コード例 #1
0
 def reconstruct_tree(preorder, inorder):
     # TODO - you fill in here.
     # 1. root is first node in preorder traversal
     # 2. use root to divide inorder traversal into left and right subtrees (inorder)
     # 3. use (left,right) inorder traversal set to partition preorder traversal
     #    after root element into (left,right) preorder traversal
     #
     print('preorder={},inorder={}'.format(preorder, inorder))
     if not preorder:
         print("returning None")
         return None
     # 1.
     root_value = preorder[0]
     root = BstNode(root_value)
     # 2.
     root_index = inorder.index(root_value)
     # root_index = element_index[root_value]
     print('root_index=', root_index)
     # 3.
     inorder_left_tree = inorder[:root_index]
     inorder_right_tree = inorder[root_index + 1:]
     print('inorder_left_tree={},inorder_right_tree={}'.format(
         inorder_left_tree, inorder_right_tree))
     preorder_left_tree = preorder[1:root_index + 1]
     preorder_right_tree = preorder[root_index + 1:]
     print('preorder_left_tree={},preorder_right_tree={}'.format(
         preorder_left_tree, preorder_right_tree))
     #
     root.left = reconstruct_tree(preorder_left_tree, inorder_left_tree)
     root.right = reconstruct_tree(preorder_right_tree, inorder_right_tree)
     print('root={}'.format(root))
     return root
コード例 #2
0
 def helper(start, end):
     if end - start < 0:
         return None
     mid_idx = (end+start)//2
     node = BstNode(A[mid_idx])
     node.left = helper(start, mid_idx-1)
     node.right = helper(mid_idx+1, end)
     return node
コード例 #3
0
 def bst_helper(A, start, end):
     if end < start:
         return None
     middle = (start + end) // 2
     node = BstNode(A[middle])
     node.left = bst_helper(A, start, middle - 1)
     node.right = bst_helper(A, middle + 1, end)
     return node
コード例 #4
0
def build_min_height_bst_from_sorted_array(A: List[int]) -> Optional[BstNode]:
    root = None
    if len(A) != 0:
        middle = len(A) // 2
        root = BstNode(A[middle])
        left_arr = A[:middle]
        right_arr = A[middle + 1:]
        root.left = build_min_height_bst_from_sorted_array(left_arr)
        root.right = build_min_height_bst_from_sorted_array(right_arr)
    return root
コード例 #5
0
def rebuild_bst_from_preorder(preorder_sequence):
    if len(preorder_sequence) == 0:
        return None
    root = BstNode(preorder_sequence[0])
    i = 1
    left = [x for x in preorder_sequence[1:] if x < preorder_sequence[0]]
    right = [x for x in preorder_sequence[1:] if x > preorder_sequence[0]]
    root.left = rebuild_bst_from_preorder(left)
    root.right = rebuild_bst_from_preorder(right)
    return root
コード例 #6
0
    def build_min_height_bst_from_sorted_subarray(start, end):
        if start > end:
            return None

        mid = (start + end) // 2

        tree = BstNode(A[mid])
        tree.left = build_min_height_bst_from_sorted_subarray(start, mid - 1)
        tree.right = build_min_height_bst_from_sorted_subarray(mid + 1, end)

        return tree
コード例 #7
0
def build_tree(A):
    if not A:
        return None

    mid_i = (len(A) - 1) // 2
    mid_elem = A[mid_i]

    node = BstNode(mid_elem)
    node.left = build_tree(A[:mid_i])
    node.right = build_tree(A[mid_i + 1:])

    return node
コード例 #8
0
    def helper(left_limit, right_limit):
        nonlocal idx
        nonlocal arr
        if idx >= len(arr) or not left_limit < arr[idx] < right_limit:
            return None

        node = BstNode(data=arr[idx])
        idx += 1

        node.left = helper(left_limit, node.data)
        node.right = helper(node.data, right_limit)
        return node
コード例 #9
0
 def preorder_helper(lower_bound, upper_bound):
     if root_idx[0] == len(preorder_sequence):
         return None
     root = preorder_sequence[root_idx[0]]
     if not lower_bound <= root <= upper_bound:
         return None
     root_idx[0] += 1
     node = BstNode(root)
     ## ordering is critical
     node.left = preorder_helper(lower_bound, root)
     node.right = preorder_helper(root, upper_bound)
     return node
コード例 #10
0
    def rebuild_within_range(low=float('-inf'), high=float('inf')):
        nonlocal i
        if i >= len(preorder_sequence):
            return None
        v = preorder_sequence[i]
        if low <= v <= high:
            u = BstNode(v)
            i += 1
            u.left = rebuild_within_range(low=low, high=v)
            u.right = rebuild_within_range(low=v, high=high)

            return u
        return None
コード例 #11
0
def build_min_height_bst_from_sorted_array(A):
    # TODO - you fill in here.
    # Alok

    if not A:
        return None

    splitIndex = len(A)//2
    root = BstNode(A[splitIndex])
    root.left = build_min_height_bst_from_sorted_array(A[:splitIndex])
    root.right = build_min_height_bst_from_sorted_array(A[splitIndex+1:])

    return root
コード例 #12
0
    def construct_tree(root_idx, lower_bound, upper_bound):
        if root_idx == len(preorder_sequence):
            return Result(None, root_idx)

        root_val = preorder_sequence[root_idx]
        if not lower_bound <= root_val <= upper_bound:
            return Result(None, root_idx)
        root_idx += 1

        tree = BstNode(root_val)
        tree.left, root_idx = construct_tree(root_idx, lower_bound, root_val)
        tree.right, root_idx = construct_tree(root_idx, root_val, upper_bound)

        return Result(tree, root_idx)
コード例 #13
0
def build_bst(seq, start, end):
    if start == end:
        return None

    node = BstNode(seq[start])

    right = start
    while right < end and seq[right] <= seq[start]:
        right += 1

    node.left = build_bst(seq, start + 1, right)
    node.right = build_bst(seq, right, end)

    return node
コード例 #14
0
    def build_tree(start, end):
        if start > end:
            return None

        root_val = preorder_sequence[start]

        right_index = start + 1
        while right_index <= end:
            if preorder_sequence[right_index] > root_val:
                break
            right_index += 1

        tree = BstNode(root_val)
        tree.left = build_tree(start + 1, right_index - 1)
        tree.right = build_tree(right_index, end)

        return tree
コード例 #15
0
def find_k_largest_in_bst(tree: BstNode, k: int) -> List[int]:
    #Reverse inorder traversal (sorta)
    path = []
    stack = [tree]
    while k != 0 and stack:
        tree = stack.pop()
        if tree:
            if tree.left:
                stack.append(tree.left)
            if not tree.right:
                #Current node is the right most value
                path.append(tree.data)
                k -= 1
            else:
                #Keeping going right, but save the current node too
                right = tree.right
                tree.left, tree.right = None, None  #Prune the tree
                stack.append(tree)
                stack.append(right)

    return path
コード例 #16
0
def binary_tree_from_preorder_inorder(preorder, inorder):
    # for a preorder traversal, the first element is the root,
    # followed by a set of elements for the left subtree then the right
    # the set of left subtree elements in the preorder traversal can be determined by
    # using the root element to divide the inorder traversal elements into
    # left and right subtree elements,
    # the left subtree elements in the inorder traversal is the elements that
    # preceeds the root element in the inorder traversal
    if not preorder:
        return None
    root_val = preorder[0]
    root = BstNode(root_val)
    inorder_root_index = inorder.index(root_val)
    inorder_left_tree = inorder[:inorder_root_index]
    inorder_right_tree = inorder[inorder_root_index + 1:]
    preorder_left_tree = preorder[1:(len(inorder_left_tree) + 1)]  #skip root
    preorder_right_tree = preorder[(len(inorder_left_tree) + 1):]
    root.left = binary_tree_from_preorder_inorder(preorder_left_tree,
                                                  inorder_left_tree)
    root.right = binary_tree_from_preorder_inorder(preorder_right_tree,
                                                   inorder_right_tree)
    return root