid_points = [
            Point(x=x, y=0, z=-9.65)
            for x, _ in itertools.product(
                np.linspace(c.bridge.x_min, c.bridge.x_max, 50),
                # np.linspace(c.bridge.x_min, c.bridge.x_max, 4),
                [1],
            )
        ]

        # Collect a list of features per scenarios scenario.
        features = []
        for damage_scenario in healthy_and_cracked_scenarios[1:]:
            damage_c = damage_scenario.use(c)
            responses = responses_to_traffic_array(
                c=damage_c,
                traffic_array=normal_traffic_array,
                response_type=response_type,
                bridge_scenario=damage_scenario,
                points=grid_points,
                sim_runner=OSRunner,
            ).T
            ks_values = []
            for p0_i, point0 in enumerate(grid_points):
                print_i(f"Point {p0_i + 1} / {len(grid_points)}", end="\r")
                ks_values.append([])
                for p1_i, point1 in enumerate(grid_points):
                    ks = ks_no_outliers(responses[p0_i], responses[p1_i])
                    ks_values[-1].append(ks)
            features.append((ks_values, damage_scenario.name))

        # Save features to disk.
        features = np.array(features)
        np.save(features_path, features)

    features = np.load(features_path)
    # Reduce each pairwise map to a sum per sensor.
    for f_i, (feature, feature_name) in enumerate(features):
        features[f_i] = ([sum(sensor) for sensor in feature], feature_name)
        features[f_i] = ([sum(sensor) for sensor in features[f_i]], feature_name)

    # Cluster each pairwise map.
    from sklearn.cluster import KMeans

    kmeans = KMeans(n_clusters=2)
    kmeans.fit(features)
コード例 #3
0
def traffic_response_plots(c: Config, times: int = 3):
    """Response to normal traffic per scenarios scenario at multiple time steps."""
    response_type = ResponseType.YTranslation
    # 10 x 10 grid of points on the bridge deck where to record fem.
    points = [
        Point(x=x, y=0, z=z) for x, z in itertools.product(
            np.linspace(c.bridge.x_min, c.bridge.x_max, 10),
            np.linspace(c.bridge.z_min, c.bridge.z_max, 10),
        )
    ]
    # for damage_scenario in all_scenarios(c):
    for damage_scenario in [unit_temp_scenario]:
        response_array = responses_to_traffic_array(
            c=c,
            traffic_array=load_normal_traffic_array(c, mins=1)[0],
            response_type=response_type,
            bridge_scenario=damage_scenario,
            points=points,
            sim_runner=OSRunner,
        )
        print(response_array.shape)
        mean_response_array = np.mean(response_array, axis=0).T
        print(mean_response_array.shape)
        print(mean_response_array.shape)

        for t in range(times):
            time_index = -1 + abs(t)
            top_view_bridge(c.bridge, abutments=True, piers=True)
            responses = Responses.from_responses(
                response_type=response_type,
                responses=[(response_array[time_index][p], point)
                           for p, point in enumerate(points)],
            )
            plot_contour_deck(c=c,
                              responses=responses,
                              center_norm=True,
                              levels=100)
            plt.title(damage_scenario.name)
            plt.savefig(
                c.get_image_path(
                    "contour-traffic-response",
                    f"{damage_scenario.name}-time={time_index}",
                ))
            plt.close()
コード例 #4
0
def oneclass(c: Config):
    normal_traffic_array, traffic_scenario = load_normal_traffic_array(c)
    bridge_scenarios = [HealthyScenario()] + each_pier_scenarios(c)
    response_type = ResponseType.YTranslation
    points = [
        Point(x=x, y=0, z=z)
        for x, z in itertools.product(
            np.linspace(c.bridge.x_min, c.bridge.x_max / 2, 20),
            np.linspace(c.bridge.z_min, c.bridge.z_max / 2, 3),
        )
    ]
    results = []

    for b, bridge_scenario in enumerate(bridge_scenarios):
        print_i(f"One class: bridge scenario {bridge_scenario.name}")
        responses = responses_to_traffic_array(
            c=c,
            traffic_array=normal_traffic_array,
            response_type=response_type,
            bridge_scenario=bridge_scenario,
            points=points,
            fem_runner=OSRunner(c),
        ).T
        print(len(normal_traffic_array))
        print(responses.shape)

        # Fit on the healthy scenario.
        if b == 0:
            assert len(responses) == len(points)
            clfs = []
            for r, rs in enumerate(responses):
                print_i(f"Training classifier {r} / {len(responses)}")
                clfs.append(OneClassSVM().fit(rs.reshape(-1, 1)))

        scenario_results = []
        for p, _ in enumerate(points):
            print_i(f"Predicting points {p} / {len(points)}")
            prediction = clfs[p].predict(responses[p].reshape(-1, 1))
            print(prediction)
            print(len(prediction[prediction < 0]))
            print(len(prediction[prediction > 0]))
コード例 #5
0
def gradient_pier_displacement_plot(
    c: Config,
    pier_disp: PierSettlementScenario,
    response_type: ResponseType,
    title: str,
):
    """Contour plot of piers displaced in an increasing gradient."""

    # 10 x 10 grid of points on the bridge deck where to record fem.
    points = [
        Point(x=x, y=0, z=z) for x, z in itertools.product(
            np.linspace(c.bridge.x_min, c.bridge.x_max, 10),
            np.linspace(c.bridge.z_min, c.bridge.z_max, 10),
        )
    ]

    # Create empty traffic array and collect fem.
    response_array = responses_to_traffic_array(
        c=c,
        traffic_array=np.zeros(
            (1, len(c.bridge.wheel_tracks(c)) * c.il_num_loads)),
        response_type=response_type,
        bridge_scenario=pier_disp,
        points=points,
        fem_runner=OSRunner(c),
    )

    top_view_bridge(c.bridge, abutments=True, piers=True)
    responses = Responses.from_responses(
        response_type=response_type,
        responses=[(response_array[0][p], point)
                   for p, point in enumerate(points)],
    )
    plot_contour_deck(c=c, responses=responses, center_norm=True)
    plt.title(title)
    plt.savefig(
        c.get_image_path("pier-scenarios",
                         f"pier-displacement-{safe_str(title)}"))
    plt.close()
コード例 #6
0
def pairwise_sensors(c: Config, dist_measure=ks_no_outliers):
    """Compare distribution of pairs of sensors under HealthyScenario."""
    normal_traffic_array, traffic_scenario = load_normal_traffic_array(c)
    response_type = ResponseType.YTranslation
    points = [
        Point(x=x, y=0, z=z)
        for x, z in itertools.product(
            np.linspace(c.bridge.x_min, c.bridge.x_max, 50),
            np.linspace(c.bridge.z_min, c.bridge.z_max, 4),
        )
    ]

    bridge_scenario = HealthyScenario()
    responses = responses_to_traffic_array(
        c=c,
        traffic_array=normal_traffic_array,
        response_type=response_type,
        bridge_scenario=bridge_scenario,
        points=points,
        sim_runner=OSRunner,
    ).T
    assert len(responses) == len(points)

    ks_values_healthy = []
    for p0, point0 in enumerate(points):
        print_i(f"Point {p0 + 1} / {len(points)}")
        ks_values_healthy.append([])
        for p1, point1 in enumerate(points):
            ks = dist_measure(responses[p0], responses[p1])
            ks_values_healthy[-1].append(ks)

    plt.landscape()
    plt.imshow(ks_values_healthy)
    plt.savefig(c.get_image_path("joint-clustering", "healthy-bridge"))
    plt.close()

    bridge_scenario = each_pier_scenarios(c)[0]
    responses = responses_to_traffic_array(
        c=c,
        traffic_array=normal_traffic_array,
        response_type=response_type,
        bridge_scenario=bridge_scenario,
        points=points,
        sim_runner=OSRunner,
    ).T
    assert len(responses) == len(points)

    ks_values_damage = []
    for p0, point0 in enumerate(points):
        print_i(f"Point {p0 + 1} / {len(points)}")
        ks_values_damage.append([])
        for p1, point1 in enumerate(points):
            ks = dist_measure(responses[p0], responses[p1])
            ks_values_damage[-1].append(ks)

    plt.imshow(ks_values_damage)
    plt.savefig(c.get_image_path("joint-clustering", "scenarios-bridge"))
    plt.close()

    ks_values_comp = []
    for p0, point0 in enumerate(points):
        ks_values_comp.append([])
        for p1, point1 in enumerate(points):
            comp = abs(ks_values_healthy[p0][p1] - ks_values_damage[p0][p1])
            ks_values_comp[-1].append(comp)

    plt.landscape()
    plt.imshow(ks_values_comp)
    plt.savefig(c.get_image_path("joint-clustering", "scenarios-bridge-comp"))
    plt.close()

    responses = Responses.from_responses(
        response_type=response_type,
        responses=[(sum(ks_values_comp[p]), point) for p, point in enumerate(points)],
    )
    top_view_bridge(c.bridge, abutments=True, piers=True)
    plot_contour_deck(c=c, responses=responses)
    plt.savefig(c.get_image_path("joint-clustering", "scenarios-bridge-comp-contour"))
    plt.close()
コード例 #7
0
def events(c: Config, x: float, z: float):
    """Plot events due to normal traffic."""
    point = Point(x=x, y=0, z=z)
    # 10 seconds of 'normal' traffic.
    max_time = 10
    traffic_scenario = normal_traffic(c=c, lam=5, min_d=2)
    # Create the 'TrafficSequence' and 'TrafficArray'.
    traffic_sequence = traffic_scenario.traffic_sequence(
        bridge=c.bridge, max_time=max_time
    )
    traffic_array = to_traffic_array(
        c=c, traffic_sequence=traffic_sequence, max_time=max_time
    )
    # Find when the simulation has warmed up, and when 'TrafficArray' begins.
    warmed_up_at = traffic_sequence[0][0].time_left_bridge(c.bridge)
    traffic_array_starts = (int(warmed_up_at / c.sensor_hz) + 1) * c.sensor_hz
    print(f"warmed up at = {warmed_up_at}")
    print(f"traffic_array_starts = {traffic_array_starts}")
    traffic_array_ends = traffic_array_starts + (len(traffic_array) * c.sensor_hz)
    print(f"traffic_array_ends = {traffic_array_ends}")
    point_lane_ind = c.bridge.closest_lane(z)
    vehicles = list(set(ts[0] for ts in traffic_sequence))
    print(len(vehicles))
    print(vehicles[0])
    vehicles = sorted(
        set(ts[0] for ts in traffic_sequence if ts[0].lane == point_lane_ind),
        key=lambda v: -v.init_x_frac,
    )
    print(len(vehicles))
    print(vehicles[0])
    event_indices = []
    vehicle_times = [v.time_at(x=x - 2, bridge=c.bridge) for v in vehicles]
    for v, t in zip(vehicles, vehicle_times):
        print(f"Vehicle {v.init_x_frac} {v.mps} at time {t}")
        start_time = int(t / c.sensor_hz) * c.sensor_hz
        print(f"start_time = {start_time}")
        ta_start_time = np.around(start_time - traffic_array_starts, 8)
        print(f"ta start time = {ta_start_time}")
        ta_start_index = int(ta_start_time / c.sensor_hz)
        print(f"ta start index = {ta_start_index}")
        ta_end_index = ta_start_index + int(c.event_time_s / c.sensor_hz)
        print(f"ta end index = {ta_end_index}")
        if ta_start_index >= 0 and ta_end_index < len(traffic_array):
            event_indices.append((ta_start_index, ta_end_index))
    print(event_indices)
    responses = (
        responses_to_traffic_array(
            c=c,
            traffic_array=traffic_array,
            response_type=ResponseType.YTranslation,
            damage_scenario=healthy_scenario,
            points=[point],
            sim_runner=OSRunner(c),
        )
        * 1000
    )
    # fem = add_displa_noise(fem)
    print(responses.shape)
    plt.portrait()
    for event_ind, (event_start, event_end) in enumerate(event_indices):
        plt.subplot(len(event_indices), 1, event_ind + 1)
        plt.plot(responses[event_start : event_end + 1])
    plt.tight_layout()
    plt.savefig(c.get_image_path("classify/events", "events.pdf"))
    plt.close()
コード例 #8
0
ファイル: crack.py プロジェクト: r-snijders/bridge-sim
def crack_time_series(
    c: Config,
    traffic_array,
    traffic_array_mins: float,
    sensor: Point,
    crack_frac: float,
    damage,
    temps: List[float],
    solar: List[float],
):
    """Time series of sensor fem, vertical translation and strain XXB.

    Returns a NumPy array of dimensions (2 x len(traffic_array)).

    Args:
        c: Config, global configuration object.
        traffic_array: TrafficArray, traffic flowing over the bridge.
        traffic_array_mins: float, minutes of the the traffic flow.
        sensor: Point, point at which to collect fem.
        crack_frac: float, fraction of time series where crack occurs.
        damage: DamageScenario, scenarios that occurs at crack_frac.
        temps: List[float], list of air temperature, per temperature minute.
        solar: List[float], list of solar radiance, per temperature minute.

    """
    assert 0 <= crack_frac <= 1
    response_types = [ResponseType.YTranslation, ResponseType.Strain]
    half_i = int(len(traffic_array) * crack_frac)
    traffic_array_0, traffic_array_1 = traffic_array[:half_i], traffic_array[
        half_i:]
    assert len(traffic_array_0) + len(traffic_array_1) == len(traffic_array)

    half_t = int(len(temps) * crack_frac)
    assert len(temps) == len(solar)

    # Get the effect of temperature for both response types and damages.
    # In each case we have the full days worth of temperature fem.
    temp_effect = []
    for response_type in response_types:
        temp_effect_damages = []
        for di, ds in enumerate([HealthyDamage(), damage]):
            bots_tops, new_temp_effect = temperature.effect(
                c=ds.use(c)[0],
                response_type=response_type,
                points=[sensor],
                # One hour temperature data per minute of traffic data.
                len_per_hour=int(len(traffic_array) /
                                 traffic_array_mins) if di == 0 else None,
                temps=temps if di == 0 else None,
                solar=solar if di == 0 else None,
                temps_bt=bots_tops.T[int(len(bots_tops.T) /
                                         2):].T if di == 1 else None,
                ret_temps_bt=True,
            )
            bots_tops = np.array(bots_tops)
            temp_effect_damages.append(
                new_temp_effect[0] if di ==
                1 else new_temp_effect[0][:int(len(new_temp_effect[0]) / 2)])
        temp_effect.append(np.concatenate(temp_effect_damages))
        print(f"len(temps) = {len(temps)}")
        print(f"len_per_hour = {int(len(traffic_array) / traffic_array_mins)}")
        print(f"Temperature shape = {temp_effect[-1].shape}")
        plt.plot(temp_effect[-1])
        plt.savefig(
            c.get_image_path("crack",
                             safe_str(f"save-temps-{response_type}.pdf")))
        plt.close()

    responses = []
    for ri, rt in enumerate(response_types):
        responses_healthy_cracked = []
        for ds, ta in [(HealthyDamage(), traffic_array_0),
                       (damage, traffic_array_1)]:
            print(
                f"Sections in scenarios scenario = {len(ds.use(c)[0].bridge.sections)}"
            )
            responses_healthy_cracked.append(
                responses_to_traffic_array(
                    c=c,
                    traffic_array=ta,
                    response_type=rt,
                    damage_scenario=ds,
                    points=[sensor],
                ).T[0])  # Responses from a single point.
        responses.append(np.concatenate(responses_healthy_cracked))
        print(f"shape fem without temp = {responses[-1].shape}")
        print(f"shape of temp effect = {temp_effect[ri].shape}")
        if rt == ResponseType.Strain:
            responses[ri] = resize_units("")[0](responses[ri])
        responses[ri] += temperature.apply(temp_effect[ri], responses[ri])
    responses = np.array(responses)
    print(f"Responses shape = {responses.shape}")
    return responses