from bt_candidates.client import Client from bt_candidates.wiring import default_filter_factory as ff from bt_candidates.filters import MatchType from bt_candidates.sorting import SortStrategy client = Client('candidates.magic.boomtrain.com') schema = client.get_schema('atlanta-black-star') filt = ff.or_filter( ff.overlap_filter('title', ['Yohannes', 'IV'], match_type=MatchType.EXACT, min=2, max=2), ff.overlap_filter('title', ['Search', 'chicago'], match_type=MatchType.EXACT, min=2, max=2), ff.overlap_filter('title', ['african', 'history', 'month'], match_type=MatchType.EXACT, min=3, max=3) ) candidates = client.get_candidates('atlanta-black-star', filt, limit=25) print(len(candidates)) for c in candidates: print(c) print('======================================================') import itertools as it def split_candidates(candidates, needed=10): to_score = [] for _, grp in it.groupby(candidates, lambda c: c.sort_weight): grp = list(grp) if len(grp) > needed: to_score.extend(grp) return to_score else:
client = Client(host='candidates.aws.boomtrain.com', port=7070) vogue = "9b69d8fc8b441b43d493d713e5703ada" filter_two_days = f.recency_filter( field='pubDate', min=timedelta(days=-2), max=timedelta(days=1), ) filter_five_days = f.recency_filter( field='pubDate', min=timedelta(days=-5), max=timedelta(days=1), ) recency_fallback_filter = f.or_filter(filter_two_days, filter_five_days) candidates_two_days = client.get_candidates(site_id=vogue, filter=filter_two_days, limit=100) count1 = len(candidates_two_days) print("Candidates applying two days filter : {}".format(count1)) fallback_candidates = client.get_candidates(site_id=vogue, filter=recency_fallback_filter, limit=100) count2 = len(fallback_candidates) print("Candidates applying the recency fallback to 5 days : {}".format(count2)) if (count1 < 100) and (count1 > count2): print("Error") else: print("number of candidates added by fallback is {}".format(count2 - count1))
schema = client.get_schema(site_id) filter_item_type = ff.overlap_filter(field='itemType', values={'lists_en'}, min=1, match_type=MatchType.CONTAINS) filter_city_region = ff.overlap_filter(field='cityRegion', values={'toronto'}, min=1, match_type=MatchType.CONTAINS) filter_meta = ff.and_filter(filter_item_type, filter_city_region) filter_meta_global = ff.and_filter(filter_item_type, filter_city_region, schema.named_filters['GLOBAL']) candidates_meta = client.get_candidates(site_id=site_id, filter=filter_meta, limit=100) candidates_meta_global = client.get_candidates(site_id=site_id, filter=filter_meta_global, limit=100) if (len(candidates_meta) < 100): assert ( 'Less than 100 candidates found for itemtype and city_region filter') if (len(candidates_meta_global) < 100): assert ( 'Less than 100 candidates found for item_type and city_region filter which also pass the GLOBAL filter' )